Skip to content

evomics2024

Oleksiy Kozlov edited this page Jan 18, 2024 · 17 revisions

This is the full solution script which includes all command lines and results.
For the shortened version which will be presented to the students, see evomics2024.md.

NOTE: Optional tasks are marked with an asterisk (*).

Lab #1: RAxML-NG Basics

Exercise 0 : Getting ready

  1. Check input data:
cd /home/phylogenomics/workshop_materials/ng-tutorial/
ls

you should see roughly the following:

5.phy   dna.map    multi199.part  multi5.fa   prim2.part  prim.part  prim.phy.raxml.log  prot140.phy  prot21.fa.ckp  prot21.fa.out   prot21.part  README.md   terrace.part
bad.fa  fusob.phy  multi199.phy   multi5.map  prim.cons   prim.phy   prot140.part        prot21.fa    prot21.fa.log  prot21.fa.tree  rbcl.phy     terrace.fa
  1. Run RAxML-NG binary without parameters
raxml-ng

this will show RAxML-NG version and short usage help:

RAxML-NG v. 1.2.1 released on 22.12.2023 by The Exelixis Lab.

[...]
System: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz, 4 cores, 23 GB RAM

Usage: raxml-ng [OPTIONS]

Commands (mutually exclusive):
  --help                                     display help information
[...]
  1. It is always a good idea to run alignment sanity check before starting the actual analysis:
raxml-ng --check --msa prim.phy --model GTR+G

This alignment is clean, so you should see:

Alignment can be successfully read by RAxML-NG.

4*. Run --check command again with bad.fa and examine error and warning messages.

Exercise 1 : Tree search

  1. Infer ML tree with default parameters (10 random + 10 parsimony starting trees):
raxml-ng --msa prim.phy --model GTR+G --prefix S1
  1. Check log-likelihoods for all 20 resulting trees:
grep "logLikelihood:" S1.raxml.log

Result:

[00:00:00] ML tree search #1, logLikelihood: -5708.961164
[00:00:01] ML tree search #2, logLikelihood: -5709.001321
[00:00:02] ML tree search #3, logLikelihood: -5708.928444
[00:00:03] ML tree search #4, logLikelihood: -5708.958315
[00:00:03] ML tree search #5, logLikelihood: -5708.932260
[00:00:04] ML tree search #6, logLikelihood: -5708.941449
[00:00:05] ML tree search #7, logLikelihood: -5708.959505
[00:00:05] ML tree search #8, logLikelihood: -5708.951658
[00:00:06] ML tree search #9, logLikelihood: -5709.022061
[00:00:07] ML tree search #10, logLikelihood: -5708.926872
[00:00:08] ML tree search #11, logLikelihood: -5709.016549
[00:00:08] ML tree search #12, logLikelihood: -5709.022648
[00:00:09] ML tree search #13, logLikelihood: -5709.009746
[00:00:10] ML tree search #14, logLikelihood: -5709.012081
[00:00:10] ML tree search #15, logLikelihood: -5709.017948
[00:00:11] ML tree search #16, logLikelihood: -5709.017067
[00:00:11] ML tree search #17, logLikelihood: -5709.030238
[00:00:12] ML tree search #18, logLikelihood: -5709.014300
[00:00:13] ML tree search #19, logLikelihood: -5709.018029
[00:00:13] ML tree search #20, logLikelihood: -5709.017251
  1. Check topological distances between trees (so-called Robinson-Foulds or RF distance):
raxml-ng --rfdist --tree S1.raxml.mlTrees --prefix RF1

Result:

Average absolute RF distance in this tree set: 0.000000
Average relative RF distance in this tree set: 0.000000
Number of unique topologies in this tree set: 1

4*. Repeat steps 1 and 2 for fusob.phy.

raxml-ng --msa fusob.phy --model GTR+G --prefix S2
grep "logLikelihood:" S2.raxml.log
[00:00:07] ML tree search #1, logLikelihood: -9974.666846
[00:00:13] ML tree search #2, logLikelihood: -9974.669424
[00:00:20] ML tree search #3, logLikelihood: -9974.673880
[00:00:25] ML tree search #4, logLikelihood: -9980.602445
[00:00:30] ML tree search #5, logLikelihood: -9974.670042
[00:00:36] ML tree search #6, logLikelihood: -9980.601596
raxml-ng --rfdist --tree S2.raxml.mlTrees --prefix RF2
Reading input trees from file: S2.raxml.mlTrees
Loaded 6 trees with 38 taxa.

Average absolute RF distance in this tree set: 4.266667
Average relative RF distance in this tree set: 0.060952
Number of unique topologies in this tree set: 2

Exercise 2 : Bootstrapping / "all-in-one"

  1. Run "all-in-one" analysis (ML tree search + bootstrapping + branch support mapping):
raxml-ng --all --msa prim.phy --model GTR+G --prefix A1

This is convenient, but not always possible/efficient for large datasets! We will explore an alternative approach in Lab #2.

  1. Open A1.raxml.support in the tree viewer of your choice.

3*. Repeat bootstrapping using a fixed number of replicates (100). Did this changed the support values?

Exercise 3: Tree likelihood evaluation

The --evaluate command computes the likelihood of a fixed tree topology after re-optimizing all model parameters and branch lengths. We will use it to compare different evolutionary models:

raxml-ng --evaluate --msa prim.phy --tree S1.raxml.bestTree --model GTR+G --prefix E_GTRG
  1. Repeat the above command for GTR+R4, GTR, JC and JC+G models. Don't forget to change the --prefix!

  2. Check the log-likelihood scores:

grep "Final LogLikelihood:" E*.raxml.log

Which model yields the highest log-likelihood? Does it mean that this model should be preferred?

Parameter-rich models are more prone to overfitting the data. Thus, special criteria have been developed to compare models with different number of free parameters. In phylogenetics, AIC/AICc and BIC are most commonly used.

  1. Check AIC/BIC scores for our runs (lower values are better):
grep "AIC score" E*.raxml.log

Which model should be preferred according to information theoretical criteria ?

Results:

grep "Final LogLikelihood:" E*.raxml.log

E_GTR.raxml.log:Final LogLikelihood: -5934.159081
E_GTRG.raxml.log:Final LogLikelihood: -5709.005399
E_GTRR.raxml.log:Final LogLikelihood: -5706.012286
E_JC.raxml.log:Final LogLikelihood: -6424.203377
E_JCG.raxml.log:Final LogLikelihood: -6272.469065
$ grep "AIC score" E*.raxml.log

E_GTR.raxml.log:AIC score: 11926.318162 / AICc score: 11928.322770 / BIC score: 12065.523094
E_GTRG.raxml.log:AIC score: 11478.010798 / AICc score: 11480.156127 / BIC score: 11622.015900
E_GTRR.raxml.log:AIC score: 11482.024572 / AICc score: 11484.948006 / BIC score: 11650.030524
E_JC.raxml.log:AIC score: 12890.406755 / AICc score: 12891.461549 / BIC score: 12991.210326
E_JCG.raxml.log:AIC score: 12588.938129 / AICc score: 12590.094701 / BIC score: 12694.541871

Exercise 4: Protein data and ModelTest-NG

  1. Check online help
modeltest-ng --help

Important options are:

  • -i ALIGNMENT
  • -d DATATYPE, where DATATYPE is nt (default) or aa
  1. Run model selection for prot21.fa (protein alignment):
modeltest-ng -i prot21.fa -d aa
  1. Run tree inference with the best-scoring model determined by ModelTest-NG.

4*. Re-run ModelTest-NG including the LG4M and LG4X models which are not tested by default.

Results:

modeltest-ng -i prot21.fa -d aa

Partition 1/1:
                         Model         Score        Weight
----------------------------------------------------------
       BIC               LG+G4     6005.4554        0.5062
       AIC             LG+I+G4     5893.6825        0.7923
      AICc               LG+G4     5941.3599        0.5402
$ raxml-ng --msa prot21.fa --model LG+G4 --prefix S6

Final LogLikelihood: -2872.979205```

Exercise 5: Partitioned models

Partitioned model is defined in a file, e.g. --model prim2.part.

cat prim2.part 
GTR+G+FO, NADH4=1-504/3,2-504/3
JC+I, tRNA=505-656
GTR+R4+FC, NADH5=657-898
HKY, NADH4p3=3-504/3
  1. Re-run tree inference for prim.phy using partitioned model in prim2.part.
  2. Compare the results (log-likelihood and tree topology) to the Exercise 1.
raxml-ng --msa prim.phy --model prim2.part --prefix P1

Likelihoods:

grep "Final LogLikelihood:" {S,P}1.raxml.log
S1.raxml.log:Final LogLikelihood: -5708.926872
P1.raxml.log:Final LogLikelihood: -5673.806570

RF distances:

cat S1.raxml.bestTree P1.raxml.bestTree > S1P1.trees 
raxml-ng --rfdist --tree S1P1.trees --prefix RF5
Reading input trees from file: S1P1.trees
Loaded 2 trees with 12 taxa.

Average absolute RF distance in this tree set: 0.000000
Average relative RF distance in this tree set: 0.000000
Number of unique topologies in this tree set: 1

Lab #2: Parallelization / Analyzing Large Datasets

Exercise 7: Alignment compression

Before analyzing a large dataset, it is highly recommended to convert alignment into RAxML binary format (RBA) using the --parse command. Doing this pre-processing step has two advantages:

  • binary alignments are faster to load than PHYLIP/FASTA
  • you will get estimated memory requirements and the recommended number of threads for this dataset
  1. Compress alignment file fusob.phy
raxml-ng --parse --msa fusob.phy --model GTR+G --prefix fusob
Partition 0: noname
Model: GTR+FO+G4m
Alignment sites / patterns: 1602 / 635
Gaps: 10.13 %
Invariant sites: 67.79 %

NOTE: Binary MSA file created: fusob.raxml.rba

* Estimated memory requirements                : 6 MB

* Recommended number of threads / MPI processes: 3

2*. Explore how resource estimates change depending on the selected --model (e.g., GTR, GTR+R8)

Exercise 8: Automatic and manual parallelization

  1. Run a tree search with automatic parallelization to establish a baseline (note -seed 1!):
raxml-ng -search -msa fusob.raxml.rba -tree rand{10} -seed 1 -prefix TXWX
Analysis options:
  parallelization: coarse-grained (auto), PTHREADS (auto)

Parallelization scheme autoconfig: 4 worker(s) x 1 thread(s)
  1. Re-run the same tree search with different number of --threads and --workers. Can you find a configuration which beats the default heuristic in terms of runtime?

HINT: don't forget to change the --prefix for every run!

HINT: you can use grep "Elapsed time:" T*.raxml.log to quickly compare runtimes.

raxml-ng -search -msa fusob.raxml.rba -tree rand{10} -seed 1 -workers 1 -prefix TXW1
raxml-ng -search -msa fusob.raxml.rba -tree rand{10} -seed 1 -workers 2 -prefix TXW2
raxml-ng -search -msa fusob.raxml.rba -tree rand{10} -seed 1 -threads 2 -workers 2 -prefix T2W2

Results:

T2W2.raxml.log:Elapsed time: 11.995 seconds
TXW1.raxml.log:Elapsed time: 9.752 seconds
TXW2.raxml.log:Elapsed time: 8.551 seconds
TXWX.raxml.log:Elapsed time: 10.398 seconds

3*. Try to oversubscribe CPU cores by using 9 or more threads. What do you observe?

raxml-ng -search -msa fusob.raxml.rba -threads 10 -prefix T10
  parallelization: coarse-grained (auto), PTHREADS (10 threads), thread pinning: OFF

ERROR: CPU core oversubscription detected! RAxML-NG will terminate now to avoid wasting resources.
NOTE:  Details: https://github.com/amkozlov/raxml-ng/wiki/Parallelization#core-oversubscription
NOTE:  You can use '--force perf_threads' to disable this check, but ONLY if you are 200% sure this is a false alarm!

Exercise 9: Adaptive search

  1. For this exercise, we will be using an experimental version of RAxML-NG. Please make sure that you specify the correct binary, raxml-ng-adaptive:
raxml-ng-adaptive
RAxML-NG v. 1.2.1-adaptive released on 12.01.2024 by The Exelixis Lab.
  1. Run the adaptive tree search for the dataset from the Exercise 5 (prim.phy with partitioned model). Compare runtimes, likelihoods, and best-found ML tree topology. Can you spot the differences in the log files?
raxml-ng-adaptive --adaptive --msa prim.phy --model prim2.part --prefix P1A

Adaptive:

Analysis options:
  run mode: Adaptive ML tree search

[00:00:00] Predicted difficulty: 0.00

Starting ML tree search with 2 distinct starting trees

Final LogLikelihood: -5673.844106

Elapsed time: 1.635 seconds

Standard:

Analysis options:
  run mode: ML tree search

Starting ML tree search with 20 distinct starting trees

Final LogLikelihood: -5673.760245

Elapsed time: 8.618 seconds

RF distance:

raxml-ng-adaptive --rf P1.raxml.bestTree,P1A.raxml.bestTree

Average absolute RF distance in this tree set: 0.000000
Average relative RF distance in this tree set: 0.000000
Number of unique topologies in this tree set: 1

3*. Run the adaptive tree search for fusob.phy. Compare the results with Excercise 1.4.

Exercise 10 : Bootstrapping revisited

  1. Infer bootstrap replicate trees:
raxml-ng --bootstrap --msa prim.phy --model GTR+G --prefix B1
  1. Compute and map bootstrap support values to the best ML tree:
raxml-ng --support --tree S1.raxml.bestTree --bs-trees B1.raxml.bootstraps --prefix B2 
  1. Open B2.raxml.support in the tree viewer of your choice.

4*. Recompute support values using the transfer bootstrap algorithm (TBE). Did this change the support values?
HINT: you do NOT need to re-infer the bootstrap trees!

Exercise 11: ParGenes

  1. Check ParGenes options
python ~/software/ParGenes/pargenes/pargenes.py  --help
  1. Analyze all alignments in the ~/software/ParGenes/examples/data/small/fasta_files/ folder () using default ParGenes settings
python ~/software/ParGenes/pargenes/pargenes.py  -a ~/software/ParGenes/examples/data/small/fasta_files/  -o parout -c 2 -m --scheduler openmp

2*. Run model testing and tree inference from 1 parsimony + 5 random starting trees for the prot21.fa alignment.

python ~/software/ParGenes/pargenes/pargenes.py  -a ~/workshop_materials/ng-tutorial/ --msa-filter msa_filter -o parout2 -c 2 -m --scheduler openmp -d aa -s 5 -p 1
  1. Examine the results from both runs

Results 1:

########################
#    PARGENES v1.0.1   #
########################
ParGenes was called as follow:
/home/phylogenomics/software/ParGenes/pargenes/pargenes.py -a /home/phylogenomics/software/ParGenes/examples/data/small/fasta_files/ -o parout -c 2 -m --scheduler openmp

########################
#    PARGENES v1.0.1   #
########################
ParGenes was called as follow:
/home/phylogenomics/software/ParGenes/pargenes/pargenes.py -a /home/phylogenomics/software/ParGenes/examples/data/small/fasta_files/ -o parout -c 2 -m --scheduler openmp

[0:00:00] end of MSAs initializations
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../raxml-ng/bin/raxml-ng parout/parse_run/parse_command.txt parout/parse_run 0
Logs will be redirected to parout/parse_run/logs.txt
[Warning] 2/9 commands failed
  Average number of taxa: 9
  Max number of taxa: 22
  Average number of sites: 1711
  Max number of sites: 6489
  Recommended MAXIMUM number of cores: 1
[Warning] Found 2 invalid MSAs (see parout/invalid_msas.txt)
[0:00:00] end of parsing mpi-scheduler run
[0:00:00] end of anlysing parsing results
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../modeltest/bin/modeltest-ng parout/modeltest_run/modeltest_command.txt parout/modeltest_run 0
Logs will be redirected to parout/modeltest_run/logs.txt
[0:00:51] end of modeltest mpi-scheduler run
[0:00:51] end of parsing  modeltest results
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../raxml-ng/bin/raxml-ng parout/parse_run/parse_command.txt parout/parse_run 0
Logs will be redirected to parout/parse_run/logs.txt
[Warning] 2/9 commands failed
  Average number of taxa: 9
  Max number of taxa: 22
  Average number of sites: 1711
  Max number of sites: 6489
  Recommended MAXIMUM number of cores: 1
[Warning] Found 2 invalid MSAs (see parout/invalid_msas.txt)
[0:00:51] end of the second parsing step
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../raxml-ng/bin/raxml-ng parout/mlsearch_run/mlsearch_command.txt parout/mlsearch_run 0
Logs will be redirected to parout/mlsearch_run/logs.txt
[0:00:54] end of mlsearch mpi-scheduler run
[Warning] Total number of jobs that failed: 3
[Warning] For a detailed list, see parout/failed_commands.txt
[0:00:54] END OF THE RUN OF pargenes.py

Results 2:

########################
#    PARGENES v1.0.1   #
########################
ParGenes was called as follow:
/home/phylogenomics/software/ParGenes/pargenes/pargenes.py -a /home/phylogenomics/workshop_materials/ng-tutorial/ --msa-filter msa_filter -o parout2 -c 2 -m --scheduler openmp -d aa -s 5 -p 1

########################
#    PARGENES v1.0.1   #
########################
ParGenes was called as follow:
/home/phylogenomics/software/ParGenes/pargenes/pargenes.py -a /home/phylogenomics/workshop_materials/ng-tutorial/ --msa-filter msa_filter -o parout2 -c 2 -m --scheduler openmp -d aa -s 5 -p 1

[0:00:00] end of MSAs initializations
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../raxml-ng/bin/raxml-ng parout2/parse_run/parse_command.txt parout2/parse_run 0
Logs will be redirected to parout2/parse_run/logs.txt
  Average number of taxa: 21
  Max number of taxa: 21
  Average number of sites: 111
  Max number of sites: 111
  Recommended MAXIMUM number of cores: 1
[0:00:00] end of parsing mpi-scheduler run
[0:00:00] end of anlysing parsing results
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../modeltest/bin/modeltest-ng parout2/modeltest_run/modeltest_command.txt parout2/modeltest_run 0
Logs will be redirected to parout2/modeltest_run/logs.txt
[0:00:10] end of modeltest mpi-scheduler run
[0:00:10] end of parsing  modeltest results
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../raxml-ng/bin/raxml-ng parout2/parse_run/parse_command.txt parout2/parse_run 0
Logs will be redirected to parout2/parse_run/logs.txt
  Average number of taxa: 21
  Max number of taxa: 21
  Average number of sites: 111
  Max number of sites: 111
  Recommended MAXIMUM number of cores: 3
[0:00:11] end of the second parsing step
Calling mpi-scheduler: /home/phylogenomics/software/ParGenes/MPIScheduler/build/mpi-scheduler --openmp-scheduler /home/phylogenomics/software/ParGenes/pargenes/../raxml-ng/bin/raxml-ng parout2/mlsearch_run/mlsearch_command.txt parout2/mlsearch_run 0
Logs will be redirected to parout2/mlsearch_run/logs.txt
[0:00:22] end of mlsearch mpi-scheduler run
[0:00:23] end of selecting the best ML tree
[0:00:23] END OF THE RUN OF pargenes.py

Advanced topics

Exercise 11: Constrained tree search

Exercise 12: Multistate/morphological data

Clone this wiki locally