-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotter.py
170 lines (156 loc) · 8.26 KB
/
plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
from matplotlib import pyplot as plt
import os
import fitter as fit
def raw_plot(data):
raw_figdir = figdir + "raw_slices\\"
plt.figure()
plt.plot(range(len(data)), data, lw=5, c='g', label='measurement'+str(file))
def gaussian_plot(data, filename):
gauss_figdir = figdir + "gauss_fits\\"
gauss_paramdir = paramdir + "gauss_fit_params\\"
gauss_sep_figdir = figdir + "gauss_separate_peaks\\"
gauss = fit.three_gaussians(data)
plt.figure()
plt.plot(range(len(data)), data, lw=5, c='g', label='measurement'+str(file))
plt.plot(range(len(data)), gauss.best_fit)
# plt.savefig(gauss_figdir + filename[:4] +"fit3.png")
# with open(gauss_paramdir + filename[:4] +"params3.txt", "w") as f:
# f.write(gauss.fit_report())
# plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g1_height'], gauss.params['g1_center'], gauss.params['g1_sigma'], 0) for u in range(len(data))])
# plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g2_height'], gauss.params['g2_center'], gauss.params['g2_sigma'], 0) for u in range(len(data))])
# plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g3_height'], gauss.params['g3_center'], gauss.params['g3_sigma'], 0) for u in range(len(data))])
#plt.plot(range(len(data)), [gauss.params['c'] for u in range(len(data))])
# plt.savefig(gauss_sep_figdir + filename[:4] + "_1_gauss_sep_peaks.png")
def area_ratio_plot(data, filename):
gauss_figdir = figdir + "gauss_fits\\"
gauss_paramdir = paramdir + "gauss_fit_params\\"
gauss_sep_figdir = figdir + "gauss_separate_peaks\\"
gauss = fit.three_gaussians(data)
(right_peak, left_peak) = (gauss.params["g3_amplitude"], gauss.params["g1_amplitude"]) \
if (gauss.params["g1_center"] > gauss.params["g2_center"]) \
else (gauss.params["g3_amplitude"], gauss.params["g2_amplitude"])
# ratios.append(right_peak/left_peak)
ratios.append(left_peak/right_peak)
def gaussian_plot_only(data):
gauss = fit.three_gaussians(data)
plt.figure()
plt.plot(range(len(data)), data, lw=5, c='g', label='measurement'+str(file))
plt.plot(range(len(data)), gauss.best_fit)
print(gauss.params['slope'], gauss.params['intercept'])
plt.plot(range(len(data)), [gauss.params['slope']*u + gauss.params['intercept'] for u in range(len(data))])
plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g1_height'], gauss.params['g1_center'], gauss.params['g1_sigma'], 0) for u in range(len(data))])
plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g2_height'], gauss.params['g2_center'], gauss.params['g2_sigma'], 0) for u in range(len(data))])
plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g3_height'], gauss.params['g3_center'], gauss.params['g3_sigma'], 0) for u in range(len(data))])
def gaussian_plot_with_linear_save(data, filename):
g_l_figdir = figdir + "gauss_linear_background_sep_peaks\\"
g_l_fitdir = paramdir + "gauss_lin_back_params\\"
lm = fit.linear_model(data[:40])
gauss = fit.gaussians_with_linear(data, lm)
plt.figure()
plt.plot(range(len(data)), data, lw=5, c='g', label='measurement'+str(file))
plt.plot(range(len(data)), gauss.best_fit)
print(gauss.params['slope'], gauss.params['intercept'])
plt.plot(range(len(data)), [gauss.params['slope']*u + gauss.params['intercept'] for u in range(len(data))])
plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g1_height'], gauss.params['g1_center'], gauss.params['g1_sigma'], 0) for u in range(len(data))])
plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g2_height'], gauss.params['g2_center'], gauss.params['g2_sigma'], 0) for u in range(len(data))])
plt.plot(range(len(data)), [fit.gaussian(u, gauss.params['g3_height'], gauss.params['g3_center'], gauss.params['g3_sigma'], 0) for u in range(len(data))])
with open(g_l_fitdir + filename + ".txt", "w") as f:
f.write(gauss.fit_report())
plt.savefig(g_l_figdir + filename + ".png")
print(gauss.fit_report())
def simple_plot(data):
data = data[:]
plt.plot(range(len(data)), data)
def width_plot(rootdir):
width_dir = rootdir + "\\width_data_col70\\"
for subdir, dirs, files in os.walk(width_dir):
for file in files:
data = np.genfromtxt(os.path.join(subdir, file))
plt.figure()
plt.plot(range(len(data)), data)
plt.show()
def width_gauss_fit_plot(rootdir, plot=False, save=False, collect_widths=False):
width_dir = rootdir + "\\width_data_col70\\"
width_fig_dir = figdir + "width_fit_figs\\"
width_param_dir = paramdir + "width_params\\"
widths = []
temperatures = []
for subdir, dirs, files in os.walk(width_dir):
for file in files:
data = np.genfromtxt(os.path.join(subdir, file))
fitted = fit.three_gaussians(data)
#print(fitted.params["g1_center"].value, fitted.params["g2_center"].value, fitted.params["g3_center"].value)
if plot:
plt.figure()
plt.plot(range(len(data)), data)
plt.plot(range(400), [fitted.eval(x=u) for u in range(400)])
if save:
plt.savefig(width_fig_dir + file[:4] + "_width_fig_2.png")
with open(width_param_dir + file[:4] +"_width_params2.txt", "w") as f:
f.write(fitted.fit_report())
if collect_widths:
temperatures.append(temps[file[2:4]])
widths.append(fitted.params["g3_fwhm"].value)
if collect_widths:
plt.figure()
plt.plot(temperatures, widths)
if save:
with open(width_param_dir + "widths\\widths_2.txt", "w") as f:
f.write(str(dict(zip(temperatures, widths))))
plt.show()
def width_lorentz_fit_plot(rootdir):
width_dir = rootdir + "\\width_data_col70\\"
for subdir, dirs, files in os.walk(width_dir):
for file in files:
data = np.genfromtxt(os.path.join(subdir, file))
fitted = fit.two_lortenzians(data)
plt.figure()
plt.plot(range(len(data)), data)
plt.plot(range(len(data)), fitted.best_fit)
plt.show()
def width_pv_fit_plot(rootdir):
width_dir = rootdir + "\\width_data_col70\\"
for subdir, dirs, files in os.walk(width_dir):
for file in files:
data = np.genfromtxt(os.path.join(subdir, file))
fitted = fit.pseudo_voigt(data)
plt.figure()
plt.plot(range(len(data)), data)
plt.plot(range(len(data)), fitted.best_fit)
plt.show()
def plot_from_file(filepath):
with open(filepath) as f:
x_vs_y = eval(f.readline())
x_vals = sorted(list(x_vs_y.keys()))
y_vals = [x_vs_y[x] for x in x_vals]
y_vals = [y/y_vals[0] for y in y_vals]
plt.plot(x_vals, y_vals)
plt.scatter(x_vals, y_vals)
if __name__ == "__main__":
rootdir = 'C:\\Users\\Student\\Desktop\\Chatterjee\\ANDREAS-20170924T205427Z-001\\ANDREAS\\JUNE_PGM_Project\\exported_waves\\JUNE_PGM_S9'
figdir = 'C:\\Users\\Student\\Desktop\\Chatterjee\\ANDREAS-20170924T205427Z-001\\ANDREAS\\JUNE_PGM_Project\\results\\fits\\figs\\'
paramdir = 'C:\\Users\\Student\\Desktop\\Chatterjee\\ANDREAS-20170924T205427Z-001\\ANDREAS\\JUNE_PGM_Project\\results\\fits\\fit_params\\'
ratios = []
ratios2 = []
temps = {"11":30 , "16":50, "20":70, "24":90, "29":110, "33":130, "37":150, "41":170, "44":190, "48":210, "52":230,
"56":260, "60":285}
xs = []
width_gauss_fit_plot(rootdir, plot=True, save=False, collect_widths=True)
file = ''
# for subdir, dirs, files in os.walk(rootdir):
# for file in files:
# if(file[2:4] in ["29"]):
# data = np.genfromtxt(os.path.join(subdir, file))
# gaussian_plot_with_linear_save(data, "\\2_"+file[:-4])
# gaussian_plot_only(data)
# area_ratio_plot(data, file)
# xs.append(temps[file[2:4]])
# plt.plot(xs, ratios)
# plt.scatter(xs, ratios)
# plt.savefig(figdir + "area_ratios\\area_ratio4.png")
# with open(figdir + "area_ratios\\area_ratio4_pnts.txt", "w") as f:
# f.write(str(dict(zip(xs,ratios))))
# plt.plot(xs, ratios2)
# plot_from_file(figdir + "area_ratios\\area_ratio_pnts_linear_background.txt")
# plt.show()