forked from jorainer/metabolomics2018
-
Notifications
You must be signed in to change notification settings - Fork 1
/
xcms-preprocessing-ioslides.Rmd
823 lines (624 loc) · 22.4 KB
/
xcms-preprocessing-ioslides.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
---
title: "Metabolomics data pre-processing using xcms"
author: "Johannes Rainer<br><strong>Eurac Research</strong>, Bolzano, Italy<br>[email protected] - github/twitter: jotsetung"
date: "24 June 2018"
output:
ioslides_presentation:
widescreen: true
fig_width: 7
fig_height: 5
fig_retina: 2
fig_caption: false
transition: faster
css: jostyle.css
---
<style type="text/css">
slides > slide:not(.nobackground):after {
content: '';
}
slides > slide {
-webkit-transition:none !important;transition:none !important;
}
.build > * {
-webkit-transition: opacity 0.1s ease-in-out;
-webkit-transition-delay: 0.1s;
-moz-transition: opacity 0.1s ease-in-out 0.1s;
-o-transition: opacity 0.1s ease-in-out 0.1s;
transition: opacity 0.1s ease-in-out 0.1s;
}
</style>
<!--
For options, settings etc see:
https://rmarkdown.rstudio.com/ioslides_presentation_format.html
https://bookdown.org/yihui/rmarkdown/ioslides-presentation.html#adding-a-logo
css: style.css
f fullscreen
command + increase size (zoom)
w toggle widescreen
o enable overview
h enable code highlight
Export to pdf:
webshot function from webshot package.
Might have to change stuff in the style sheet to make it working.
library(webshot)
install_phantomjs()
fn <- paste0("file://", normalizePath("xcms-preprocessing-ioslides.html"))
webshot(fn, "xcms-preprocessing-ioslides.pdf", delay = 4, vwidth = 1024, vheight = 768)
-->
## Hands-on? {.build}
<div>
- https://github.com/jotsetung/metabolomics2018
- Open *xcms-preprocessing.Rmd* in e.g. [RStudio](https://www.rstudio.com/).
</div>
## Content {.build}
This presentation focuses on updates of `xcms`:
- re-use data structures from Bioconductor's `MSnbase` package
- simplified raw data access
<div>
Content:
- Basic MS data handling ([`MSnbase`](https://github.com/lgatto/MSnbase))
- Simple MS data centroiding (`MSnbase`)
- LC-MS data pre-processing ([`xcms`](https://github.com/sneumann/xcms)):
- chromatographic peak detection
- alignment
- correspondence
</div>
# Basic MS data handling
## Data import and representation {.build}
```{r load-libs, message = FALSE, results = "hide", echo = FALSE}
library(xcms)
library(magrittr)
## Set up parallel processing using 3 cores
library(doParallel)
registerDoParallel(3)
register(bpstart(DoparParam()), default = TRUE)
```
<div>
- **Data set**:
- subset from 2 files with pooled human serum samples
- UHPLC (Agilent 1290) coupled with Q-TOF MS (TripleTOF 5600+ AB Sciex)
- HILIC-based chromatographic separation
</div>
<div>
- Define file names and sample descriptions.
```{r load-data, message = FALSE }
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
## Define a data.frame with additional information on the files.
pd <- data.frame(file = basename(fls), injection_idx = c(1, 19),
sample = c("POOL_1", "POOL_2"), group = "POOL")
```
</div>
## Data import and representation {.build}
<div>
- Read data from mzML/mzXML/CDF files with `readMSData` function.
</div>
<div>
```{r, message = FALSE}
## Read the data
data <- readMSData(fls, pdata = new("NAnnotatedDataFrame", pd),
mode = "onDisk")
```
</div>
<div>
- `mode = "onDisk"`: reads only spectrum header from files, but no data.
- on-disk mode enables analysis of very large experiments.
</div>
## Basic data access {.build}
- Access sample/phenotype information using `pData` or `$`:
<div>
```{r show-fData, message = FALSE}
## Access phenotype information
pData(data)
```
</div>
<div>
```{r show-fData2, message = FALSE}
## Or individual columns directly using the $ operator
data$injection_idx
```
</div>
## Basic data access {.build}
<div>
- Access general spectrum information: `msLevel`, `centroided`, `rtime`,
`polarity`.
</div>
<div>
- Access MS data: `spectra`, `mz`, `intensity`: reads data from files.
</div>
<div>
- In most cases we work with subsets: use filter functions to
subset the data:
- `filterFile` subset to individual files/samples.
- `filterRtime` restrict to specific retention time window.
- `filterMz` restrict to m/z range.
- `filterMsLevel` subset to certain MS level(s).
</div>
## {.build}
- Example: extract all spectra measured between 180 and 181
seconds. Using the `%>%` (pipe) operator to avoid nested function calls.
```{r spectra-filterRt, message = FALSE }
## Get all spectra measured between 180 and 181 seconds
## Use %>% for better readability
sps <- data %>%
filterRt(rt = c(180, 181)) %>%
spectra
```
```{r spectra-filterRt-length}
## How many spectra?
length(sps)
```
```{r spectra-filterRt-sapply}
## From which file?
sapply(sps, fromFile)
```
## {.build}
- Example: plot the data from the last spectrum
```{r spectrum-plot, message = FALSE, fig.width = 5, fig.height = 3.5}
plot(sps[[6]])
```
- But how to get chromatographic data?
## {.build}
- `chromatogram`: extract chromatographic data.
- Example: XIC for Serine (m/z of [M+H]+ adduct 106.0455).
```{r serine-xic, message = FALSE, fig.height = 4, fig.width = 7.5, eval = FALSE}
data %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
chromatogram(aggregationFun = "max") %>%
plot()
```
```{r serine-xic-plot, message = FALSE, fig.height = 3.3, fig.width = 7.5, echo = FALSE}
par(mar = c(4, 4.5, 1, 0.5))
data %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
chromatogram(aggregationFun = "max") %>%
plot()
```
## Centroiding of profile MS data {.build .faster}
<div>
- *centroiding* is the process in which mass peaks are reduced to a
single, representative signal, their centroids.
</div>
<div>
- `xcms`, specifically *centWave* was designed for centroided data.
- `MSnbase` provides basic tools to perform MS data smoothing and
centroiding: `smooth` and `pickPeaks`.
</div>
<div>
- Example: show the combined m/z, rt and intensity data for
Serine.
```{r serine-profile-mode-data, message = FALSE, eval = FALSE}
data %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
plot(type = "XIC")
```
</div>
## {.flexbox .vcenter}
```{r serine-profile-mode-data2, message = FALSE, echo = FALSE}
## Filter the MS data to the signal from the Serine ion and plot it using
## type = "XIC"
data %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
plot(type = "XIC")
```
- plot `type = "XIC"` creates a combined chromatographic and *map*
visualization of the data.
## {.build}
<div>
- Example: smooth data with Savitzky-Golay filter followed by a centroiding that
simply reports the maximum signal for each mass peak in each spectrum. See
`?pickPeaks` for more advanced options.
```{r centroiding, message = FALSE, warning = FALSE, eval = FALSE}
## Smooth the signal, then do a simple peak picking.
data_cent <- data %>%
smooth(method = "SavitzkyGolay", halfWindowSize = 6) %>%
pickPeaks()
```
</div>
<div>
```{r, eval = FALSE}
## Plot the centroided data for Serine
data_cent %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
plot(type = "XIC")
```
</div>
----
```{r centroiding2, message = FALSE, warning = FALSE, fig.width = 10, fig.height = 5, echo = FALSE}
## Smooth the signal, then do a simple peak picking.
data_cent <- data %>%
smooth(method = "SavitzkyGolay", halfWindowSize = 6) %>%
pickPeaks()
## Plot the centroided data for Serine
data_cent %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
plot(type = "XIC")
```
## {.build}
<div>
- Note: since data is not available in memory, data smoothing and centroiding is
applied *on-the-fly* each time m/z or intensity values are accessed.
</div>
<div>
- To make changes persistent: export and re-read the data.
```{r remove-exported, message = FALSE, echo = FALSE, results = "hide"}
lapply(basename(fileNames(data)), function (z) {
if (file.exists(z))
file.remove(z)
})
```
</div>
```{r export-centroided, message = FALSE, warning = FALSE }
## Write the centroided data to files with the same names in the current
## directory
fls_new <- basename(fileNames(data))
writeMSData(data_cent, file = fls_new)
## Read the centroided data.
data_cent <- readMSData(fls_new, pdata = new("NAnnotatedDataFrame", pd),
mode = "onDisk")
```
# LC-MS data preprocessing
## Chromatographic peak detection {.build}
- Aim: identify chromatographic peaks in the data.
<div>
- Function: `findChromPeaks`.
</div>
<div>
- Available methods:
- *matchedFilter* (`MatchedFilterParam`) [Smith *Anal. chem.* 2006].
- *centWave* (`CentWaveParam`) [Tautenhahn *BMC Bioinformatics* 2008].
- *massifquant* (`MassifquantParam` [Conley *Bioinformatics* 2014].
</div>
## | centWave
- First step: identify regions of interest.
```{r out.width="600px", echo = FALSE}
knitr::include_graphics("images/centWave-ROI.png")
```
<div style="position:absolute; top:95%; left:60%; font-size: 50%">
[Tautenhahn *BMC Bionformatics* 2008]
</div>
----
- 2nd: peak detection in these regions using continuous wavelet transform.
```{r out.width="600px", echo = FALSE}
knitr::include_graphics("images/centWave-CWT.png")
```
<div style="position:absolute; top:95%; left:60%; font-size: 50%">
[Tautenhahn *BMC Bionformatics* 2008]
</div>
## {.build}
- Crucial centWave parameters: `peakwidth`, `ppm`; list all with `?CentWaveParam`.
- `peakwidth`: minimal and maximal expected peak width.
<div>
- Example: extract chromatographic data for Serine.
```{r centWave-default, message = FALSE, results = "hide", fig.height = 3.5, fig.width = 5, eval = FALSE}
srn_chr <- chromatogram(data_cent, rt = c(165, 200),
mz = c(106.03, 106.06),
aggregationFun = "max")[1, 1]
plot(srn_chr)
```
</div>
<div>
```{r, echo = FALSE, fig.height = 3.2, fig.width = 5}
srn_chr <- chromatogram(data_cent, rt = c(165, 200),
mz = c(106.03, 106.06),
aggregationFun = "max")[1, 1]
par(mar = c(4, 4.5, 1.5, 0.5))
plot(srn_chr)
```
</div>
## {.build}
- **New**: peak detection on `Chromatogram` objects.
- Perform peak detection using default centWave parameters in that data.
```{r centWave-default2, message = FALSE, results = "hide"}
cwp <- CentWaveParam()
findChromPeaks(srn_chr, param = cwp)
```
- **What went wrong?** What's the default for `peakwidth`?
```{r centWave-default3, message = FALSE}
peakwidth(cwp)
```
- Default for `peakwidth` does not match the current data.
## {.smaller .build}
- Reduce `peakwidth` and run peak detection again.
```{r centWave-adapted, message = FALSE, fig.height = 3.5, width = 5, eval = FALSE}
peakwidth(cwp) <- c(2, 10)
pks <- findChromPeaks(srn_chr, param = cwp)
## Plot the data and higlight identified peak area
plot(srn_chr)
rect(pks[, "rtmin"], 0, pks[, "rtmax"], pks[, "maxo"], border = "#00000040")
```
```{r, message = FALSE, fig.height = 3.5, width = 5, echo = FALSE}
cwp <- CentWaveParam(peakwidth = c(2, 10))
pks <- findChromPeaks(srn_chr, param = cwp)
## Plot the data and higlight identified peak area
par(mar = c(4, 4.5, 1.5, 0.5))
plot(srn_chr)
rect(pks[, "rtmin"], 0, pks[, "rtmax"], pks[, "maxo"], border = "#00000040")
```
- Ideally check settings on more known compounds.
## {.smaller .build}
- `ppm`: maximal allowed scattering of m/z values for one ion.
- Example: evaluate the m/z scattering of the signal for Serine.
```{r Serine-mz-scattering-plot, message = FALSE, fig.height = 3.5, width = 5 }
## Restrict the data to signal from Serine
srn <- data_cent %>%
filterRt(rt = c(179, 186)) %>%
filterMz(mz = c(106.04, 106.06))
## Plot the data
plot(srn, type = "XIC")
```
## {.build}
- Example: calculate the difference of m/z values between consecutive scans.
```{r define-ppm, message = FALSE }
## Extract mz values for Serine from first file
srn_mz <- unlist(mz(filterFile(srn, 1)))
## The difference between m/z values from consecutive scans in ppm
diff(srn_mz) * 1e6 / mean(srn_mz)
```
- This should be performed ideally on more compounds.
- `ppm`: large enough to capture the full chromatographic peak.
## {.build}
<div>
- Perform chromatographic peak detection with our data set-specific settings.
```{r findPeaks-centWave, message = FALSE }
## Perform peak detection
ppm(cwp) <- 30
data_cent <- findChromPeaks(data_cent, param = cwp)
```
</div>
<div>
- Result: `XCMSnExp` object extends the `OnDiskMSnExp`, contains preprocessing
results **and** enables data access as described above. </div>
## {.build}
- Use `chromPeaks` to access the peak detection results.
```{r xcmsnexp, message = FALSE}
head(chromPeaks(data_cent), n = 5)
```
## Alignment - in short {.build}
<div>
- Aim: adjust shifts in retention times between samples.
</div>
<div>
- Function: `adjustRtime`.
</div>
<div>
- Available methods:
- *obiwarp* (`ObiwarpParam`) [Prince *Anal. chem.* 2006]: warps the (full)
data to a reference sample.
</div>
<div>
- *peakGroups* (`PeakGroupsParam`) [Smith *Anal. chem.* 2006]:
- align spectra from different samples based on *hook* peaks.
- Need to define the hook peaks first: peaks present in most/all samples.
</div>
## {.build}
- Example: perform a peak grouping to define potential hook peaks and align the
samples based on these.
- *Note:* details on initial peak grouping provided in the next section.
```{r alignment-correspondence, message = FALSE }
## Define the settings for the initial peak grouping
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8,
minFraction = 1, binSize = 0.02)
data_cent <- groupChromPeaks(data_cent, pdp)
```
<div>
- Align the samples.
```{r alignment-correspondence-alignment, message = FALSE}
## Define settings for the alignment
pgp <- PeakGroupsParam(minFraction = 1, span = 0.6)
data_cent <- adjustRtime(data_cent, param = pgp)
```
</div>
## {.build}
- Inspect difference between raw and adjusted retention times.
```{r alignment-result, message = FALSE, fig.width = 8, fig.height = 4 , eval = FALSE}
plotAdjustedRtime(data_cent)
```
```{r alignment-result-plot, message = FALSE, fig.width = 8, fig.height = 3.5 , echo = FALSE}
par(mar = c(4, 4.5, 0.5, 0.5))
plotAdjustedRtime(data_cent)
```
- Difference between raw and adjusted retention times resonable.
- Hook peaks along the full retention time range.
## {.build}
- Plot BPC before and after alignment.
- Plot XIC of known compounds before and after alignment.
```{r serine-xic-adjusted, message = FALSE, fig.width = 8, fig.height = 3.1 }
## Use adjustedRtime parameter to access raw/adjusted retention times
par(mfrow = c(1, 2), mar = c(4, 4.5, 0.9, 0.5))
plot(chromatogram(data_cent, mz = c(106.04, 106.06),
rt = c(179, 186), adjustedRtime = FALSE))
plot(chromatogram(data_cent, mz = c(106.04, 106.06),
rt = c(179, 186)))
```
## Correspondence {.build}
<div>
- Aim: group signal (peaks) from the same ion across samples.
</div>
<div>
- Function: `groupChromPeaks`.
- Methods available:
- *peak density* (`PeakDensityParam`) [Smith *Anal. chem.* 2006].
- *nearest* (`NearestPeaksParam`) [Katajamaa *Bioinformatics* 2006].
</div>
## | peak density {.build}
<div>
- Iterate through slices along m/z.
- Compare retention times of peaks within each slice and group peaks if they are
close.
</div>
<div>
- Distribution of peaks along retention time axis is used to define which peaks
to group.
</div>
<div>
- `plotChromPeakDensity`: plot distribution of identified peaks along rt for a
given m/z slice; simulates correspondence analysis.
</div>
## {.build}
<div>
- Example:
- Plot data for the m/z slice containing the Serine peak.
- Use `plotChromPeakDensity` to simulate a correspondence analysis in the same
slice.
</div>
<div>
```{r correspondence-example, message = FALSE, eval = FALSE}
## Plot the BPC for the m/z slice containing serine
par(mfrow = c(2, 1), mar = c(4, 4.3, 1, 0.5))
plot(chromatogram(data_cent, mz = c(106.04, 106.06), aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = c(106.04, 106.06),
whichPeaks = "apex_within")
## Get default parameters for the grouping
pdp <- PeakDensityParam(sampleGroups = data_cent$group)
## Dry-run correspondence and show the results.
plotChromPeakDensity(data_cent, mz = c(106.04, 106.06),
type = "apex_within", param = pdp)
```
</div>
## {.smaller}
```{r correspondence-example-plot, message = FALSE, width = 7, height = 5, echo = FALSE}
## Plot the BPC for the m/z slice containing serine
par(mfrow = c(2, 1), mar = c(4, 4.3, 1, 0.5))
plot(chromatogram(data_cent, mz = c(106.04, 106.06), aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = c(106.04, 106.06),
whichPeaks = "apex_within")
## Get default parameters for the grouping
pdp <- PeakDensityParam(sampleGroups = data_cent$group)
## Dry-run correspondence and show the results.
plotChromPeakDensity(data_cent, mz = c(106.04, 106.06),
type = "apex_within", param = pdp)
```
- Points are peaks per sample;
- black line: peak density distribution;
- grey rectangles: grouped peaks (features).
##
- Parameters:
- `binSize`: m/z width of the data slice in which peaks are grouped.
- `bw` defines the smoothness of the density function.
- `maxFeatures`: maximum number of features to be defined in one bin.
- `minFraction`: minimum proportion of samples (of one group!) for
which a peak has to be present.
- `minSamples`: minimum number of samples a peak has to be present.
> - Parameters `minFraction` and `minSamples` depend on experimental layout!
> - `binSize` should be small enough to avoid peaks from different ions
measured at similar retention times to be grouped together.
> - `bw` is the most important parameter.
## {.build}
- Test default settings for a slice containing ions with similar m/z and rt:
isomers Betaine and Valine ([M+H]+ m/z 118.08625).
```{r correspondence-bw, message = FALSE, eval = FALSE}
par(mfrow = c(2, 1), mar = c(3, 4.3, 1, 1))
## Plot the chromatogram for an m/z slice containing Betaine and Valine
mzr <- 118.08625 + c(-0.01, 0.01)
plot(chromatogram(data_cent, mz = mzr, aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = mzr, whichPeaks = "apex_within")
## Correspondence in that slice using default settings
pdp <- PeakDensityParam(sampleGroups = data_cent$group)
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within")
```
##
```{r correspondence-bw-plot, message = FALSE, width = 7, height = 5, echo = FALSE}
par(mfrow = c(2, 1), mar = c(3, 4.3, 1, 1))
## Plot the chromatogram for an m/z slice containing Betaine and Valine
mzr <- 118.08625 + c(-0.01, 0.01)
plot(chromatogram(data_cent, mz = mzr, aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = mzr, whichPeaks = "apex_within")
## Correspondence in that slice using default settings
pdp <- PeakDensityParam(sampleGroups = data_cent$group)
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within")
```
> - **Correspondence failed**: all peaks grouped into one feature!
> - Default for `bw` (`30`) too large for present data set.
## {.build}
- `plotChromPeakDensity` allows to evaluate and tune settings on data subsets.
- Test smaller `bw` (`1.8`) on the same slice.
```{r correspondence-bw2, message = FALSE, eval = FALSE}
par(mfrow = c(2, 1), mar = c(3, 4.3, 1, 1))
## Plot the chromatogram for an m/z slice containing Betaine and Valine
mzr <- 118.08625 + c(-0.01, 0.01)
plot(chromatogram(data_cent, mz = mzr, aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = mzr, whichPeaks = "apex_within")
## Reducing the bandwidth
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8)
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within")
```
##
```{r correspondence-bw2-plot, message = FALSE, fig.width = 7, fig.height = 5, echo = FALSE}
par(mfrow = c(2, 1), mar = c(3, 4.3, 1, 1))
## Plot the chromatogram for an m/z slice containing Betaine and Valine
mzr <- 118.08625 + c(-0.01, 0.01)
plot(chromatogram(data_cent, mz = mzr, aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = mzr, whichPeaks = "apex_within")
## Reducing the bandwidth
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8)
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within")
```
> - Reducing the `bw` enabled grouping of isomers into different
features.
##
- Perform the correspondence analysis with tuned settings.
```{r correspondence-analysis, message = FALSE}
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8,
minFraction = 0.4, binSize = 0.02)
## Perform the correspondence analysis
data_cent <- groupChromPeaks(data_cent, param = pdp)
```
> - Evaluate results after correspondence: `plotChromPeakDensity` with `simulate
= FALSE` shows the actual results from the correspondence.
> - Feature definitions are stored within the `XCMSnExp` object, can be accessed
with `featureDefinitions`.
## {.build}
- Use `featureValues` to access the features' abundance estimates.
```{r}
## feature intensity matrix
fmat <- featureValues(data_cent, value = "into", method = "maxint")
head(fmat)
```
- `featureValues` parameters:
- `value`: name of the column in `chromPeaks` that should be returned.
- `method`: for features with multiple peaks in one sample: from which
peak should the value be returned?
## Missing values {.build}
<div>
- Peak detection may have failed in one sample.
- Ion is not present in a sample.
</div>
<div>
- `fillChromPeaks` allows to *fill-in* signal for missing peaks from the
feature area (defined by the median rt and mz of all peaks assigned to the
feature).
</div>
<div>
- `fillChromPeaks` Parameters:
- `expandMz`, `expandRt`: expands the region from which signal is integrated
in m/z or rt dimension. A value of 0 means no expansion, 1 means the region
is grown by half of the feature's m/z width on both sides.
- `ppm`: expand the m/z width by a m/z dependent value.
</div>
## Summary {.build}
<div>
- The new data objects and functions aim to:
- simplify data access and inspection of results
- facilitate data set-dependent definition of algorithm parameters.
</div>
<div>
- More work to come for the analysis of chromatographic data (SRM/MRM)
and eventually for data normalization.
</div>
<div>
- **Don't blindly use default parameters!**
</div>
## Acknowledgments
> - Jan Stanstrup (University of Copenhagen, Denmark)
> - Laurent Gatto (University of Cambridge, UK); `MSnbase`, `mzR`.
> - Steffen Neumann (IPB Halle, Germany); `xcms`, `mzR`
> - **YOU for your attention!**
<div style="position:absolute; left:30%; top:90%">
https://github.com/jotsetung/metabolomics2018
</div>