-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathllm_debugging.py
548 lines (436 loc) · 21.8 KB
/
llm_debugging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import difflib
import os
import shutil
import sys
import inspect
import logging
import re
import subprocess
import tempfile
import traceback
from colorama import Fore, Style
from openai import OpenAI
import easy_nodes.config_service as config_service
def create_openai_client() -> OpenAI:
openai_key = os.environ.get("OPENAI_API_KEY")
if not openai_key:
raise ValueError("OpenAI API key not found in OPENAI_API_KEY environment variable. "
+ "Please set the API key to use LLM debugging.")
return OpenAI(api_key=openai_key)
chatgpt_role_description = """
You are tasked as a Python debugging assistant, focusing solely on correcting provided function code. Your responses should exclusively consist of the amended function (including decorators), including any essential comments on modifications made. Ensure the function signature remains intact.
- Directly return one module-level element (function, class, method, module, etc.) per response. If an element does not need updating, do not return it.
- Limit responses to the corrected function, with changes clearly commented within.
- Incorporate new imports at the function's beginning if they're necessary for introduced logic or corrections.
- Assume all mentioned entities and functions are already defined and pre-imported in the function's context. Only import *new* elements. In such cases, prepend imports to the function body in place of the explicit comment marker referring to them.
- If a single-step fix isn't feasible, integrate debug logging to aid further troubleshooting, annotating these additions for potential later removal.
- Avoid markdown or other formatting in your response to ensure seamless file integration.
- Recognize that terms like Matrix, ImageTensor, DepthMap and MaskTensor refer to torch.Tensor annotations and don't necessitate additional imports or actions.
- Image tensors should be shape BxHxWx3, mask tensors should be BxHxW, and DepthMaps should be BxHxWx1, where B is the batch size, H is the height, and W is the width.
- Include any decorators that the function had attached.
- If a comment starts with "NOTE(GPT):", it is a note for you and should not be included in the final output.
- If you're not positive what the issue is, it's fine to add copious logging to help diagnose the problem. Output with logging.debug calls.
- If you can't provide any improvements at all, return a message starting with "! Unable to fix this:" and then provide a brief explanation of why it can't be fixed.
Acceptable reasons being that the problem exists outside the function's scope or that the function is being invoked incorrectly.
"""
def extract_function_or_class_name(source):
"""
Extracts the name of the function or class from the given source code.
Parameters:
- source: The source code of the function or class.
Returns:
- The name of the function or class.
"""
# Regular expression pattern to match function or class names
pattern = r'(?:def|class)\s+(\w+)'
# Search for the pattern in the source code
match = re.search(pattern, source)
if match:
return match.group(1)
else:
return None
def module_to_file_path(module_name):
"""
Converts a module name to its corresponding file path.
Parameters:
- module_name: The name of the module.
Returns:
- The file path of the module.
"""
# Get the module object based on the module name
module_obj = sys.modules.get(module_name)
if module_obj is None:
# If the module is not found, raise an error or return None
raise ValueError(f"Module '{module_name}' not found.")
# Get the file path of the module
file_path = getattr(module_obj, '__file__', None)
if file_path is None:
# If the file path is not available, raise an error or return None
raise ValueError(f"File path not found for module '{module_name}'.")
# Normalize the file path
file_path = os.path.abspath(file_path)
# If the file path ends with '.pyc' or '.pyo', remove the 'c' or 'o' extension
if file_path.endswith(('.pyc', '.pyo')):
file_path = file_path[:-1]
return file_path
def split_top_level_entries(code):
"""
Splits the code into top-level entries (classes, functions, and statements).
Parameters:
- code: The code containing top-level entries.
Returns:
- A list of top-level entry code strings.
"""
entries = []
current_entry = []
start_indices = []
for i, line in enumerate(code.split('\n')):
indent_level = len(line) - len(line.lstrip())
line_empty = len(line.strip()) == 0
# It's a new entry if the line has an indent level of 0 and is not empty or a comment,
# and the previous line is not a decorator
if (
indent_level == 0
and not line_empty
and not line.strip().startswith('#')
and (not current_entry or not current_entry[-1].strip().startswith('@'))
):
if current_entry:
entries.append('\n'.join(current_entry))
current_entry = []
start_indices.append(i)
current_entry.append(line)
if current_entry:
entries.append('\n'.join(current_entry))
return entries, start_indices
def replace_source_with_updates(entry_code: str, original_source: dict[str, list[str]]):
entry_name = extract_function_or_class_name(entry_code)
logging.info("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
logging.info(f"Replacing entry {entry_name}")
logging.info("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
# Find the original source code for the entry
for module_name, source_items in original_source.items():
for source_item in source_items:
if f"def {entry_name}(" in source_item or f"class {entry_name}(" in source_item:
original_entry_code = source_item
original_module_name = module_name
assert original_entry_code is not None, f"Original source code for {entry_name} not found"
assert original_module_name is not None, f"Original module name for {entry_name} not found"
# Replace the original entry code with the modified entry code
modified_source = original_entry_code.replace(original_entry_code, entry_code)
# Determine the file path based on the module name
original_file_path = module_to_file_path(original_module_name)
# Backup the full file first
backup_file_path = create_backup_file(original_file_path)
logging.info(f"Backed up {original_file_path} to '{backup_file_path}'")
# Write the modified source code to a temp file in /tmp directory
tmp_file_path = replace_function_in_file(original_file_path, modified_source)
logging.info(f"Modified entry written to temporary file for review: {tmp_file_path}")
# Create a diff between the original and modified source
_, patch_file = tempfile.mkstemp(suffix=".patch")
create_patch(original_file_path, tmp_file_path, patch_file)
logging.info(f"Patch file created: {patch_file}")
print_patch_with_color(patch_file)
if config_service.get_config_value("easy_nodes.llm_debugging", "Off") == "AutoFix":
logging.info("Applying the patch to the original file...")
# Apply the patch to a copy of the original file to test changes
_, patched_file = tempfile.mkstemp()
apply_patch(original_file_path, patch_file, patched_file)
verify_same(tmp_file_path, patched_file)
# If the diff was applied correctly, consider updating the original file
shutil.copy(patched_file, original_file_path)
logging.info(f"Original file '{original_file_path}' updated with the patch.")
else:
logging.info("Skipping automatic patch application. Set 'easy_nodes.llm_debugging' to 'AutoFix' to apply the patch.")
def process_exception_logic(func, exception, input_desc, buffer):
"""
Processes an exception by generating a patch using OpenAI's suggestions and applying it.
Parameters:
- func: The function that raised the exception.
- exception: The exception instance.
- input_desc: Description of the input for creating the chat prompt.
- buffer: StringIO buffer capturing stdout and logging output.
"""
buffer_content = buffer.getvalue()
prompt, original_source = create_llm_prompt(func, input_desc, buffer_content, exception)
# Prepare the chat prompt for OpenAI
messages = [
{"role": "system", "content": chatgpt_role_description},
{"role": "user", "content": prompt}
]
openai_client = create_openai_client()
model_name = config_service.get_config_value("easy_nodes.llm_model", "gpt-4o")
# Send the prompt to OpenAI and get the response
# Assuming send_prompt_to_openai returns a structured response with the modified function code
response = send_prompt_to_openai(
client=openai_client,
max_tokens=4096,
model=model_name,
messages=messages,
verbose=True
)
# # Process the response to extract the modified source code
function_code = response.choices[0].message.content
# function_code = canned_response
if function_code.strip().startswith("!"):
logging.error(f"OpenAI was unable to provide a fix for the function: {function_code}")
return
function_code = remove_code_block_delimiters(function_code)
logging.info(f"Modified function code:\n{function_code}")
function_code = function_code[function_code.index("@ComfyFunc"):]
# Split the function_code into top-level entries (classes and functions)
top_level_entries, _ = split_top_level_entries(function_code)
for entry_code in top_level_entries:
replace_source_with_updates(entry_code, original_source)
def create_patch(file_a_path, file_b_path, patch_file_path):
"""
Creates a patch file that can be applied to file A to produce file B.
Parameters:
- file_a_path: Path to the original file (file A).
- file_b_path: Path to the modified file (file B).
- patch_file_path: Path where the patch file will be saved.
"""
with open(file_a_path, 'r') as file_a:
file_a_lines = [line.rstrip('\n') for line in file_a.readlines()]
with open(file_b_path, 'r') as file_b:
file_b_lines = [line.rstrip('\n') for line in file_b.readlines()]
diff = difflib.unified_diff(
file_a_lines, file_b_lines,
fromfile=file_a_path, tofile=file_b_path,
lineterm=''
)
with open(patch_file_path, 'w') as patch_file:
for line in diff:
patch_file.write(line + '\n')
def find_first_indented_line(the_source):
"""
Finds the first indented line in the_source and returns a tuple containing
the character position of the start of the line and the indentation level.
"""
char_location = 0
for line in the_source.split("\n"):
if line.strip() and not line.strip().startswith("#"):
indent_level = len(line) - len(line.lstrip())
if indent_level > 0:
return (char_location, indent_level)
char_location += len(line) + 1
return None
def print_patch_with_color(patch_file_path):
"""
Prints the contents of a patch file with color highlighting using logging and colorama.
Parameters:
- patch_file_path: Path to the patch file containing changes.
"""
# Open and read the patch file
with open(patch_file_path, 'r') as patch_file:
patch_lines = patch_file.readlines()
# Iterate through each line in the patch file
for line in patch_lines:
if line.startswith('+'):
logging.info(Fore.GREEN + line.rstrip()) # Green for additions
elif line.startswith('-'):
logging.info(Fore.RED + line.rstrip()) # Red for deletions
elif line.startswith('@'):
logging.info(Fore.CYAN + line.rstrip()) # Cyan for headers
else:
logging.info(line.rstrip()) # Default color for context and other lines
def apply_patch(original_file_path, patch_file_path, output_file_path):
"""
Applies a patch file to an original file and writes the result to an output file.
Parameters:
- original_file_path: Path to the original file to which the patch will be applied.
- patch_file_path: Path to the patch file containing changes.
- output_file_path: Path where the modified file will be written.
"""
cmd = ['patch', original_file_path, patch_file_path, '-o', output_file_path]
subprocess.run(cmd, check=True)
def replace_function_in_file(file_path, modified_source):
with open(file_path, 'r') as file:
file_source = file.read()
entries, chunk_starts = split_top_level_entries(file_source)
what_to_replace = extract_function_or_class_name(modified_source)
for i, entry in enumerate(entries):
if extract_function_or_class_name(entry) == what_to_replace:
entries[i] = modified_source + "\n"
break
else:
assert False, f"Function or class {what_to_replace} not found in file {file_path}"
# Create a temporary file
with tempfile.NamedTemporaryFile(mode='w', delete=False) as tmp_file:
new_text = "\n".join(entries)
tmp_file.write(new_text)
tmp_file_path = tmp_file.name
return tmp_file_path
def send_prompt_to_openai(client: OpenAI, messages: list[dict], max_tokens: int, model: str, verbose: bool):
# Validate messages format
if not all(isinstance(message, dict) and 'role' in message and 'content' in message for message in messages):
raise ValueError("All messages must be dictionaries with 'role' and 'content' keys")
if verbose:
print(Fore.BLUE + "Sending the following prompt to ChatGPT:" + Style.RESET_ALL)
for message in messages:
print(
Fore.LIGHTBLACK_EX
+ f"{message['role'].title()}: {message['content']}"
+ Style.RESET_ALL
)
response = client.chat.completions.create(
model=model, messages=messages, max_tokens=max_tokens
)
return response
def get_source_from_exception_and_callable(exception, callable_obj, allowed_paths):
source_dict = {}
seen_names = set()
tb = exception.__traceback__
# Convert allowed paths to absolute paths
allowed_paths = [os.path.abspath(path) for path in allowed_paths]
def add_exception_marker(source, lineno):
if 0 <= lineno < len(source):
source[lineno] = source[lineno].rstrip() + " # <------- NOTE(GPT): Exception here\n"
def process_frame(frame, lineno, is_exception=True):
module_name = frame.f_globals.get('__name__')
file_path = os.path.abspath(frame.f_code.co_filename)
if any(file_path.startswith(path) for path in allowed_paths):
if module_name not in source_dict:
source_dict[module_name] = []
try:
# Check if the frame is associated with a class method
class_name = frame.f_code.co_name.split('.')[0]
if class_name != '<module>':
# Retrieve the source code for the entire class
class_obj = frame.f_locals.get('self').__class__
try:
source, _ = inspect.getsourcelines(class_obj)
# Find the start line number of the class
class_start_lineno = inspect.getsourcelines(class_obj)[1]
# Adjust the line number relative to the class start
class_lineno = lineno - class_start_lineno
if 0 <= class_lineno < len(source) and is_exception:
add_exception_marker(source, class_lineno)
except TypeError:
# Handle the case when class_obj is None
source, start_lineno = inspect.getsourcelines(frame)
if start_lineno <= lineno < start_lineno + len(source) and is_exception:
add_exception_marker(source, lineno - start_lineno)
else:
# Retrieve the source code for the function or module level
source, start_lineno = inspect.getsourcelines(frame)
if start_lineno <= lineno < start_lineno + len(source) and is_exception:
add_exception_marker(source, lineno - start_lineno)
if ''.join(source) not in source_dict[module_name]:
source_dict[module_name].append(''.join(source).strip())
seen_names.add(module_name + '.' + frame.f_code.co_name)
except OSError:
pass
# Process exception traceback
while tb is not None:
frame = tb.tb_frame
lineno = frame.f_lineno
process_frame(frame, lineno)
tb = tb.tb_next
# Process callable if it's not already in the source_dict
callable_module_name = callable_obj.__module__
if callable_module_name not in source_dict:
source_dict[callable_module_name] = []
try:
callable_source, _ = inspect.getsourcelines(callable_obj)
callable_source_str = ''.join(callable_source).strip()
global_name = callable_module_name + '.' + callable_obj.__name__
logging.info(f"Global name: {global_name}")
if global_name not in seen_names:
# logging.info(f"Retrieving source for {callable_obj.__name__} : {callable_source_str}")
# logging.info(f"Keys: {source_dict.keys()}")
if callable_source_str not in source_dict[callable_module_name]:
source_dict[callable_module_name].append(callable_source_str)
else:
logging.info(f"Skipping {callable_obj.__name__} as it's already in the source_dict")
except OSError:
logging.error(f"Failed to retrieve source for {callable_obj.__name__}")
logging.error(f"Seen names: {seen_names}")
return source_dict
def create_llm_prompt(func, input_desc, buffer_content, e: Exception) -> tuple[str, dict[str, list[str]]]:
"""
Creates a prompt for the ChatGPT based on function details, input descriptions,
execution logs, and the encountered exception.
Args:
func (Callable): The function that raised an exception during execution.
input_desc (List[str]): Descriptions of the function's input parameters.
buffer_content (str): Content captured from the execution's stdout and logging.
e (Exception): The exception that was raised during function execution.
Returns:
List[str]: A list of strings composing the complete ChatGPT prompt.
"""
original_source = get_source_from_exception_and_callable(e, func, [os.path.dirname(func.__code__.co_filename)])
combined_source = ""
for k, v in original_source.items():
logging.info(f"Original source for {k}")
for item in v:
combined_source += item + "\n\n\n"
chat_gpt_prompt = [
f"Details for function {func.__name__} in file {func.__code__.co_filename}:",
"----------------------------------------------------",
"Function argument name, type, value:",
" " + "\n ".join(input_desc),
"----------------------------------------------------",
"Error:",
f"```\n{str(e)}\n```",
"----------------------------------------------------",
"Stack trace:",
f"```\n{traceback.format_exc()}\n```",
"----------------------------------------------------",
"Execution log:",
f"```\n{buffer_content}```",
"----------------------------------------------------",
"Function source code:",
f"```\n{combined_source}```",
]
return "\n".join(chat_gpt_prompt), original_source
def create_backup_file(original_file_path):
"""
Creates a backup of the given file with a numeric suffix (.bak.N),
where N is a three-digit number starting with 000.
Args:
original_file_path (str): The path to the original file to back up.
Returns:
str: The path to the created backup file.
"""
base_name = original_file_path + ".bak"
suffix = 0
backup_file_path = f"{base_name}.{suffix:03d}"
# Increment the suffix if the backup file already exists
while os.path.exists(backup_file_path):
suffix += 1
backup_file_path = f"{base_name}.{suffix:03d}"
# Copy the original file to the new backup file path
with open(original_file_path, "rb") as original_file:
with open(backup_file_path, "wb") as backup_file:
backup_file.write(original_file.read())
logging.info(f"Backed up '{original_file_path}' to '{backup_file_path}'")
return backup_file_path
def remove_code_block_delimiters(text):
"""
Remove ```python at the start and ``` at the end of a code block.
:param text: The text containing the code block delimiters.
:return: The text with the code block delimiters removed.
"""
# This regex pattern matches ```python at the start of the string and ``` at the end of the string.
pattern = r'^```python\n|\n```$'
cleaned_text = re.sub(pattern, '', text, flags=re.MULTILINE)
return cleaned_text
def verify_same(file_a_path, file_b_path):
# Now make sure that both files are identical
with open(file_a_path, 'r') as new_file:
updated_content_lines = new_file.readlines()
with open(file_b_path, 'r') as tmp_file:
patched_content_lines = tmp_file.readlines()
# Use difflib to find differences
differences = list(difflib.unified_diff(
updated_content_lines, patched_content_lines,
fromfile='updated_file', tofile='patched_file',
lineterm=''
))
if differences:
for line in differences[:10]:
logging.error(f"DIFFERENCE: {line}")
assert False, f"The diff was not applied correctly between {file_a_path} and {file_b_path}"
else:
logging.info("Files are identical, no differences found.")