-
Notifications
You must be signed in to change notification settings - Fork 0
/
pipeline.py
442 lines (360 loc) · 18.3 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import numpy as np
import cv2
from calibration import *
from line import *
import matplotlib.pyplot as plt
class LineDetector:
def __init__(self):
self.left_line_object = Line()
self.right_line_object = Line()
# var to track which approach was used to detect the lines
self.found_by = ""
# forward matrix transformation
self.M1 = self.calculate_transform_matrix()
# backward matrix transformation
self.M2 = self.calculate_transform_matrix(False)
def pipeline(self, _img):
# 1. Copy the original image
img = np.copy(_img)
# 2. Undistort image
undistorted_image = cv2.undistort(_img, mtx, dist, None, mtx)
# 3. Create "bird view" from undistorted_image
transformed_image = self.transform_image(undistorted_image, self.M1)
# 4. Apply SobelX operator to "transformed_image"
binary_output_sobel_x = self.binary_output_sobel(transformed_image)
# 5. Take a S channel of transformed_image
binary_s = self.channel_threshold(self.hls_select(transformed_image, 2))
# 6. "Erode" and "Dilate" the logical or between s-channel and sobelX images
dilation = self.erode_and_dilate(binary_s | binary_output_sobel_x)
# 7. Mask transformed image
masked_transformed_image = cv2.bitwise_and(transformed_image, transformed_image, mask=dilation)
# 8. Filter yellow and white colors on masked transformed image
filtered_image = self.filter_line_colors(masked_transformed_image)
# 9. Create gray image to create binary image
gray = cv2.cvtColor(filtered_image, cv2.COLOR_BGR2GRAY)
# 10. Create binary image out of gray
binary = np.zeros_like(gray)
binary[gray > 0] = 1
# try to find the lines, first with quick search if lines were already detected
_lx, _rx, left_poly, out_image, right_poly = None, None, None, None, None,
try:
_lx, _rx, left_poly, out_image, right_poly = self.try_to_find_points(binary, "search_around_poly",
self.search_around_poly)
except:
self.left_line_object.detected = False
self.right_line_object.detected = False
# long search if "search_around_poly" search fail
try:
_lx, _rx, left_poly, out_image, right_poly = self.try_to_find_points(binary, "fit_polynomial",
self.fit_polynomial)
except:
self.left_line_object.detected = False
self.right_line_object.detected = False
ploty = np.linspace(0, img.shape[0] - 1, img.shape[0])
if self.left_line_object.detected and self.right_line_object.detected:
self.left_line_object.detected = True
self.left_line_object.ally = ploty
self.left_line_object.current_fit = left_poly
self.left_line_object.allx = _lx
self.right_line_object.detected = True
self.right_line_object.ally = ploty
self.right_line_object.current_fit = right_poly
self.right_line_object.allx = _rx
result = self.format_result(img, out_image)
return result, undistorted_image, transformed_image, binary_output_sobel_x, binary_s, dilation, masked_transformed_image, filtered_image, gray, binary, out_image
else:
return img, img, img, img, img, img, img, img, img, img, img
@staticmethod
def calculate_transform_matrix(forward=True):
'''
Calculates transform matrix for a bird view
'''
# manually defined points
src = np.float32([[580, 460], [204, 720], [1110, 720], [702, 460]])
dst = np.float32([[320, 0], [320, 720], [960, 720], [960, 0]])
if forward:
return cv2.getPerspectiveTransform(src, dst)
return cv2.getPerspectiveTransform(dst, src)
def try_to_find_points(self, binary, tag, method):
'''
Tries to find a line parameters based on provided method
'''
if self.left_line_object.detected == False or self.right_line_object.detected == False:
_lx, _rx, out_image, left_poly, right_poly = method(binary)
if not len(_lx) > 0 or not len(_rx) > 0:
self.left_line_object.detected = False
self.right_line_object.detected = False
else:
self.found_by = tag
self.left_line_object.detected = True
self.right_line_object.detected = True
return _lx, _rx, left_poly, out_image, right_poly
def format_result(self, img, out_image):
'''
Transform image back and print info
'''
# calculate car position
# sum of distance to left and right lines
lane_width = self.left_line_object.measure_distance_real(out_image) + self.right_line_object.measure_distance_real(out_image)
bigger_distance = max([self.left_line_object.measure_distance_real(out_image), self.right_line_object.measure_distance_real(out_image)])
text = "CAR DISTANCE TO THE CENTER : {:10.2f} m".format(abs(bigger_distance-lane_width/2))
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, text, (10, 40), font, 0.7, (255, 255, 255), 2, cv2.LINE_AA)
text = "Found by {0}".format(self.found_by)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, text, (10, 700), font, 0.6, (255, 255, 255), 2, cv2.LINE_AA)
# left curv
text = "Left curv: {:10.2f}".format(self.left_line_object.measure_curvature_real(out_image))
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, text, (10, 60), font, 0.6, (255, 255, 255), 2, cv2.LINE_AA)
# right curv
text = "Right curv: {:10.2f}".format(self.right_line_object.measure_curvature_real(out_image))
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, text, (660, 60), font, 0.6, (255, 255, 255), 2, cv2.LINE_AA)
# poly params
text = "Poly params: {:10.4f},{:10.4f},{:10.4f} |||| {:10.4f}, {:10.4f}, {:10.4f}".format(
self.left_line_object.current_fit[0], self.left_line_object.current_fit[1],
self.left_line_object.current_fit[2],
self.right_line_object.current_fit[0], self.right_line_object.current_fit[1],
self.right_line_object.current_fit[2])
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img, text, (10, 630), font, 0.6, (255, 255, 255), 2, cv2.LINE_AA)
# collect points for lines and poly
left_line_points = self.left_line_object.get_line_points()
right_line_points = self.right_line_object.get_line_points()
poly_points = np.concatenate((np.int32(left_line_points)[::-1], np.int32(right_line_points)))
self.left_line_object.draw_line(out_image)
self.right_line_object.draw_line(out_image)
cv2.fillPoly(out_image, np.int32([poly_points]), (0, 255, 0))
# convert "bird view" to normal
normal_image = self.transform_image(out_image, self.M2)
# Combine the result with the original image
result = cv2.addWeighted(img, 1, normal_image, 0.6, 0)
return result
@staticmethod
def transform_image(img, m):
'''
WarpPerspective function wrapper
'''
warped = cv2.warpPerspective(
img,
m, (img.shape[1], img.shape[0]),
flags=cv2.WARP_FILL_OUTLIERS + cv2.INTER_CUBIC)
return warped
@staticmethod
def filter_line_colors(img):
'''
Filters white and yellow lines
'''
# conver image to HSV, for easier color selection
# it is necessary step in this pipeline for an optional chalange
# to get rid of errors that are introduced by the mirrored hood
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
# set white color boundaries, values are estimated experimentaly
lower_white = np.array([100, 80, 180])
upper_white = np.array([255, 255, 255])
# threshold the HSV image to get only white colors
white_mask = cv2.inRange(img, lower_white, upper_white)
# set yellow color boundaries, values are estimated experimentaly
lower_yellow = np.array([50, 50, 50])
upper_yellow = np.array([110, 255, 255])
# threshold the HSV image to get only yellow colors
yellow_mask = cv2.inRange(hsv, lower_yellow, upper_yellow)
# use mask on image and return
return cv2.bitwise_and(img, img, mask=white_mask | yellow_mask)
@staticmethod
def hls_select(img, channel=0):
'''
Returns one of HLS channels
'''
hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS)
return hls[:, :, channel]
@staticmethod
def find_lane_pixels(binary_warped):
'''
Direct search using iteration with window
'''
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
midpoint = np.int(histogram.shape[0] // 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
# HYPERPARAMETERS
# Choose the number of sliding windows
nwindows = 20
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0] // nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated later for each window in nwindows
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window + 1) * window_height
win_y_high = binary_warped.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low),
(win_xleft_high, win_y_high), (0, 255, 0), 6)
cv2.rectangle(out_img, (win_xright_low, win_y_low),
(win_xright_high, win_y_high), (0, 255, 0), 6)
# Identify the nonzero pixels in x and y within the window #
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices (previously was a list of lists of pixels)
try:
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
except ValueError:
# Avoids an error if the above is not implemented fully
pass
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty, out_img
def fit_polynomial(self, binary_warped):
'''
Tries to find lane pixels and fit them to ax^2+bx+c
'''
# Find our lane pixels first
leftx, lefty, rightx, righty, out_img = self.find_lane_pixels(binary_warped)
# Fit a second order polynomial to each using `np.polyfit`
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
try:
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
except TypeError:
# Avoids an error if `left` and `right_fit` are still none or incorrect
print('The function failed to fit a line!')
left_fitx = 1 * ploty ** 2 + 1 * ploty
right_fitx = 1 * ploty ** 2 + 1 * ploty
## Visualization ##
# Colors in the left and right lane regions
out_img[lefty, leftx] = [255, 0, 0]
out_img[righty, rightx] = [0, 0, 255]
return left_fitx, right_fitx, out_img, left_fit, right_fit
@staticmethod
def search_around_poly(binary_warped, left_fit, right_fit):
'''
Try to reuse data from previous step in order to find the lines
'''
# margin around the previous polynomial to search
margin = 100
# Grab activated pixels
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy +
left_fit[2] - margin)) & (nonzerox < (left_fit[0] * (nonzeroy ** 2) +
left_fit[1] * nonzeroy + left_fit[
2] + margin)))
right_lane_inds = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy +
right_fit[2] - margin)) & (nonzerox < (right_fit[0] * (nonzeroy ** 2) +
right_fit[1] * nonzeroy + right_fit[
2] + margin)))
# Again, extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit new polynomials
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
ploty = np.linspace(0, binary_warped[0] - 1, binary_warped[0])
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
## Visualization ##
# Create an image to draw on and an image to show the selection window
out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255
# Color in left and right line pixels
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
return left_fitx, right_fitx, out_img, left_fit, right_fit
@staticmethod
def channel_threshold(channel, min=120, max=255):
'''
Channel threshold
'''
binary = np.zeros_like(channel)
binary[(channel > min) & (channel <= max)] = 1
return binary
@staticmethod
def erode_and_dilate(binary):
'''
Apply erode and dilate to remove the noise
'''
kernel = np.ones((3, 3), np.uint8)
erosion = cv2.erode(binary, kernel, iterations=1)
kernel = np.ones((12, 12), np.uint8)
dilation = cv2.dilate(erosion, kernel, iterations=2)
return dilation
@staticmethod
def binary_output_sobel(img):
'''
Apply sobelX and threshold
'''
gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
kernel = np.ones((3, 3), np.float32) / 25
dst = cv2.filter2D(gray, -1, kernel)
sobelx = cv2.Sobel(dst, cv2.CV_64F, 1, 0, ksize=5)
abs_sobel_x = np.absolute(sobelx)
scaled_sobel = np.uint8(255 * abs_sobel_x / np.max(abs_sobel_x))
binary_output_sobel = np.zeros_like(scaled_sobel)
binary_output_sobel[(scaled_sobel >= 45) & (scaled_sobel <= 120)] = 1
return binary_output_sobel
@staticmethod
def plot_result(res):
'''
Plot result
'''
LineDetector.plot_images_map({"result": res[0], "undistorted_image": res[1], "transformed_image": res[2]}, columns=3,
img_size=(30, 50))
LineDetector.plot_images_map({"binary_output_sobel_x": res[3], "binary_s": res[4], "dilation": res[5]}, columns=3,
img_size=(30, 50))
LineDetector.plot_images_map({"masked_transformed_image": res[6], "filtered_image": res[7], "gray": res[8]}, columns=3,
img_size=(30, 50))
LineDetector.plot_images_map({"binary": res[9], "out_image": res[10]}, columns=3, img_size=(30, 50))
@staticmethod
def plot_images_map(images, img_size=(20, 15), columns=5):
'''
Display image map
'''
plt.figure(figsize=img_size)
i = 0
for file_name in images:
plt.subplot(len(images) / columns + 1, columns, i + 1).set_title(file_name)
plt.imshow(images[file_name])
i += 1