-
Notifications
You must be signed in to change notification settings - Fork 0
/
Benchmark.6.Cats.Vs.Dogs.Network.py
executable file
·45 lines (34 loc) · 2 KB
/
Benchmark.6.Cats.Vs.Dogs.Network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from keras import layers, models, optimizers
import NvidiaMixedPrec
from keras.preprocessing.image import ImageDataGenerator
import os, time
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=optimizers.RMSprop(lr=1e-4), metrics=['acc'])
# train_datagen = ImageDataGenerator(rescale=1./255)
train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=40, width_shift_range=.2, height_shift_range=.2, shear_range=.2, horizontal_flip=True, fill_mode='nearest') # Augmentation
val_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
working_dir = '/home/andrew/PycharmProjects/DeepLearning/CatDog/CatDogWorking'
train_dir = os.path.join(working_dir, 'train')
val_dir = os.path.join(working_dir, 'val')
test_dir = os.path.join(working_dir, 'test')
train_generator = train_datagen.flow_from_directory(train_dir, target_size=(150, 150), batch_size=20, class_mode='binary')
val_generator = val_datagen.flow_from_directory(val_dir, target_size=(150, 150), batch_size=20, class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir, target_size=(150, 150), batch_size=20, class_mode='binary')
start_time = time.time()
history = model.fit_generator(train_generator, steps_per_epoch=100, epochs=30, validation_data=val_generator, validation_steps=50)
end_time = time.time()
Results = model.evaluate(test_generator)
print("Accuracy on Test data:", Results[1]*100, "%")
print("Time:", end_time-start_time, "seconds.")