forked from letianzj/QuantResearch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_stock_prediction.py
139 lines (110 loc) · 7.01 KB
/
rnn_stock_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
# -------------------------------------------- Data ------------------------------------------------------- #
# price to return normalization
spx = pd.read_csv('hist/SPX Index.csv', index_col=0, header=0)
spx = spx[['High', 'Low', 'Close']]
spx_close = spx[['Close']*3]
spx_close.columns = spx.columns
spx_ret = (spx / spx_close.shift(1) - 1)*100.0 # multiply by 100; in percentage
spx_ret.dropna(inplace=True) # shape = (3059, 3), from 1/4/2006 to 2/28/2018
n_window_size = 20 # 20 business days; use first 19 to predict the 20th
# split between train and test, 90%/10%
n_total_size = spx_ret.shape[0] - n_window_size + 1 # 3040
n_train_set_size = int(np.round(n_total_size*0.9)) # 2736
n_test_set_size = n_total_size - n_train_set_size # 304
x_train = np.zeros((n_train_set_size, n_window_size-1, 3)) # shape = (2736, 19, 3)
y_train = np.zeros((n_train_set_size, 1)) # shape = (2736, 1)
x_test = np.zeros((n_test_set_size, n_window_size-1, 3)) # shape = (304, 19, 3)
y_test = np.zeros((n_test_set_size, 1)) # shape = (304, 1)
for i in range(n_train_set_size):
x_train[i, :, :] = spx_ret.iloc[i:i+n_window_size-1].values
y_train[i, 0] = spx_ret.iloc[i + n_window_size - 1, 2]
for i in range(n_train_set_size, n_total_size):
x_test[i-n_train_set_size, :, :] = spx_ret.iloc[i:i+n_window_size-1].values
y_test[i-n_train_set_size, 0] = spx_ret.iloc[i + n_window_size - 1, 2]
# generate next batch; randomly shuffle test set; and then draw without replacement batch_size samples
# after running out of samples, randomly shuffle again
index_in_epoch = 0
perm_array = np.arange(x_train.shape[0]) # (2736,)
np.random.shuffle(perm_array)
# function to get the next batch; randomly draw batch_size(50) 20d-windows
def get_next_batch(batch_size):
global index_in_epoch, x_train, perm_array
start = index_in_epoch
index_in_epoch += batch_size
if index_in_epoch > x_train.shape[0]:
np.random.shuffle(perm_array) # shuffle permutation array
start = 0 # start next epoch
index_in_epoch = batch_size
end = index_in_epoch
return x_train[perm_array[start:end]], y_train[perm_array[start:end]]
# -------------------------------------------- Build Graph ------------------------------------------------------- #
n_steps = n_window_size - 1 # 20 business days, X has 19 days
n_inputs = 3 # HLC
n_outputs = 1 # C(t=20)
n_neurons = 200 # number of neurons in a layer
n_layers = 2 # number of layers
learning_rate = 0.001 # learning rate
batch_size = 50 # batch size
n_epochs = 100 # number of epochs
tf.reset_default_graph()
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs]) # (?, 19, 3)
y = tf.placeholder(tf.float32, [None, n_outputs]) # (?, 1)
# Bonus: Multi-Layer Perceptron (MLP)
# X_MLP = tf.placeholder(tf.float32, [None, n_steps * n_inputs]) # (?, 57)
# hidden1 = tf.contrib.layers.fully_connected(X_MLP, n_neurons, activation_fn=tf.nn.elu) # (?, 200)
# hidden2 = tf.contrib.layers.fully_connected(hidden1, n_neurons, activation_fn=tf.nn.elu) # (?, 200)
# y_pred_MLP = tf.contrib.layers.fully_connected(hidden2, n_outputs, activation_fn=tf.nn.elu) # (?, 1)
# Basic RNN Cell
layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons, activation=tf.nn.elu) for layer in range(n_layers)]
# Basic LSTM Cell
# layers = [tf.nn.rnn_cell.LSTMCell(name='basic_lstm_cell', num_units=n_neurons, activation=tf.nn.elu) for layer in range(n_layers)]
# LSTM Cell with peephole connections
# layers = [tf.contrib.rnn.LSTMCell(num_units=n_neurons, activation=tf.nn.leaky_relu, use_peepholes = True) for layer in range(n_layers)]
# GRU cell
# layers = [tf.contrib.rnn.GRUCell(num_units=n_neurons, activation=tf.nn.leaky_relu) for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
# rnn_outputs contains the output tensors for each time step (?, 19, 200)
# states contains the final states of the network, (?, 200)x(2 layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
# add a densely-connected layer between final state and y
y_pred = tf.layers.dense(states[-1], n_outputs) # (?, 1)
loss = tf.reduce_mean(tf.square(y_pred - y)) # loss function is mean squared error
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
model_saver = tf.train.Saver()
# -------------------------------------------- Run Graph ------------------------------------------------------- #
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for epoch in range(n_epochs):
for iteration in range(n_train_set_size // batch_size):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch
#[a1, a2, a3, a4] = sess.run([rnn_outputs, states, y_pred, training_op], feed_dict={X: x_batch, y: y_batch})
sess.run(training_op, feed_dict={X: x_batch, y: y_batch})
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
print(epoch, "Train accuracy:", mse_train, "Test accuracy:", mse_test)
y_train_pred = sess.run(y_pred, feed_dict={X: x_train}) # (2736, 1)
y_test_pred = sess.run(y_pred, feed_dict={X: x_test}) # (304, 1)
save_path = model_saver.save(sess, "./rnn_model_final.ckpt") # checkpoint
# -------------------------------------------- Plot Results ------------------------------------------------------- #
# transform from return back to price
y_train_actual = spx['Close'].iloc[n_window_size:n_train_set_size+n_window_size] # (2736,)
y_test_actual = spx['Close'].iloc[n_train_set_size+n_window_size:] # (304, )
y_train_pred_price = pd.DataFrame(y_train_pred, index=y_train_actual.index)
y_train_pred_price.columns = ['Close']
y_train_pred_price = spx[['Close']].shift(1).iloc[n_window_size:n_train_set_size+n_window_size] * (y_train_pred_price/100.0 + 1.0)
y_test_pred_price = pd.DataFrame(y_test_pred, index=y_test_actual.index)
y_test_pred_price.columns = ['Close']
y_test_pred_price = spx[['Close']].shift(1).iloc[n_train_set_size+n_window_size:] * (y_test_pred_price/100.0 + 1.0)
# plot
plt.plot(y_train_actual.index, y_train_actual, color='blue', label='train actual')
plt.plot(y_train_pred_price.index, y_train_pred_price, color='red', label='train prediction')
plt.plot(y_test_actual.index, y_test_actual, color='yellow', label='test actual')
plt.plot(y_test_pred_price.index, y_test_pred_price, color='green', label='test prediction')
plt.show()