forked from jorainer/metabolomics2018
-
Notifications
You must be signed in to change notification settings - Fork 1
/
xcms-preprocessing-bullets.Rmd
701 lines (503 loc) · 20.6 KB
/
xcms-preprocessing-bullets.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
---
title: "Metabolomics data pre-processing using xcms"
author:
- name: "Johannes Rainer"
affiliation: "Eurac Research, Bolzano, Italy; [email protected] github/twitter: jotsetung"
date: "24 June 2018"
---
# Background
- `xcms` part of Bioconductor since 2006, *standard* toolbox for LC/GC-MS
data preprocessing.
- Major changes in `xcms` version > 3:
- re-use data structures from Bioconductor's `MSnbase` package
- native MSn support
- new functions simplifying raw data access
- internal changes and code cleanup
## Mass spectrometry
- Mass spectrometry (MS): measure ion abundances in a sample.
- Data is represented/measured in a spectrum.
![](images/MS.png)
- Many ions have same/similar mass-to-charge ratio (m/z).
- Additional separation of compounds by other properties
(hydrophobic/hydrophilic): liquid or gas chromatography.
![](images/LCMS.png)
## Definitions and common naming convention
- chromatographic peak: signal from an ion along retention time
dimension.
- chromatographic peak detection: process in which chromatographic peaks
are identified within each file.
- alignment: adjust retention time differences between files.
- correspondence: grouping of chromatographic peaks (presumably from the
same ion) across files.
- feature: chromatographic peaks grouped across samples.
# Workflow: metabolomics data preprocessing using `xcms`
The workflow is focused on the new `xcms` interface and covers:
- Basic MS data handling (`MSnbase`)
- Simple MS data centroiding (`MSnbase`)
- LC-MS data pre-processing (`xcms`):
- chromatographic peak detection
- alignment
- correspondence
- Not covered:
- data normalization
- compound identification
- differential abundance analysis
## Prerequisites
- Rstudio
- R version >= 3.5.0
- Libraries:
```{r eval = FALSE}
source("https://bioconductor.org/biocLite.R")
biocLite(c("xcms", "MSnbase", "doParallel", "msdata", "magrittr",
"devtools"))
## Need xcms version > 3.3.1
if (packageVersion("xcms") < "3.3.1")
devtools::install_github("sneumann/xcms", ref = "master")
```
## Data import and representation
- Read data from mzML/mzXML/CDF files with the `readMSData` function.
- `mode = "onDisk"` reads only spectrum header from the files,
but no data.
- *on-disk* mode enables analysis of very large experiments.
- Interactive code: read the toy data set:
- subset from 2 files with pooled serum samples
- UHPLC (Agilent 1290) coupled with Q-TOF MS (TripleTOF 5600+ AB Sciex)
- HILIC-based chromatographic separation
```{r load-data}
library(MSnbase)
library(xcms)
library(doParallel)
library(magrittr)
## Define the file names.
fls <- dir(system.file("sciex", package = "msdata"), full.names = TRUE)
## Define a data.frame with additional information on the files.
pd <- data.frame(file = basename(fls),
injection_idx = c(1, 19),
sample = c("POOL_1", "POOL_2"),
group = "POOL")
data <- readMSData(fls, pdata = new("NAnnotatedDataFrame", pd),
mode = "onDisk")
```
- Parallel processing setup should be defined at the start.
- Most functions from `xcms` and `MSnbase` are parallelized
*per-file* and use the registered setup.
- Interactive code: parallel processing setup.
```{r parallel-setup, message = FALSE }
## Set up parallel processing using 3 cores
registerDoParallel(3)
register(bpstart(DoparParam()), default = TRUE)
```
- `data` is an `OnDiskMSnExp`; access phenotype information
using `pData` or `$`, general spectrum information using `fData`.
- Interactive code: get to know the `OnDiskMSnExp` object.
```{r show-fData}
## Access phenotype information
pData(data)
## Or individual columns directly using the $ operator
data$injection_idx
## Access spectrum header information
head(fData(data))
```
## Basic data access and visualization
- MS data in `OnDiskMSnExp`s is organized by spectrum.
- Access general spectrum information with `msLevel`, `centroided`,
`rtime`, `polarity`.
- Use `fromFile` to know which values belong to which file/sample.
- `Spectrum` object: container for m/z and intensity values.
- Interactive code: access general spectrum information.
```{r general-access}
## Get the retention time
head(rtime(data))
## How many spectra are there?
length(rtime(data))
## Get the retention times splitted by file.
rts <- split(rtime(data), fromFile(data))
## The result is a list of length 2. The number of spectra per file can
## then be determined with
lengths(rts)
```
- `spectra` gets list of all spectra (from all files). Can be slow
because the full data is read from the files.
- In most cases we work with subsets anyway: use filter functions to
subset the data:
- `filterFile` subset to individual files/samples.
- `filterRtime` restrict to specific retention time window.
- `filterMz` restrict to m/z range.
- `filterMsLevel` subset to certain MS level(s).
- Data access will be fast on indexed mzML, mzXML and CDF files.
- Interactive code: extract all spectra measured between 180 and 181
seconds. Using the `%>%` (pipe) operator to avoid nested function calls.
```{r spectra-filterRt}
## Get all spectra measured between 180 and 181 seconds
## Use %>% for better readability
sps <- data %>%
filterRt(rt = c(180, 181)) %>%
spectra
## How many spectra?
length(sps)
## From which file?
sapply(sps, fromFile)
```
- Interactive code: plot the data from the last spectrum
```{r spectrum-plot}
plot(sps[[6]])
```
- Spectra: intensities along the m/z dimension for discrete
retention times.
- `chromatogram`: extract chromatographic data (intensities
along retention time for a certain m/z range).
- Interactive code: get the total ion chromatogram for each file.
```{r chromatogram}
## Get chromatographic data (TIC) for an m/z slice
chr <- chromatogram(data)
chr
## Plot the tic
plot(chr)
```
- `chromatogram`: TIC with `aggregationFun = "sum"`, BPC with
`aggregationFun = "max"`.
- Interactive code: extract ion chromatogram for Serine ([M+H]+ adduct
m/z 106.0455 matches the second largest peak in spectrum above).
```{r serine-xic}
## Plot first the spectrum
par(mfrow = c(1, 2))
plot(mz(sps[[6]]), intensity(sps[[6]]), type = "h", xlab = "m/z",
ylab = "intensity", main = rtime(sps[[6]]))
## Highlight the m/z range from which we extract the Serine XIC
rect(106.02, 0, 106.07, 70000, border = "#ff000040")
## Extract and plot the XIC for Serine
data %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
chromatogram(aggregationFun = "max") %>%
plot()
```
- Functionality provides an easy access to raw data.
- `spectra` to get intensities along m/z for discrete retention time.
- `chromatogram` to get intensities along rt for m/z range.
- Use `rtime`, `mz`, `intensity` to access the MS values.
## Centroiding of profile MS data
- *centroiding* is the process in which mass peaks are reduced to a
single, representative signal, their centroids.
- `xcms`, specifically *centWave* was designed for centroided data.
- Proper centroiding can improve data accuracy.
- `MSnase` provides basic tools to perform MS data smoothing and
centroiding: `smooth` and `pickPeaks`.
- Interactive code: show the combined m/z, rt and intensity data for
Serine.
```{r serine-profile-mode-data}
## Subset data to Serine ion and plot using type = "XIC"
data %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
plot(type = "XIC")
```
- plot `type = "XIC"` creates a combined chromatographic and *map*
visualization of the data.
- Interactive code: smooth data in m/z dimension with Savitzky-Golay
filter followed by a centroiding that simply reports the maximum
signal for each mass peak in each spectrum. See `?pickPeaks` for
more advanced options.
```{r centroiding}
## Smooth the signal, then do a simple peak picking.
data_cent <- data %>%
smooth(method = "SavitzkyGolay", halfWindowSize = 6) %>%
pickPeaks()
## Plot the centroided data for Serine
data_cent %>%
filterRt(rt = c(175, 189)) %>%
filterMz(mz = c(106.02, 106.07)) %>%
plot(type = "XIC")
```
- Note: data smoothing and centroiding is applied to the data
*on-the-fly* each time m/z or intensity values are accessed.
- Interactive code: export the smoothed data to new files and
re-read the data.
```{r export-centroided}
## Write the centroided data to files with the same names in the current
## directory
fls_new <- basename(fileNames(data))
writeMSData(data_cent, file = fls_new)
## Read the centroided data.
data_cent <- readMSData(fls_new, pdata = new("NAnnotatedDataFrame", pd),
mode = "onDisk")
```
## LC-MS data preprocessing
### Chromatographic peak detection
- Aim: identify chromatographic peaks in the data.
- Function: `findChromPeaks`.
- Available methods:
- *matchedFilter* (`MatchedFilterParam`) [Smith Anal. chem. 2006].
- *centWave* (`CentWaveParam`) [Tautenhahn BMC Bioinformatics 2008].
- *massifquant* (`MassifquantParam`) [Conley Bioinformatics 2014].
**centWave**:
1) identify regions of interest.
![](images/centWave-ROI.png)
2) perform peak detection in these regions using continuous wavelet
transform (CWT).
![](images/centWave-CWT.png)
- CentWave parameters:
```{r centwave-help}
?CentWaveParam
```
- Crucial parameters: `peakwidth`, `ppm`.
- `peakwidth`: minimal and maximal expected peak width. Depends on the
LC settings of the experiment.
- Interactive code: extract chromatographic data for Serine and perform
peak detection using default parameters
```{r centWave-default}
## Get the XIC for serine in the first file
srn_chr <- chromatogram(data_cent, rt = c(165, 200),
mz = c(106.03, 106.06),
aggregationFun = "max")[1, 1]
## Plot the data
par(mfrow = c(1, 1), mar = c(4, 4.5, 1, 1))
plot(srn_chr)
## Get default centWave parameters
cwp <- CentWaveParam()
## "dry-run" peak detection on the XIC.
findChromPeaks(srn_chr, param = cwp)
peakwidth(cwp)
```
- What went wrong? Default for `peakwidth` does not match data.
- Interactive code: change `peakwidth` and run again.
```{r centWave-adapted}
cwp <- CentWaveParam(peakwidth = c(2, 10))
pks <- findChromPeaks(srn_chr, param = cwp)
## Plot the data and higlight identified peak area
plot(srn_chr)
rect(pks[, "rtmin"], 0, pks[, "rtmax"], pks[, "maxo"], border = "#00000040")
```
- Ideally check settings on more known compounds.
- `ppm`: maximal allowed scattering of m/z values for one ion.
- Interactive code: evaluate the m/z scattering of the signal for Serine.
```{r Serine-mz-scattering-plot}
## Restrict the data to signal from Sering
srn <- data_cent %>%
filterRt(rt = c(179, 186)) %>%
filterMz(mz = c(106.04, 106.06))
## Plot the data
plot(srn, type = "XIC")
```
- Interactive code: calculate the difference in m/z values between
consecutive scans.
```{r define-ppm}
## Extract the Serine data for one file as a data.frame
srn_df <- as(filterFile(srn, 1), "data.frame")
head(srn_df)
## The difference between m/z values from consecutive scans in ppm
diff(srn_df$mz) * 1e6 / mean(srn_df$mz)
```
- Ideally this should also be performed on more compounds.
- `ppm` should be large enough to capture the full chromatographic peak.
- Interactive code: perform chromatographic peak detection.
```{r findPeaks-centWave}
## Perform peak detection
cwp <- CentWaveParam(peakwidth = c(2, 10), ppm = 30)
data_cent <- findChromPeaks(data_cent, param = cwp)
```
- Result: `XCMSnExp` object extends the `OnDiskMSnExp`, contains
preprocessing results *and* enables data access as described above.
- Interactive code: access identified chromatographic peaks.
```{r xcmsnexp}
## Access the peak detection results
head(chromPeaks(data_cent))
```
- For quality assessment, we could also do some summary statistics on
the identified peaks or plot location of peaks in the m/z - rt plane
with `plotChromPeaks`.
### Alignment
- Aim: adjusts shifts in retention times between samples.
- Interactive code: plot base peak chromatograms of all files.
```{r alignment-bpc-raw}
## Extract base peak chromatograms
bpc_raw <- chromatogram(data_cent, aggregationFun = "max")
par(mfrow = c(1, 1))
plot(bpc_raw)
```
- Function: `adjustRtime`.
- Available methods:
- *peakGroups* (`PeakGroupsParam`) [Smith Anal. chem. 2006]: align
samples based on hook peaks.
- *obiwarp* (`ObiwarpParam`) [Prince Anal. chem. 2006]: warps the
(full) data to a reference sample.
- peakGroups works reasonably well in most cases.
- Need to define the hook peaks first: peaks present in most/all samples.
- Important parameters:
- `minFraction`: proportion of samples in which a feature has to be
present (0.9 for present in 90% of samples).
- `span`: degree of smoothing for the loess function, 0 likely
overfitting, 1 linear regression. Values between 0.4 and 0.6 seem
reasonable.
- Interactive code: perform a peak grouping to allow definition of hook
peaks and align the samples based on these.
```{r alignment-correspondence}
## Define the settings for the initial peak grouping - details for
## choices in the next section.
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8,
minFraction = 1, binSize = 0.02)
data_cent <- groupChromPeaks(data_cent, pdp)
## Define settings for the alignment
pgp <- PeakGroupsParam(minFraction = 1, span = 0.6)
data_cent <- adjustRtime(data_cent, param = pgp)
```
- Adjusted retention times are stored in the object.
- Interactive code: inspect the difference between raw and adjusted
retention times. Helps to determine whether settings were OK.
```{r alignment-result}
## Plot the difference between raw and adjusted retention times
plotAdjustedRtime(data_cent)
```
- Evaluate alignment results:
- difference between raw and adjusted retention time reasonable.
- hook peaks along the full retention time range.
- comparison of BPC (TIC) before/after alignment.
- evaluate data for known compounds.
- Interactive code: plot BPC before and after alignment.
```{r bpc-raw-adjusted}
par(mfrow = c(2, 1), mar = c(3, 4.5, 1, 1))
## Plot the raw base peak chromatogram
plot(bpc_raw)
## Plot the BPC after alignment
plot(chromatogram(data_cent, aggregationFun = "max"))
```
- Interactive code: plot Serine XIC before and after alignment.
```{r serine-xic-adjusted, message = FALSE, fig.cap = "XIC for Serine before (left) and after (right) alignment", fig.width = 10, fig.height = 4 }
## Use adjustedRtime parameter to access raw/adjusted retention times
par(mfrow = c(1, 2), mar = c(4, 4.5, 1, 0.5))
plot(chromatogram(data_cent, mz = c(106.04, 106.06),
rt = c(179, 186), adjustedRtime = FALSE))
plot(chromatogram(data_cent, mz = c(106.04, 106.06),
rt = c(179, 186)))
```
- If we need to repeat simply remove alignment results with
`dropAdjustedRtime` and re-run.
### Correspondence
- Aim: group signal (peaks) from the same ion across samples.
- Function: `groupChromPeaks`.
- Methods available:
- *peak density* (`PeakDensityParam`) [Smith Anal. chem. 2006].
- *nearest* (`NearestPeaksParam`) [Katajamaa Bioinformatics 2006].
- peak density:
- iterates through slices of m/z ranges and groups chromatographic
ineach if peaks are close in retention time.
- Whether they are close is estimated on the distribution of peaks
along the retention time.
- Interactive code: plot the data for the m/z slice containing the Serine
peak and dry-run a correspondence analysis.
```{r correspondence-example}
## Plot the BPC for the m/z slice containing serine
par(mfrow = c(2, 1), mar = c(4, 4.3, 1, 0.5))
plot(chromatogram(data_cent, mz = c(106.04, 106.06), aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = c(106.04, 106.06),
whichPeaks = "apex_within")
## Get default parameters for the grouping
pdp <- PeakDensityParam(sampleGroups = data_cent$group)
## Dry-run correspondence and show the results.
plotChromPeakDensity(data_cent, mz = c(106.04, 106.06),
type = "apex_within", param = pdp)
```
- Black line: peak density estimate
- points: position of peaks along retention time axis per sample
- grey rectangles: grouped peaks (features).
- Parameters:
- `binSize`: m/z width of the data slice in which peaks are grouped.
- `bw` defines the smoothness of the density function.
- `maxFeatures`: maximum number of features to be defined in one bin.
- `minFraction`: minimum proportion of samples (of one group!) for
which a peak has to be present.
- `minSamples`: minimum number of samples a peak has to be present.
- `minFraction` and `minSamples` depend on experimental layout!
- `binSize`: small enough to avoid grouping of peaks from different
ions measured at same retention time.
- Interactive code: determine acceptable `bw` setting. Plot data for
ions with same m/z and similar retention time: isomers Betaine and
Valine ([M+H]+ m/z 118.08625).
```{r correspondence-bw}
par(mfrow = c(3, 1), mar = c(3, 4.3, 1, 1))
## Plot the chromatogram for an m/z slice containing Betaine and Valine
mzr <- 118.08625 + c(-0.01, 0.01)
plot(chromatogram(data_cent, mz = mzr, aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = mzr, whichPeaks = "apex_within")
## Correspondence in that slice using default settings
pdp <- PeakDensityParam(sampleGroups = data_cent$group)
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within")
## Reducing the bandwidth
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8)
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within")
```
- Reducing the `bw` enabled grouping of isomers into separate
features.
- Interactive code: perform the correspondence analysis.
```{r correspondence-analysis}
pdp <- PeakDensityParam(sampleGroups = data_cent$group, bw = 1.8,
minFraction = 0.4, binSize = 0.02)
## Perform the correspondence analysis
data_cent <- groupChromPeaks(data_cent, param = pdp)
```
- Evaluate results after correspondence: check another slice with
isomers: Leucine, Isoleucine ([M+H]+ m/z 132.10191). Setting
`simulate = FALSE` shows the actual grouping results.
```{r correspondence-evaluate}
par(mfrow = c(2, 1), mar = c(3, 4.3, 1, 1))
## Plot the chromatogram for an m/z slice containing Leucine and Isoleucine
mzr <- 132.10191 + c(-0.01, 0.01)
plot(chromatogram(data_cent, mz = mzr, aggregationFun = "max"))
highlightChromPeaks(data_cent, mz = mzr, whichPeaks = "apex_within")
plotChromPeakDensity(data_cent, mz = mzr, param = pdp, type = "apex_within",
simulate = FALSE)
```
- Interactive code: inspect definition of features and extract feature
intensities.
```{r correspondence-feature-values}
## Definition of the features
featureDefinitions(data_cent)
## Per-feature summary.
head(featureSummary(data_cent))
## feature intensity matrix
fmat <- featureValues(data_cent, value = "into", method = "maxint")
head(fmat)
```
- `featureValues` parameters:
- `value`: name of the column in `chromPeaks` that should be returned.
- `method`: for features with multiple peaks in one sample: from which
peak the should the value be returned?
- About missing values: peak detection may have failed. `fillChromPeaks`
allows to *fill-in* signal for missing peaks from the feature area
(defined by the median rt and mz of all peaks assigned to the feature).
Parameters:
- `expandMz`: expands the region from which signal is integrated in m/z
dimension. A value of 0 means no expansion, 1 means the region is grown
by half of the feature's m/z width on both sides.
- `expandRt`: expand the retention time window of the feature for
integration.
- `ppm`: expand the m/z width by a m/z dependent value.
- Interactive code: evaluate the number of missing peaks and use
`fillChromPeaks` to retrieve a signal for them from the raw files.
```{r fillChromPeaks}
## Number of missing values
sum(is.na(fmat))
## Define the settings for the fill-in of missing peaks
fpp <- FillChromPeaksParam(expandMz = 0.5, expandRt = 0.5, ppm = 20)
data_cent <- fillChromPeaks(data_cent, param = fpp)
## How many missing values after
sum(is.na(featureValues(data_cent)))
fmat_fld <- featureValues(data_cent, value = "into", method = "maxint")
head(fmat_fld)
```
- Note: `dropFilledChromPeaks` removes filled-in peaks again.
- `XCMSnExp` objects contain also the complete processing history
including parameter classes.
```{r correspondence-result-object}
## Overview of the performed processings
processHistory(data_cent)
## Access the parameter class for a processing step
processParam(processHistory(data_cent)[[1]])
```
# Summary
- Don't blindly use default parameters!
- The new data objects and functions are aimed to:
- simplify data access and inspection of results
- facilitate data set-dependent definition of algorithm parameters.
- More work to come for the analysis of chromatographic data (SRM/MRM)
and eventually for data normalization.