-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGAN.py
191 lines (162 loc) · 5.91 KB
/
GAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn as nn
import torch
import torch.optim as optim
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from PIL import Image
import torchvision.utils as vutils
img_size = 64
batch_size=64
lr = 0.0002
beta1 = 0.5
niter= 25
outf= 'output'
dataset = datasets.CIFAR10(root='data', download=True, transform=transforms.Compose([
transforms.Resize(img_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))],))
dataloader = torch.utils.data.DataLoader(dataset, batch_size, shuffle=True)
#Size of latnet vector
nz = 100
# Filter size of generator
ngf = 64
# Filter size of discriminator
ndf = 64
# Output image channels
nc = 3
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class _netG(nn.Module):
def __init__(self):
super(_netG, self).__init__()
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
output = self.main(input)
return output
netG = _netG()
netG.apply(weights_init)
class _netD(nn.Module):
def __init__(self):
super(_netD, self).__init__()
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
output = self.main(input)
return output.view(-1, 1).squeeze(1)
netD = _netD()
netD.apply(weights_init)
criterion = nn.BCELoss()
input = torch.FloatTensor(batch_size, 3, img_size, img_size)
noise = torch.FloatTensor(batch_size, nz, 1, 1)
fixed_noise = torch.FloatTensor(batch_size, nz, 1, 1).normal_(0, 1)
label = torch.FloatTensor(batch_size)
real_label = 1
fake_label = 0
if torch.cuda.is_available():
netD.cuda()
netG.cuda()
criterion.cuda()
input, label = input.cuda(), label.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr, betas=(beta1, 0.999))
import time
ST = time.time()
for epoch in range(niter):
for i, data in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
real_cpu, _ = data
batch_size = real_cpu.size(0)
if torch.cuda.is_available():
real_cpu = real_cpu.cuda()
input.resize_as_(real_cpu).copy_(real_cpu)
label.resize_(batch_size).fill_(real_label)
output = netD(input)
errD_real = criterion(output, label)
errD_real.backward()
D_x = output.data.mean()
# train with fake
noise.resize_(batch_size, nz, 1, 1).normal_(0, 1)
fake = netG(noise)
label = label.fill_(fake_label)
output = netD(fake.detach())
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.data.mean()
errD = errD_real + errD_fake
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label = label.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.data.mean()
optimizerG.step()
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f'
% (epoch, niter, i, len(dataloader),
errD.data.item(), errG.data.item(), D_x, D_G_z1, D_G_z2))
if i % 100 == 0:
vutils.save_image(real_cpu,
'%s/real_samples.png' % outf,
normalize=True)
fake = netG(fixed_noise)
vutils.save_image(fake.data,
'%s/fake_samples_epoch_%03d.png' % (outf, epoch),
normalize=True)
print(time.time() - ST, "seconds.")