-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
executable file
·307 lines (260 loc) · 14.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import torch
from torch.autograd import Variable
import torch.optim as optim
import numpy as np
import time
import os
from six.moves import cPickle
import opts
import models
import torch.nn as nn
import eval_utils
import misc.utils as utils
import torch.nn.functional as F
from misc.rewards import get_self_critical_reward
def train(opt):
opt.use_att = utils.if_use_att(opt.caption_model)
from dataloader import DataLoader
loader = DataLoader(opt)
opt.vocab_size = loader.vocab_size
opt.vocab_ccg_size = loader.vocab_ccg_size
opt.seq_length = loader.seq_length
infos = {}
histories = {}
if opt.start_from is not None:
# open old infos and check if models are compatible
with open(os.path.join(opt.start_from, 'infos_'+opt.id+'.pkl')) as f:
infos = cPickle.load(f)
saved_model_opt = infos['opt']
need_be_same=["caption_model", "rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
assert vars(saved_model_opt)[checkme] == vars(opt)[checkme], "Command line argument and saved model disagree on '%s' " % checkme
if os.path.isfile(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')):
with open(os.path.join(opt.start_from, 'histories_'+opt.id+'.pkl')) as f:
histories = cPickle.load(f)
iteration = infos.get('iter', 0)
epoch = infos.get('epoch', 0)
val_result_history = histories.get('val_result_history', {})
loss_history = histories.get('loss_history', {})
lr_history = histories.get('lr_history', {})
ss_prob_history = histories.get('ss_prob_history', {})
loader.iterators = infos.get('iterators', loader.iterators)
loader.split_ix = infos.get('split_ix', loader.split_ix)
if opt.load_best_score == 1:
best_val_score = infos.get('best_val_score', None)
cnn_model = utils.build_cnn(opt)
cnn_model.cuda()
model = models.setup(opt)
model.cuda()
# model = DataParallel(model)
if vars(opt).get('start_from', None) is not None:
# check if all necessary files exist
assert os.path.isdir(opt.start_from)," %s must be a a path" % opt.start_from
assert os.path.isfile(os.path.join(opt.start_from,"infos_"+opt.id+".pkl")),"infos.pkl file does not exist in path %s"%opt.start_from
model.load_state_dict(torch.load(os.path.join(opt.start_from, 'model.pth')))
update_lr_flag = True
model.train()
crit = utils.LanguageModelCriterion()
rl_crit = utils.RewardCriterion()
multilabel_crit = nn.MultiLabelSoftMarginLoss().cuda()
# optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate, weight_decay=opt.weight_decay)
optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate)
if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after:
print('finetune mode')
cnn_optimizer = optim.Adam([\
{'params': module.parameters()} for module in cnn_model._modules.values()[5:]\
], lr=opt.cnn_learning_rate, weight_decay=opt.cnn_weight_decay)
if vars(opt).get('start_from', None) is not None and os.path.isfile(os.path.join(opt.start_from,"optimizer.pth")):
if os.path.isfile(os.path.join(opt.start_from, 'optimizer.pth')):
optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer.pth')))
if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after:
if os.path.isfile(os.path.join(opt.start_from, 'optimizer-cnn.pth')):
cnn_optimizer.load_state_dict(torch.load(os.path.join(opt.start_from, 'optimizer-cnn.pth')))
eval_kwargs = {'split': 'val','dataset': opt.input_json,'verbose':True}
eval_kwargs.update(vars(opt))
val_loss, predictions, lang_stats = eval_utils.eval_split(cnn_model, model, crit,
loader, eval_kwargs, True)
epoch_start = time.time()
while True:
if update_lr_flag:
if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
utils.set_lr(optimizer, opt.current_lr) # set the decayed rate
else:
opt.current_lr = opt.learning_rate
if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
frac = (epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.scheduled_sampling_increase_prob * frac, opt.scheduled_sampling_max_prob)
model.ss_prob = opt.ss_prob
#model.module.ss_prob = opt.ss_prob
if opt.self_critical_after != -1 and epoch >= opt.self_critical_after:
sc_flag = True
else:
sc_flag = False
# Update the training stage of cnn
for p in cnn_model.parameters():
p.requires_grad = True
# Fix the first few layers:
for module in cnn_model._modules.values()[:5]:
for p in module.parameters():
p.requires_grad = False
cnn_model.train()
update_lr_flag = False
cnn_model.apply(utils.set_bn_fix)
cnn_model.apply(utils.set_bn_eval)
start = time.time()
torch.cuda.synchronize()
data = loader.get_batch('train')
if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after:
multilabels = [data['detection_infos'][i]['label'] for i in range(len(data['detection_infos']))]
tmp = [data['labels'], data['masks'],np.array(multilabels,dtype=np.int16)]
tmp = [Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp]
labels, masks, multilabels = tmp
images = data['images'] # it cannot be turned into tensor since different sizes.
_fc_feats_2048 = []
_fc_feats_81 = []
_att_feats = []
for i in range(loader.batch_size):
x = Variable(torch.from_numpy(images[i]), requires_grad=False).cuda()
x = x.unsqueeze(0)
att_feats, fc_feats_81 = cnn_model(x)
fc_feats_2048 = att_feats.mean(3).mean(2).squeeze()
att_feats = F.adaptive_avg_pool2d(att_feats,[14,14]).squeeze().permute(1, 2, 0)#(0, 2, 3, 1)
_fc_feats_2048.append(fc_feats_2048)
_fc_feats_81.append(fc_feats_81)
_att_feats.append(att_feats)
_fc_feats_2048 = torch.stack(_fc_feats_2048)
_fc_feats_81 = torch.stack(_fc_feats_81)
_att_feats = torch.stack(_att_feats)
att_feats = _att_feats.unsqueeze(1).expand(*((_att_feats.size(0), loader.seq_per_img,) + \
_att_feats.size()[1:])).contiguous().view(*((_att_feats.size(0) * loader.seq_per_img,) + \
_att_feats.size()[1:]))
fc_feats_2048 = _fc_feats_2048.unsqueeze(1).expand(*((_fc_feats_2048.size(0), loader.seq_per_img,) + \
_fc_feats_2048.size()[1:])).contiguous().view(*((_fc_feats_2048.size(0) * loader.seq_per_img,) + \
_fc_feats_2048.size()[1:]))
fc_feats_81 = _fc_feats_81
#
cnn_optimizer.zero_grad()
else:
tmp = [data['fc_feats'], data['att_feats'], data['labels'], data['masks']]
tmp = [Variable(torch.from_numpy(_), requires_grad=False).cuda() for _ in tmp]
fc_feats, att_feats, labels, masks = tmp
optimizer.zero_grad()
if not sc_flag:
loss1 = crit(model(fc_feats_2048, att_feats, labels), labels[:,1:], masks[:,1:])
loss2 = multilabel_crit(fc_feats_81.double(), multilabels.double())
loss = 0.8*loss1 + 0.2*loss2.float()
else:
gen_result, sample_logprobs = model.sample(fc_feats_2048, att_feats, {'sample_max':0})
reward = get_self_critical_reward(model, fc_feats_2048, att_feats, data, gen_result)
loss1 = rl_crit(sample_logprobs, gen_result, Variable(torch.from_numpy(reward).float().cuda(), requires_grad=False))
loss2 = multilabel_crit(fc_feats_81.double(), multilabels.double())
loss3 = crit(model(fc_feats_2048, att_feats, labels), labels[:,1:], masks[:,1:])
loss = 0.995*loss1 + 0.005*(loss2.float() + loss3)
loss.backward()
utils.clip_gradient(optimizer, opt.grad_clip)
optimizer.step()
train_loss = loss.data[0]
mle_loss = loss1.data[0]
multilabel_loss = loss2.data[0]
torch.cuda.synchronize()
end = time.time()
if not sc_flag and iteration % 2500==0:
print("iter {} (epoch {}), mle_loss = {:.3f}, multilabel_loss = {:.3f}, train_loss = {:.3f}, time/batch = {:.3f}" \
.format(iteration, epoch, mle_loss, multilabel_loss, train_loss, end - start))
if sc_flag and iteration % 2500==0:
print("iter {} (epoch {}), avg_reward = {:.3f}, mle_loss = {:.3f}, multilabel_loss = {:.3f}, train_loss = {:.3f}, time/batch = {:.3f}" \
.format(iteration, epoch, np.mean(reward[:,0]), mle_loss, multilabel_loss, train_loss, end - start))
iteration += 1
if (iteration % opt.losses_log_every == 0):
loss_history[iteration] = train_loss if not sc_flag else np.mean(reward[:,0])
lr_history[iteration] = opt.current_lr
ss_prob_history[iteration] = model.ss_prob
if (iteration % opt.save_checkpoint_every == 0):
eval_kwargs = {'split': 'val','dataset': opt.input_json,'verbose':True}
eval_kwargs.update(vars(opt))
if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after:
val_loss, predictions, lang_stats = eval_utils.eval_split(cnn_model, model, crit,
loader, eval_kwargs, True)
else:
val_loss, predictions, lang_stats = eval_utils.eval_split(cnn_model, model, crit,
loader, eval_kwargs, False)
val_result_history[iteration] = {'loss': val_loss, 'lang_stats': lang_stats, 'predictions': predictions}
if opt.language_eval == 1:
current_score = lang_stats['CIDEr']
else:
current_score = - val_loss
best_flag = False
if True:
if best_val_score is None or current_score > best_val_score:
best_val_score = current_score
best_flag = True
checkpoint_path = os.path.join(opt.checkpoint_path, 'model.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn.pth')
torch.save(cnn_model.state_dict(), cnn_checkpoint_path)
print("cnn model saved to {}".format(cnn_checkpoint_path))
optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer.pth')
torch.save(optimizer.state_dict(), optimizer_path)
if opt.finetune_cnn_after != -1 and epoch >= opt.finetune_cnn_after:
cnn_optimizer_path = os.path.join(opt.checkpoint_path, 'optimizer-cnn.pth')
torch.save(cnn_optimizer.state_dict(), cnn_optimizer_path)
infos['iter'] = iteration
infos['epoch'] = epoch
infos['iterators'] = loader.iterators
infos['split_ix'] = loader.split_ix
infos['best_val_score'] = best_val_score
infos['opt'] = opt
infos['vocab'] = loader.get_vocab()
histories['val_result_history'] = val_result_history
histories['loss_history'] = loss_history
histories['lr_history'] = lr_history
histories['ss_prob_history'] = ss_prob_history
with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'.pkl'), 'wb') as f:
cPickle.dump(infos, f)
with open(os.path.join(opt.checkpoint_path, 'histories_'+opt.id+'.pkl'), 'wb') as f:
cPickle.dump(histories, f)
if best_flag:
checkpoint_path = os.path.join(opt.checkpoint_path, 'model-best.pth')
torch.save(model.state_dict(), checkpoint_path)
print("model saved to {}".format(checkpoint_path))
cnn_checkpoint_path = os.path.join(opt.checkpoint_path, 'model-cnn-best.pth')
torch.save(cnn_model.state_dict(), cnn_checkpoint_path)
print("cnn model saved to {}".format(cnn_checkpoint_path))
with open(os.path.join(opt.checkpoint_path, 'infos_'+opt.id+'-best.pkl'), 'wb') as f:
cPickle.dump(infos, f)
if data['bounds']['wrapped']:
epoch += 1
update_lr_flag = True
print("epoch: "+str(epoch)+ " during: " + str(time.time()-epoch_start))
epoch_start = time.time()
if epoch >= opt.max_epochs and opt.max_epochs != -1:
break
def main():
opt = opts.parse_opt()
opt.caption_model ='topdown'
opt.batch_size=10
opt.id ='topdown'
opt.learning_rate= 5e-5
opt.learning_rate_decay_start= -1
opt.scheduled_sampling_start=-1
opt.save_checkpoint_every=5000#
opt.val_images_use=5000
opt.max_epochs=60
opt.start_from='save/multitask_pretrain'#"save" #None
opt.language_eval = 1
opt.input_json='data/meta_coco_en.json'
opt.input_label_h5='data/label_coco_en.h5'
opt.self_critical_after = 25
opt.finetune_cnn_after = 0
opt.ccg = False
opt.input_image_h5 = 'data/coco_image_512.h5'
opt.checkpoint_path = 'save/multitask_pretrain_rl'
train(opt)
main()