-
Notifications
You must be signed in to change notification settings - Fork 0
/
5.Convnets.py
executable file
·41 lines (30 loc) · 1.44 KB
/
5.Convnets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from tensorflow.keras import layers, models
from tensorflow.compat.v1 import ConfigProto, InteractiveSession
import time, os
os.environ['TF_ENABLE_AUTO_MIXED_PRECISION'] = '1'
config = ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.8
session = InteractiveSession(config=config)
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
from tensorflow.keras.datasets import mnist
from tensorflow.keras.utils import to_categorical
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images.astype('float16')/255
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images.astype('float16')/255
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(train_images, train_labels, epochs = 5, batch_size=64)
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(test_acc)