-
Notifications
You must be signed in to change notification settings - Fork 33
/
layer.py
executable file
·143 lines (113 loc) · 5.1 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
def squash_v1(x, axis):
s_squared_norm = (x ** 2).sum(axis, keepdim=True)
scale = torch.sqrt(s_squared_norm)/ (0.5 + s_squared_norm)
return scale * x
def dynamic_routing(batch_size, b_ij, u_hat, input_capsule_num):
num_iterations = 3
for i in range(num_iterations):
if True:
leak = torch.zeros_like(b_ij).sum(dim=2, keepdim=True)
leaky_logits = torch.cat((leak, b_ij),2)
leaky_routing = F.softmax(leaky_logits, dim=2)
c_ij = leaky_routing[:,:,1:,:].unsqueeze(4)
else:
c_ij = F.softmax(b_ij, dim=2).unsqueeze(4)
v_j = squash_v1((c_ij * u_hat).sum(dim=1, keepdim=True), axis=3)
if i < num_iterations - 1:
b_ij = b_ij + (torch.cat([v_j] * input_capsule_num, dim=1) * u_hat).sum(3)
poses = v_j.squeeze(1)
activations = torch.sqrt((poses ** 2).sum(2))
return poses, activations
def Adaptive_KDE_routing(batch_size, b_ij, u_hat):
last_loss = 0.0
while True:
if False:
leak = torch.zeros_like(b_ij).sum(dim=2, keepdim=True)
leaky_logits = torch.cat((leak, b_ij),2)
leaky_routing = F.softmax(leaky_logits, dim=2)
c_ij = leaky_routing[:,:,1:,:].unsqueeze(4)
else:
c_ij = F.softmax(b_ij, dim=2).unsqueeze(4)
c_ij = c_ij/c_ij.sum(dim=1, keepdim=True)
v_j = squash_v1((c_ij * u_hat).sum(dim=1, keepdim=True), axis=3)
dd = 1 - ((squash_v1(u_hat, axis=3)-v_j)** 2).sum(3)
b_ij = b_ij + dd
c_ij = c_ij.view(batch_size, c_ij.size(1), c_ij.size(2))
dd = dd.view(batch_size, dd.size(1), dd.size(2))
kde_loss = torch.mul(c_ij, dd).sum()/batch_size
kde_loss = np.log(kde_loss.item())
if abs(kde_loss - last_loss) < 0.05:
break
else:
last_loss = kde_loss
poses = v_j.squeeze(1)
activations = torch.sqrt((poses ** 2).sum(2))
return poses, activations
def KDE_routing(batch_size, b_ij, u_hat):
num_iterations = 3
for i in range(num_iterations):
if False:
leak = torch.zeros_like(b_ij).sum(dim=2, keepdim=True)
leaky_logits = torch.cat((leak, b_ij),2)
leaky_routing = F.softmax(leaky_logits, dim=2)
c_ij = leaky_routing[:,:,1:,:].unsqueeze(4)
else:
c_ij = F.softmax(b_ij, dim=2).unsqueeze(4)
c_ij = c_ij/c_ij.sum(dim=1, keepdim=True)
v_j = squash_v1((c_ij * u_hat).sum(dim=1, keepdim=True), axis=3)
if i < num_iterations - 1:
dd = 1 - ((squash_v1(u_hat, axis=3)-v_j)** 2).sum(3)
b_ij = b_ij + dd
poses = v_j.squeeze(1)
activations = torch.sqrt((poses ** 2).sum(2))
return poses, activations
class FlattenCaps(nn.Module):
def __init__(self):
super(FlattenCaps, self).__init__()
def forward(self, p, a):
poses = p.view(p.size(0), p.size(2) * p.size(3) * p.size(4), -1)
activations = a.view(a.size(0), a.size(1) * a.size(2) * a.size(3), -1)
return poses, activations
class PrimaryCaps(nn.Module):
def __init__(self, num_capsules, in_channels, out_channels, kernel_size, stride):
super(PrimaryCaps, self).__init__()
self.capsules = nn.Conv1d(in_channels, out_channels * num_capsules, kernel_size, stride)
torch.nn.init.xavier_uniform_(self.capsules.weight)
self.out_channels = out_channels
self.num_capsules = num_capsules
def forward(self, x):
batch_size = x.size(0)
u = self.capsules(x).view(batch_size, self.num_capsules, self.out_channels, -1, 1)
poses = squash_v1(u, axis=1)
activations = torch.sqrt((poses ** 2).sum(1))
return poses, activations
class FCCaps(nn.Module):
def __init__(self, args, output_capsule_num, input_capsule_num, in_channels, out_channels):
super(FCCaps, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.input_capsule_num = input_capsule_num
self.output_capsule_num = output_capsule_num
self.W1 = nn.Parameter(torch.FloatTensor(1, input_capsule_num, output_capsule_num, out_channels, in_channels))
torch.nn.init.xavier_uniform_(self.W1)
self.is_AKDE = args.is_AKDE
self.sigmoid = nn.Sigmoid()
def forward(self, x, y, labels):
batch_size = x.size(0)
variable_output_capsule_num = len(labels)
W1 = self.W1[:,:,labels,:,:]
x = torch.stack([x] * variable_output_capsule_num, dim=2).unsqueeze(4)
W1 = W1.repeat(batch_size, 1, 1, 1, 1)
u_hat = torch.matmul(W1, x)
b_ij = Variable(torch.zeros(batch_size, self.input_capsule_num, variable_output_capsule_num, 1)).cuda()
if self.is_AKDE == True:
poses, activations = Adaptive_KDE_routing(batch_size, b_ij, u_hat)
else:
#poses, activations = dynamic_routing(batch_size, b_ij, u_hat, self.input_capsule_num)
poses, activations = KDE_routing(batch_size, b_ij, u_hat)
return poses, activations