-
Notifications
You must be signed in to change notification settings - Fork 26
/
models.py
268 lines (228 loc) · 13.8 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import tensorflow as tf
import ipdb
import math
from toy_ndcg import delta_ndcg
import numpy as np
N_FEATURES = 136
def default_ranknet(x, relevance_labels, learning_rate, n_hidden, n_layers):
n_out = 1
sigma = 1
n_data = tf.shape(x)[0]
def build_vars():
variables = [tf.Variable(tf.random_normal([N_FEATURES, n_hidden], stddev=math.sqrt(2 / (N_FEATURES)))),
tf.Variable(tf.zeros([n_hidden]))]
if n_layers > 1:
for i in range(n_layers-1):
variables.append(tf.Variable(tf.random_normal([n_hidden, n_hidden], stddev=math.sqrt(2 / (n_hidden)))))
variables.append(tf.Variable(tf.zeros([n_hidden])))
variables.append(tf.Variable(tf.random_normal([n_hidden, 1], stddev=math.sqrt(2 / (n_hidden)))))
variables.append(tf.Variable(0, dtype=tf.float32))
print('Building an UNFACTORIZED (default) neural network with the following layer parameters [W_1, b_1, ..., W_n, b_n]')
print(variables)
return variables
def score(x, *params):
z = tf.contrib.layers.batch_norm(tf.matmul(x, params[0]) + params[1])
if n_layers > 1:
for i in range(0,n_layers-1):
z = tf.contrib.layers.batch_norm(tf.matmul(tf.nn.relu(z), params[2*(i+1)]) + params[2*(i+1)+1])
return tf.matmul(tf.nn.relu(z), params[-2]) + params[-1]
params = build_vars()
predicted_scores = score(x, *params)
S_ij = tf.maximum(tf.minimum(1., relevance_labels - tf.transpose(relevance_labels)), -1.)
real_scores = (1 / 2) * (1 + S_ij)
pairwise_predicted_scores = predicted_scores - tf.transpose(predicted_scores)
cost = tf.reduce_mean(
(tf.ones([n_data, n_data]) - tf.diag(tf.ones([n_data]))) * tf.nn.sigmoid_cross_entropy_with_logits(
logits=pairwise_predicted_scores, labels=real_scores))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
def get_score(sess, feed_dict):
return sess.run(predicted_scores, feed_dict=feed_dict)
def run_optimizer(sess, feed_dict):
sess.run(optimizer, feed_dict=feed_dict)
return cost, run_optimizer, get_score
def ranknet(x, relevance_labels, learning_rate, n_hidden, build_vars_fn, score_with_batchnorm_update_fn, score_fn):
n_out = 1
sigma = 1
n_data = tf.shape(x)[0]
print('USING SIGMA = %f' % sigma)
params = build_vars_fn()
predicted_scores, bn_params = score_with_batchnorm_update_fn(x, params)
S_ij = tf.maximum(tf.minimum(1., relevance_labels - tf.transpose(relevance_labels)), -1.)
real_scores = (1/2)*(1+S_ij)
pairwise_predicted_scores = predicted_scores - tf.transpose(predicted_scores)
lambdas = sigma*(1/2)*(1-S_ij) - sigma*tf.divide(1, (1 + tf.exp(sigma*pairwise_predicted_scores)))
non_updating_predicted_scores = score_fn(x, bn_params, params)
non_updating_S_ij = tf.maximum(tf.minimum(1., relevance_labels - tf.transpose(relevance_labels)), -1.)
non_updating_real_scores = (1/2)*(1+non_updating_S_ij)
non_updating_pairwise_predicted_scores = non_updating_predicted_scores - tf.transpose(non_updating_predicted_scores)
non_updating_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=non_updating_pairwise_predicted_scores, labels=non_updating_real_scores))
def get_derivative(W_k):
dsi_dWk = tf.map_fn(lambda x_i: tf.squeeze(tf.gradients(score_fn(tf.expand_dims(x_i, 0), bn_params, params), [W_k])[0]), x)
dsi_dWk_minus_dsj_dWk = tf.expand_dims(dsi_dWk, 1) - tf.expand_dims(dsi_dWk, 0)
desired_lambdas_shape = tf.concat([tf.shape(lambdas), tf.ones([tf.rank(dsi_dWk_minus_dsj_dWk) - tf.rank(lambdas)], dtype=tf.int32)], axis=0)
return tf.reduce_mean(tf.reshape(lambdas, desired_lambdas_shape)*dsi_dWk_minus_dsj_dWk, axis=[0,1])
flat_params = [Wk for pk in params for Wk in pk]
grads = [get_derivative(Wk) for Wk in flat_params]
adam = tf.train.AdamOptimizer(learning_rate=learning_rate)
adam_op = adam.apply_gradients([(tf.reshape(grad, tf.shape(param)), param) for grad, param in zip(grads, flat_params)])
def optimizer(sess, feed_dict):
sess.run(adam_op, feed_dict=feed_dict)
def get_score(sess, feed_dict):
return sess.run(non_updating_predicted_scores, feed_dict=feed_dict)
return non_updating_cost, optimizer, get_score
def deep_factorized_ranknet(x, relevance_labels, learning_rate, n_hidden, n_layers):
W = 0
B = 1
SCALE = 2
BETA = 3
MEAN = 0
VAR = 1
epsilon = 1e-3
def build_vars():
variables = [(tf.Variable(tf.random_normal([N_FEATURES, n_hidden], stddev=math.sqrt(2 / (N_FEATURES)))), # W_1
tf.Variable(tf.zeros([n_hidden])), # b_1
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2) + 1), # batchnorm, scale_1
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2)) # batchnorm, beta_1
)]
if n_layers > 1:
for i in range(n_layers-1):
variables.append((tf.Variable(tf.random_normal([n_hidden, n_hidden], stddev=math.sqrt(2 / (n_hidden)))), # W_i
tf.Variable(tf.zeros([n_hidden])), # b_i
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2) + 1), # batchnorm, scale_i
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2)))) # batchnorm, beta_i
variables.append((tf.Variable(tf.random_normal([n_hidden, 1], stddev=math.sqrt(2 / (n_hidden)))),
tf.Variable(0, dtype=tf.float32)))
print('Building an FACTORIZED neural network with the following layer parameters [W_1, b_1, scale_1, beta_1, ..., W_n, b_n]')
print(variables)
return variables
def score(x, bn_params, params):
z = tf.matmul(x, params[0][W]) + params[0][B]
for i in range(0,n_layers):
# Normalize by mean and variance
z1_hat = (z - bn_params[i][MEAN]) / tf.sqrt(bn_params[i][VAR] + epsilon)
# Multiply by scale and add beta offset, learned params
z_bn = params[i][SCALE]*z1_hat + params[i][BETA]
# Apply non-linearity to batch normed z
z = tf.matmul(tf.nn.relu(z_bn), params[i+1][W]) + params[i+1][B]
return z
def score_with_batchnorm_update(x, params):
alpha = 1
bn_params = list()
z = tf.matmul(x, params[0][W]) + params[0][B]
for i in range(0,n_layers):
# Update mean and variance
batch_mean, batch_var = tf.nn.moments(z,[0])
bn_params.append((batch_mean, batch_var))
# Normalize by mean and variance
z1_hat = (z - bn_params[i][MEAN]) / tf.sqrt(bn_params[i][VAR] + epsilon)
# Multiply by scale and add beta offset, learned params
z_bn = params[i][SCALE]*z1_hat + params[i][BETA]
# Apply non-linearity to batch normed z
z = tf.matmul(tf.nn.relu(z_bn), params[i+1][W]) + params[i+1][B]
return z, bn_params
return ranknet(x, relevance_labels, learning_rate, n_hidden, build_vars, score_with_batchnorm_update, score)
def lambdarank_deep(x, relevance_labels, sorted_relevance_labels, index_range, learning_rate, n_hidden, n_layers):
W = 0
B = 1
SCALE = 2
BETA = 3
MEAN = 0
VAR = 1
epsilon = 1e-3
def build_vars():
variables = [(tf.Variable(tf.random_normal([N_FEATURES, n_hidden], stddev=math.sqrt(2 / (N_FEATURES)))), # W_1
tf.Variable(tf.zeros([n_hidden])), # b_1
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2) + 1), # batchnorm, scale_1
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2)) # batchnorm, beta_1
)]
if n_layers > 1:
for i in range(n_layers-1):
variables.append((tf.Variable(tf.random_normal([n_hidden, n_hidden], stddev=math.sqrt(2 / (n_hidden)))), # W_i
tf.Variable(tf.zeros([n_hidden])), # b_i
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2) + 1), # batchnorm, scale_i
tf.Variable(tf.random_normal([n_hidden], stddev=1e-2)))) # batchnorm, beta_i
variables.append((tf.Variable(tf.random_normal([n_hidden, 1], stddev=math.sqrt(2 / (n_hidden)))),
tf.Variable(0, dtype=tf.float32)))
print('Building a LAMBDARANK neural network with the following layer parameters [W_1, b_1, scale_1, beta_1, ..., W_n, b_n]')
print(variables)
return variables
def score(x, bn_params, params):
z = tf.matmul(x, params[0][W]) + params[0][B]
for i in range(0,n_layers):
# Normalize by mean and variance
z1_hat = (z - bn_params[i][MEAN]) / tf.sqrt(bn_params[i][VAR] + epsilon)
# Multiply by scale and add beta offset, learned params
z_bn = params[i][SCALE]*z1_hat + params[i][BETA]
# Apply non-linearity to batch normed z
z = tf.matmul(tf.nn.relu(z_bn), params[i+1][W]) + params[i+1][B]
return z
def score_with_batchnorm_update(x, params):
alpha = 1
bn_params = list()
z = tf.matmul(x, params[0][W]) + params[0][B]
for i in range(0,n_layers):
# Update mean and variance
batch_mean, batch_var = tf.nn.moments(z,[0])
bn_params.append((batch_mean, batch_var))
# Normalize by mean and variance
z1_hat = (z - bn_params[i][MEAN]) / tf.sqrt(bn_params[i][VAR] + epsilon)
# Multiply by scale and add beta offset, learned params
z_bn = params[i][SCALE]*z1_hat + params[i][BETA]
# Apply non-linearity to batch normed z
z = tf.matmul(tf.nn.relu(z_bn), params[i+1][W]) + params[i+1][B]
return z, bn_params
return lambdarank(x, relevance_labels, sorted_relevance_labels, index_range, learning_rate, n_hidden, build_vars, score_with_batchnorm_update, score)
def lambdarank(x, relevance_labels, sorted_relevance_labels, index_range, learning_rate, n_hidden, build_vars_fn, score_with_batchnorm_update_fn, score_fn):
n_out = 1
sigma = 1
n_data = tf.shape(x)[0]
params = build_vars_fn()
predicted_scores, bn_params = score_with_batchnorm_update_fn(x, params)
S_ij = tf.maximum(tf.minimum(1., relevance_labels - tf.transpose(relevance_labels)), -1.)
real_scores = (1/2)*(1+S_ij)
pairwise_predicted_scores = predicted_scores - tf.transpose(predicted_scores)
cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=pairwise_predicted_scores, labels=real_scores))
# # https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/lambdarank.pdf - lambdarank alternative
# lambdas = -sigma*tf.divide(1, (1 + tf.exp(sigma*pairwise_predicted_scores)))
lambdas = sigma*(1/2)*(1-S_ij) - sigma*tf.divide(1, (1 + tf.exp(sigma*pairwise_predicted_scores)))
non_updating_predicted_scores = score_fn(x, bn_params, params)
non_updating_S_ij = tf.maximum(tf.minimum(1., relevance_labels - tf.transpose(relevance_labels)), -1.)
non_updating_real_scores = (1/2)*(1+non_updating_S_ij)
non_updating_pairwise_predicted_scores = non_updating_predicted_scores - tf.transpose(non_updating_predicted_scores)
non_updating_cost = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=non_updating_pairwise_predicted_scores, labels=non_updating_real_scores))
# LAMBDA RANK
# Calculate the DCG, the IDCG, and then the difference between the DCG and every possible swapped DCG (an NxN matrix)
log_2 = tf.log(tf.constant(2.0, dtype=tf.float32))
cg_discount = tf.log(index_range+2)/log_2
dcg = tf.reduce_sum( (2**relevance_labels-1) / cg_discount )
idcg = tf.reduce_sum( (2**sorted_relevance_labels-1) / cg_discount )
ndcg = dcg / idcg
# remove the gain from label i then add the gain from label j
stale_ij = tf.tile(((2**relevance_labels - 1) / cg_discount), [1,n_data])
new_ij = ((2**relevance_labels - 1) / tf.transpose(cg_discount))
stale_ji = tf.tile(tf.transpose((2**relevance_labels - 1) / cg_discount), [n_data,1])
new_ji = (tf.transpose(2**relevance_labels - 1) / cg_discount)
# if we swap i and j, we want to remove the stale CG term for i, add the new CG term for i,
# remove the stale CG term for j, and then add the new CG term for j
new_ndcg = (dcg - stale_ij + new_ij - stale_ji + new_ji) / idcg
swapped_ndcg = tf.abs(ndcg - new_ndcg)
lambdas_ndcg = lambdas*swapped_ndcg
# # https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/lambdarank.pdf - lambdarank alternative
# lambdas = tf.divide(1, (1 + tf.exp(pairwise_predicted_scores)))
# lambdas_ndcg = (1/idcg) * lambdas * (2**relevance_labels - tf.transpose(2**relevance_labels)) * ((1 / tf.log(2 + index_range)) - tf.transpose(1 / tf.log(2 + index_range)))
def get_derivative(W_k):
dsi_dWk = tf.map_fn(lambda x_i: tf.squeeze(tf.gradients(score_fn(tf.expand_dims(x_i, 0), bn_params, params), [W_k])[0]), x)
dsi_dWk_minus_dsj_dWk = tf.expand_dims(dsi_dWk, 1) - tf.expand_dims(dsi_dWk, 0)
desired_lambdas_shape = tf.concat([tf.shape(lambdas_ndcg), tf.ones([tf.rank(dsi_dWk_minus_dsj_dWk) - tf.rank(lambdas_ndcg)], dtype=tf.int32)], axis=0)
return tf.reduce_mean(tf.reshape(lambdas_ndcg, desired_lambdas_shape)*dsi_dWk_minus_dsj_dWk, axis=[0,1])
flat_params = [Wk for pk in params for Wk in pk]
grads = [get_derivative(Wk) for Wk in flat_params]
adam = tf.train.AdamOptimizer(learning_rate=learning_rate)
adam_op = adam.apply_gradients([(tf.reshape(grad, tf.shape(param)), param) for grad, param in zip(grads, flat_params)])
def optimizer(sess, feed_dict):
# a = [lambdas, idcg, relevance_labels, index_range, lambdas_ndcg]
# ipdb.set_trace()
sess.run(adam_op, feed_dict=feed_dict)
def get_score(sess, feed_dict):
return sess.run(predicted_scores, feed_dict=feed_dict)
return cost, optimizer, get_score