-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder.py
75 lines (63 loc) · 2.27 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
train_dataset = datasets.MNIST(
'.', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(train_dataset, batch_size=32, shuffle=False)
class AutoEncoder(nn.Module):
def __init__(self, n_embed):
super(AutoEncoder, self).__init__()
self.Encoder = nn.Sequential(
nn.Linear(n_embed, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
)
self.Decoder = nn.Sequential(
nn.Linear(64, 128),
nn.ReLU(),
nn.Linear(128, n_embed),
# Simoid here since we have pixels between 0-1 and want the final pixels of size n_embed to be between 0-1 sigmoid does this RELU does [0, inf]
nn.Sigmoid(),
)
def forward(self, x):
encoded = self.Encoder(x)
decoded = self.Decoder(encoded)
return decoded
lr = 1e-3
epochs = 5
model = AutoEncoder(784).to(device)
optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
criterion = nn.MSELoss()
for epoch in range(epochs):
for batch, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
img = data.view(data.size(0), -1)
y = model(img)
loss = criterion(y, img)
optimizer.zero_grad(set_to_none=True)
loss.backward()
optimizer.step()
print(f'Epoch {epoch} loss {loss}')
model.eval()
with torch.no_grad():
for batch, (data, target) in enumerate(test_loader):
f, axarr = plt.subplots(2, 2)
if batch < 2:
img = data.view(data.size(0), -1) # 32, 784
output = model(img)
axarr[0, 0].imshow(img.view(-1, 28, 28)[0].squeeze())
axarr[0, 1].imshow(output.view(-1, 28, 28)[0].squeeze())
else:
break
img = next(iter(train_loader))
print(len(img))
print(img[1][0])
plt.imshow(img[0][0].squeeze())