forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
455 lines (409 loc) · 19.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Optional, Union
import transformers
from ..._common import default_net
from ..._utils import pad_vocab_size
from ...functional import (AllReduceFusionOp, AllReduceFusionParams, Tensor,
non_gated_version, recv, send)
from ...layers import (MOE, Attention, AttentionMaskType, ColumnLinear,
Embedding, GatedMLP, PositionEmbeddingType, RmsNorm)
from ...lora_manager import LoraConfig, use_lora
from ...mapping import Mapping
from ...module import Module
from ..convert_utils import has_safetensors
from ..model_weights_loader import ModelWeightsLoader
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig, check_share_embedding)
from .config import LLaMAConfig
from .convert import (load_hf_llama, load_weights_from_gptq,
load_weights_from_hf_by_shard, load_weights_from_hf_model,
load_weights_from_hf_safetensors,
load_weights_from_meta_ckpt)
class LLaMADecoderLayer(Module):
def __init__(self, config: LLaMAConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
self.input_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
self.local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=self.local_layer_idx,
hidden_size=config.hidden_size,
attention_head_size=config.head_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
dtype=config.dtype,
attention_mask_type=AttentionMaskType.causal,
bias=config.attn_bias,
position_embedding_type=PositionEmbeddingType.rope_gpt_neox,
rotary_embedding_base=config.rotary_base,
rotary_embedding_scaling=config.rotary_scaling,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
tp_rank=config.mapping.tp_rank,
quant_mode=config.quant_mode)
mlp_hidden_size = config.hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
ClsMLP = GatedMLP
mlp_kwargs = {}
if config.moe.has_moe():
ClsMLP = MOE
mlp_kwargs = {
"moe_config": config.moe,
"mapping": config.mapping,
}
self.mlp = ClsMLP(hidden_size=config.hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode,
**mlp_kwargs)
self.post_layernorm = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
# Residual MLP that applies on pre-attention input
# TODO: change to self.has_residual_mlp = self.config.residual_mlp after ModelOpt quantize config is updated
self.has_residual_mlp = False
if hasattr(self.config,
"residual_mlp") and self.config.residual_mlp is True:
self.has_residual_mlp = True
if self.has_residual_mlp:
self.residual_layernorm = RmsNorm(
normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
ClsMLP = GatedMLP # TODO: may use FusedGatedMLP to further speedup
self.residual_mlp = ClsMLP(
hidden_size=config.hidden_size,
ffn_hidden_size=config.
hidden_size, # residual mlp uses hidden_size
hidden_act=non_gated_version(
config.hidden_act), # back to non-gated
dtype=config.dtype,
bias=config.mlp_bias,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
quant_mode=config.quant_mode)
def forward(self,
hidden_states,
attention_mask=None,
use_cache=False,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
lora_layer_params=None,
next_layer_input_layernorm_args=None):
assert not (
default_net().plugin_config.reduce_fusion and self.has_residual_mlp
), "Custom all reduce and residual mlp can't be enabled at the same time."
if default_net(
).plugin_config.reduce_fusion and self.local_layer_idx > 0:
hidden_states, residual = hidden_states
else:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
attention_output = self.attention(
hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
spec_decoding_params=spec_decoding_params,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_layer_params=lora_layer_params,
reduce_fusion_params=AllReduceFusionParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM
if default_net().plugin_config.reduce_fusion else
AllReduceFusionOp.NONE,
residual=residual,
norm_weight=self.post_layernorm.weight.value,
eps=self.post_layernorm.eps))
if use_cache:
attention_output, presents = attention_output
if self.has_residual_mlp:
hidden_states = residual + attention_output
residual_attn = hidden_states
# arctic layer w/ residual mlp
# residual mlp
hidden_states = self.residual_layernorm(hidden_states)
hidden_states = self.residual_mlp(hidden_states)
residual_mlp = residual_attn + hidden_states
# parallel moe
# parallel moe layers applies on PRE-ATTENTION input residual, therefore achieving pre-fetching and better parallelism
hidden_states = self.post_layernorm(residual)
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual_mlp + hidden_states
else:
if default_net().plugin_config.reduce_fusion:
hidden_states, residual = attention_output
else:
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
if next_layer_input_layernorm_args is not None:
hidden_states = self.mlp(
hidden_states,
lora_layer_params=lora_layer_params,
reduce_fusion_params=AllReduceFusionParams(
fusion_op=AllReduceFusionOp.RESIDUAL_RMS_NORM
if default_net().plugin_config.reduce_fusion else
AllReduceFusionOp.NONE,
residual=residual,
norm_weight=next_layer_input_layernorm_args[0],
eps=next_layer_input_layernorm_args[1]))
else:
hidden_states = self.mlp(hidden_states,
lora_layer_params=lora_layer_params)
hidden_states = residual + hidden_states
if use_cache:
return (hidden_states, presents)
return hidden_states
class LLaMAModel(Module):
def __init__(self, config: LLaMAConfig) -> None:
super().__init__()
self.mapping = config.mapping
if self.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(LLaMADecoderLayer, config)
if self.mapping.is_last_pp_rank():
self.ln_f = RmsNorm(normalized_shape=config.hidden_size,
eps=config.norm_epsilon,
dtype=config.dtype)
def forward(self,
input_ids,
position_ids=None,
use_cache=False,
attention_mask=None,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None,
prompt_embedding_table: Optional[Tensor] = None,
prompt_tasks: Optional[Tensor] = None,
prompt_vocab_size: Optional[Tensor] = None,
lora_params=None):
ptuning_args = [
prompt_embedding_table, prompt_tasks, prompt_vocab_size
] if prompt_embedding_table is not None else []
if self.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids, *ptuning_args)
else:
hidden_states = recv(hidden_states, self.mapping.prev_pp_rank())
hidden_states = self.layers.forward(
hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params,
lora_params=lora_params,
spec_decoding_params=spec_decoding_params)
if use_cache:
hidden_states, presents = hidden_states
if self.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states, self.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class LLaMAForCausalLM(DecoderModelForCausalLM):
config_class = LLaMAConfig
def __init__(self, config: LLaMAConfig):
transformer = LLaMAModel(config)
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
if config.mapping.is_last_pp_rank():
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
self.quant_mode = config.quant_mode
self.mapping = config.mapping
super().__init__(config, transformer, lm_head)
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
''' Create a LLaMAForCausalLM object from give parameters
'''
import transformers
load_by_shard = kwargs.pop('load_by_shard', False)
load_model_on_cpu = kwargs.pop('load_model_on_cpu', False)
quant_ckpt_path = kwargs.pop('quant_ckpt_path', None)
if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER") is not None:
if "vila" in hf_model_or_dir or "llava" in hf_model_or_dir:
hf_model_or_dir = load_hf_llama(hf_model_or_dir,
load_model_on_cpu)
elif not (load_by_shard or
(has_safetensors(hf_model_or_dir)
and not quant_config.quant_mode.has_any_quant())):
hf_model_or_dir = load_hf_llama(hf_model_or_dir,
load_model_on_cpu)
assert hf_model_or_dir is not None
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_model = hf_model_or_dir
hf_config_or_dir = hf_model.config
else:
hf_model_dir = hf_model_or_dir
hf_config_or_dir = hf_model_or_dir
config = LLaMAConfig.from_hugging_face(hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if config.remove_duplicated_kv_heads:
config.num_key_value_heads = config.num_key_value_heads // 2
if os.environ.get("TRTLLM_DISABLE_UNIFIED_CONVERTER") is None:
custom_dict = {}
if "llava" in hf_model_or_dir:
custom_dict = {
"transformer": "language_model.model",
"lm_head": "language_model.lm_head"
}
elif "vila" in hf_model_or_dir:
hf_model_dir += "/llm"
elif "exaone" in hf_model_or_dir:
custom_dict = {
"transformer": "transformer",
"layers": "h",
"vocab_embedding": "wte",
"lm_head": "lm_head",
"ln_f": "ln_f",
"attention": "attn.attention",
"dense": "out_proj",
"gate": "c_fc_1",
"proj": "c_proj",
"fc": "c_fc_0",
"input_layernorm": "ln_1",
"post_layernorm": "ln_2",
}
if quant_ckpt_path is not None:
hf_model_dir = quant_ckpt_path
loader = ModelWeightsLoader(hf_model_dir, custom_dict)
loader.check_share_embedding(config)
model = cls(config)
loader.generate_tllm_weights(model)
else:
if use_preloading:
assert not load_by_shard
weights = load_weights_from_hf_model(hf_model, config)
elif load_by_shard:
weights = load_weights_from_hf_by_shard(hf_model_dir, config)
elif has_safetensors(
hf_model_dir) and not config.quant_mode.has_any_quant():
weights = load_weights_from_hf_safetensors(hf_model_dir, config)
elif quant_ckpt_path is not None:
weights = load_weights_from_gptq(quant_ckpt_path, config)
else:
hf_model = load_hf_llama(hf_model_dir, load_model_on_cpu)
weights = load_weights_from_hf_model(hf_model, config)
check_share_embedding(weights, config)
model = cls(config)
model.load(weights)
return model
def default_plugin_config(self, **kwargs):
plugin_config = super().default_plugin_config(**kwargs)
if self.quant_mode.is_int4_weight_only_per_group():
plugin_config.weight_only_groupwise_quant_matmul_plugin = 'auto'
return plugin_config
@classmethod
def from_meta_ckpt(cls,
meta_ckpt_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
config = LLaMAConfig.from_meta_ckpt(meta_ckpt_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
weights = load_weights_from_meta_ckpt(meta_ckpt_dir, config)
check_share_embedding(weights, config)
model = cls(config)
model.load(weights)
return model
@classmethod
def quantize(
cls,
hf_model_dir: str,
output_dir: str,
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
*,
device: str = 'cuda',
calib_dataset: str = 'cnn_dailymail',
calib_batches: int = 512,
calib_batch_size: int = 1,
calib_max_seq_length: int = 512,
random_seed: int = 1234,
tokenizer_max_seq_length: int = 2048,
**kwargs,
):
if quant_config.requires_modelopt_quantization:
# modelopt quantization flow
super().quantize(hf_model_dir,
output_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
device=device,
calib_dataset=calib_dataset,
calib_batches=calib_batches,
calib_batch_size=calib_batch_size,
calib_max_seq_length=calib_max_seq_length,
random_seed=random_seed,
tokenizer_max_seq_length=tokenizer_max_seq_length)
elif quant_config.requires_calibration:
# non-modelopt quantization flow
from . import convert
config = LLaMAConfig.from_hugging_face(hf_model_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
convert.quantize(hf_model_dir,
output_dir,
config=config,
device=device,
calib_dataset=calib_dataset)
else:
raise ValueError(
f"The quant_config ({quant_config}) does not require calibration, try {cls.__name__}.from_hugging_face instead."
)
def use_lora(self, lora_config: LoraConfig):
use_lora(self, lora_config)