-
Notifications
You must be signed in to change notification settings - Fork 2
/
convolutional_mlp2.py
818 lines (647 loc) · 80.2 KB
/
convolutional_mlp2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
"""This tutorial introduces the LeNet5 neural network architecture
using Theano. LeNet5 is a convolutional neural network, good for
classifying images. This tutorial shows how to build the architecture,
and comes with all the hyper-parameters you need to reproduce the
paper's MNIST results.
This implementation simplifies the model in the following ways:
- LeNetConvPool doesn't implement location-specific gain and bias parameters
- LeNetConvPool doesn't implement pooling by average, it implements pooling
by max.
- Digit classification is implemented with a logistic regression rather than
an RBF network
- LeNet5 was not fully-connected convolutions at second layer
References:
- Y. LeCun, L. Bottou, Y. Bengio and P. Haffner:
Gradient-Based Learning Applied to Document
Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998.
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
"""
import cPickle
import gzip
import os
import sys
import time
import numpy
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv
from logistic_sgd import LogisticRegression, load_data
from mlp import HiddenLayer
class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2)):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
"""
assert image_shape[1] == filter_shape[1]
self.input = input
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = numpy.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /
numpy.prod(poolsize))
# initialize weights with random weights
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(numpy.asarray(
rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),
borrow=True)
# the bias is a 1D tensor -- one bias per output feature map
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
# convolve input feature maps with filters
conv_out = conv.conv2d(input=input, filters=self.W,
filter_shape=filter_shape, image_shape=image_shape)
# downsample each feature map individually, using maxpooling
pooled_out = downsample.max_pool_2d(input=conv_out,
ds=poolsize, ignore_border=True)
# add the bias term. Since the bias is a vector (1D array), we first
# reshape it to a tensor of shape (1,n_filters,1,1). Each bias will
# thus be broadcasted across mini-batches and feature map
# width & height
# self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output = T.nnet.sigmoid(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
# store parameters of this layer
self.params = [self.W, self.b]
def shared_dataset(data_xy, borrow=True):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
[data_x, data_y] = data_xy
# print data_x[0]
# print data_y
# print len(data_x[0])
# print len(data_x)
# print len(data_y)
shared_x = theano.shared(numpy.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(numpy.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
# When storing data on the GPU it has to be stored as floats
# therefore we will store the labels as ``floatX`` as well
# (``shared_y`` does exactly that). But during our computations
# we need them as ints (we use labels as index, and if they are
# floats it doesn't make sense) therefore instead of returning
# ``shared_y`` we will have to cast it to int. This little hack
# lets ous get around this issue
return shared_x, T.cast(shared_y, 'int32')
def evaluate_test1(learning_rate=0.1, n_epochs=500,
nkerns=[1, 1], batch_size=10):
""" Demonstrates lenet on MNIST dataset
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: string
:param dataset: path to the dataset used for training /testing (MNIST here)
:type nkerns: list of ints
:param nkerns: number of kernels on each layer
"""
rng = numpy.random.RandomState(23455)
n=10
d=9
xs=[[float(i),] * d for i in range(0,n)]
ys=([0]*int(0.8*n))
for i in range(0,int(0.2*n)): ys.append(1)
ys=[0,0,0,0,0,0,0,0,1,1]
test_set_x, test_set_y = shared_dataset([xs,ys])
valid_set_x, valid_set_y = shared_dataset([xs,ys])
train_set_x, train_set_y = shared_dataset([xs,ys])
# train_set_x, train_set_y = datasets[0]
# valid_set_x, valid_set_y = datasets[1]
# test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
batch_size=n
# n_train_batches = train_set_x.get_value(borrow=True).shape[0]
# n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
# n_test_batches = test_set_x.get_value(borrow=True).shape[0]
# n_train_batches /= batch_size
# n_valid_batches /= batch_size
# n_test_batches /= batch_size
n_train_batches = 1
n_valid_batches = 1
n_test_batches = 1
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
ishape = (3, 3) # this is the size of MNIST images
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
# Reshape matrix of rasterized images of shape (batch_size,3*3)
# to a 4D tensor, compatible with our LeNetConvPoolLayer
layer0_input = x.reshape((batch_size, 1, 3, 3))
# Construct the first convolutional pooling layer:
# filtering reduces the image size to (3-3+1,3-3+1)=(1,1)
# maxpooling reduces this further to (1/1,1/1) = (1,1)
# 4D output tensor is thus of shape (batch_size,nkerns[0],1,1)
layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
image_shape=(batch_size, 1, 3, 3),
filter_shape=(nkerns[1], nkerns[0], 3, 3), poolsize=(1, 1))
# the HiddenLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size,num_pixels) (i.e matrix of rasterized images).
# This will generate a matrix of shape (1,1*1*1) = (20,512)
layer1_input = layer0.output.flatten(2)
# construct a fully-connected sigmoidal layer
# layer1 = HiddenLayer(rng, input=layer1_input, n_in=nkerns[1] * 1 * 1,
# n_out=1, activation=T.tanh)
# classify the values of the fully-connected sigmoidal layer
layer1 = LogisticRegression(input=layer1_input, n_in=1, n_out=2)
# the cost we minimize during training is the NLL of the model
cost = layer1.negative_log_likelihood(y)
# create a function to compute the mistakes that are made by the model
test_model = theano.function([index], layer1.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]})
validate_model = theano.function([index], layer1.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]})
# create a list of all model parameters to be fit by gradient descent
params = layer1.params + layer0.params
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# train_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates list by automatically looping over all
# (params[i],grads[i]) pairs.
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - learning_rate * grad_i))
train_model = theano.function([index], cost, updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]})
###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_params = None
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = time.clock()
epoch = 0
done_looping = False
bestConvW=layer0.W.get_value();
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
if iter % 100 == 0:
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index)
print cost_ij
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches, \
this_validation_loss * 100.))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
bestConvW=layer0.W.get_value();
#improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i in xrange(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of best '
'model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i,'\
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
print "bestConvW" + str(bestConvW);
print sum(sum(sum(sum(bestConvW))))
print cost
def evaluate_test2(learning_rate=0.1, n_epochs=100,
nkerns=[1, 1], batch_size=10):
""" Demonstrates lenet on MNIST dataset
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type dataset: string
:param dataset: path to the dataset used for training /testing (MNIST here)
:type nkerns: list of ints
:param nkerns: number of kernels on each layer
"""
rng = numpy.random.RandomState(23455)
n=10
d=16
xs=[[float(i)/float(n+1)] * d for i in range(0,n)]
ys=([0]*int(0.8*n))
for i in range(0,int(0.2*n)): ys.append(1)
ys=[0,0,0,0,0,0,0,0,1,1]
test_set_x, test_set_y = shared_dataset([xs,ys])
valid_set_x, valid_set_y = shared_dataset([xs,ys])
train_set_x, train_set_y = shared_dataset([xs,ys])
# train_set_x, train_set_y = datasets[0]
# valid_set_x, valid_set_y = datasets[1]
# test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
batch_size=n
# n_train_batches = train_set_x.get_value(borrow=True).shape[0]
# n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
# n_test_batches = test_set_x.get_value(borrow=True).shape[0]
# n_train_batches /= batch_size
# n_valid_batches /= batch_size
# n_test_batches /= batch_size
n_train_batches = 1
n_valid_batches = 1
n_test_batches = 1
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
ishape = (4, 4) # this is the size of MNIST images
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
# Reshape matrix of rasterized images of shape (batch_size,3*3)
# to a 4D tensor, compatible with our LeNetConvPoolLayer
layer0_input = x.reshape((batch_size, 1, 4, 4))
# Construct the first convolutional pooling layer:
# filtering reduces the image size to (3-3+1,3-3+1)=(1,1)
# maxpooling reduces this further to (1/1,1/1) = (1,1)
# 4D output tensor is thus of shape (batch_size,nkerns[0],1,1)
layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
image_shape=(batch_size, 1, 4, 4),
filter_shape=(nkerns[1], nkerns[0], 3, 3), poolsize=(1, 1))
layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
image_shape=(batch_size, nkerns[0], 2, 2),
filter_shape=(nkerns[1], nkerns[0], 2, 2), poolsize=(1, 1))
# the HiddenLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size,num_pixels) (i.e matrix of rasterized images).
# This will generate a matrix of shape (1,1*1*1) = (20,512)
layer2_input = layer1.output.flatten(2)
# construct a fully-connected sigmoidal layer
# layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 1 * 1,
# n_out=10, activation=T.tanh)
# classify the values of the fully-connected sigmoidal layer
layer2 = LogisticRegression(input=layer2_input, n_in=1, n_out=2)
# the cost we minimize during training is the NLL of the model
cost = layer2.negative_log_likelihood(y)
# create a function to compute the mistakes that are made by the model
test_model = theano.function([index], layer2.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]})
validate_model = theano.function([index], layer2.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]})
# create a list of all model parameters to be fit by gradient descent
params = layer2.params + layer1.params + layer0.params
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# train_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates list by automatically looping over all
# (params[i],grads[i]) pairs.
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - learning_rate * grad_i))
train_model = theano.function([index], cost, updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]})
###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_params = None
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = time.clock()
epoch = 0
done_looping = False
bestConvW1=layer0.W.get_value();
bestConvW2=layer1.W.get_value();
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
# if iter % 100 == 0:
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index)
print cost_ij
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches, \
this_validation_loss * 100.))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
bestConvW1=layer0.W.get_value();
bestConvW2=layer1.W.get_value();
#improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i in xrange(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of best '
'model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i,'\
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
print "bestConvW1" + str(bestConvW1);
print "bestConvW2" + str(bestConvW2);
def evaluate_mnist_1(learning_rate=0.1, n_epochs=2000,
nkerns=[4, 6], batch_size=2):
""" Demonstrates lenet on MNIST dataset
:type learning_rate: float
:param learning_rate: learning rate used (factor for the stochastic
gradient)
:type n_epochs: int
:param n_epochs: maximal number of epochs to run the optimizer
:type nkerns: list of ints
:param nkerns: number of kernels on each layer
"""
rng = numpy.random.RandomState(23455)
xs=[]
ys=[]
f = open('temp_value', 'r+')
while(1):
line=f.readline()
line2=f.readline()
if not line:
break
line=line.replace("\n","")
values = [float(i) for i in line.split()]
value= float(line2)
xs.append(values)
ys.append(value)
# print xs
# xs=[[0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0, 0.00784, 0, 0, 0.0157, 0.00392, 0, 0.0196, 0, 0.0118, 0, 0.00784, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0314, 0, 0.0157, 0, 0, 0, 0.051, 0.00784, 0, 0, 0, 0.0314, 0.0275, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.0275, 0.0196, 0.00392, 0, 0.00784, 0.0118, 0, 0, 0, 0.00784, 0.0118, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0.102, 0, 0, 0.0118, 0.0118, 0.00392, 0, 0.0196, 0.00784, 0.0118, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.0235, 0, 0.0157, 0.0118, 0.0196, 0, 0, 0, 0.0235, 0, 0, 0.0157, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0392, 0.769, 0.969, 1, 1, 1, 0.769, 0.275, 0.0431, 0, 0.051, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.0275, 0.00392, 0.216, 0.871, 1, 0.961, 0.949, 0.949, 0.992, 0.898, 0.694, 0.0863, 0, 0, 0.0784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.235, 0.831, 0.945, 1, 0.957, 1, 0.976, 0.996, 1, 0.937, 0.165, 0.0314, 0, 0, 0, 0, 0, 0, 0.00392, 0.00392, 0, 0, 0, 0.00392, 0, 0, 0, 0.161, 0.933, 0.937, 1, 1, 0.937, 1, 1, 0.992, 0.929, 0.51, 0.0275, 0.0157, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.0196, 0.00392, 0.00392, 0.0157, 0.00392, 1, 0.898, 1, 0.957, 1, 0.976, 0.984, 0.969, 0.965, 1, 0.957, 0.38, 0.00784, 0.0235, 0.0314, 0, 0, 0, 0, 0.00392, 0, 0, 0.0157, 0.00392, 0, 0, 0.0157, 0.00392, 0.541, 0.788, 1, 0.945, 1, 0.953, 0.922, 0.651, 0.698, 0.988, 0.898, 1, 0.302, 0, 0, 0, 0, 0, 0, 0.0157, 0.00784, 0, 0, 0, 0, 0, 0.00784, 0.0314, 0.141, 0.714, 0.969, 1, 0.941, 0.733, 0.467, 0.0941, 0.643, 0.937, 1, 0.984, 0.298, 0.0196, 0, 0, 0, 0, 0, 0, 0.00784, 0.00784, 0, 0, 0.0275, 0.0275, 0, 0, 0.847, 1, 0.937, 0.945, 0.859, 0.122, 0, 0.0392, 0.949, 1, 0.91, 0.961, 0, 0.051, 0, 0, 0, 0, 0, 0, 0.00392, 0.0196, 0.00392, 0, 0.00784, 0, 0, 0, 0.357, 0.969, 1, 1, 0.0157, 0.0118, 0.0235, 0, 0.157, 1, 1, 0.949, 0.816, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0196, 0, 0, 0, 0.0706, 0.31, 1, 0.949, 0.98, 0.675, 0, 0, 0.0157, 0.051, 0.498, 0.945, 0.898, 1, 0.435, 0.0353, 0.00392, 0, 0, 0, 0, 0.0275, 0, 0, 0.0275, 0, 0, 0.0902, 0.286, 0.89, 0.949, 1, 0.608, 0.0471, 0.0549, 0.0196, 0, 0, 0.984, 1, 1, 0.976, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.00784, 0.0118, 0.00392, 0.0118, 0.0235, 0.122, 0.886, 0.933, 1, 0.847, 0.125, 0.0314, 0.00392, 0, 0.0667, 0.275, 1, 0.996, 0.949, 0.655, 0, 0.0157, 0, 0, 0, 0, 0.0235, 0.0118, 0.0157, 0, 0, 0, 0, 0.0902, 0.843, 1, 0.906, 0.294, 0.0588, 0, 0, 0.051, 0, 0.416, 0.965, 1, 0.804, 0.62, 0, 0.0118, 0, 0, 0, 0, 0.0157, 0, 0, 0.0471, 0.0235, 0, 0.106, 0.592, 0.929, 0.98, 0.604, 0, 0.0588, 0.0275, 0, 0, 0.00784, 1, 0.976, 0.937, 0.247, 0.0549, 0, 0.00784, 0, 0, 0, 0, 0, 0.0314, 0.0157, 0, 0.0235, 0.0196, 0, 0.176, 0.835, 1, 0.847, 0.239, 0, 0.0392, 0.0118, 0.00784, 0, 1, 0.941, 1, 0.169, 0, 0.0314, 0.0118, 0, 0, 0, 0, 0, 0.0392, 0.00784, 0, 0.0196, 0.00392, 0, 0.0667, 0.839, 0.918, 0.984, 0.843, 0.2, 0, 0.00392, 0.455, 0.78, 0.996, 1, 0.957, 0.22, 0.0863, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0, 0.0353, 0.051, 0, 0.051, 0.431, 0.945, 0.965, 1, 0.973, 0.992, 1, 1, 0.984, 1, 0.957, 0.914, 0.459, 0, 0, 0, 0.0471, 0, 0, 0, 0, 0.00392, 0.00392, 0.00392, 0, 0, 0.0314, 0, 0.0118, 0.506, 0.667, 0.992, 1, 0.973, 0.91, 0.953, 1, 0.914, 1, 0.976, 0.384, 0.0118, 0, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0, 0.0118, 0, 0.0157, 0, 0.0824, 0.608, 0.984, 0.965, 1, 1, 0.957, 1, 0.925, 0.776, 0.133, 0.0196, 0.0392, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.114, 0.643, 0.976, 1, 0.969, 0.525, 0.196, 0.157, 0.098, 0.0392, 0.00392, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.0118, 0, 0.0392, 0.00392, 0, 0.0863, 0, 0.0314, 0.0196, 0, 0, 0, 0, 0.0118, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0431, 0, 0, 0.0549, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0.0118, 0.0196, 0, 0.0196, 0.00784, 0, 0.0118, 0.0157, 0.0196, 0.0196, 0.0118, 0, 0, 0, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0196, 0, 0, 0.0353, 0, 0, 0.0196, 0, 0, 0, 0, 0.0118, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0.0431, 0.0118, 0, 0.0902, 0, 0, 0.0353, 0.0314, 0, 0, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.051, 0, 0.0471, 0.0235, 0, 0, 0, 0.0196, 0, 0.0157, 0, 0, 0.0353, 0, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.0157, 0.0471, 0.0157, 0.0235, 0, 0.0784, 0.00392, 0, 0, 0.0157, 0.0118, 0.00392, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0941, 0, 0, 0, 0, 0, 0.0471, 0, 0, 0.0431, 0.0392, 0, 0, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0.0118, 0, 0.0196, 0.263, 0.945, 1, 1, 0.933, 0.525, 0.0471, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.0353, 0, 0.0314, 0, 0.0157, 0.6, 1, 0.906, 0.996, 1, 0.898, 0.58, 0.235, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0.0353, 0, 0.161, 0.776, 1, 0.929, 1, 0.969, 0.929, 1, 0.98, 0.431, 0, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0.122, 1, 1, 0.953, 0.969, 0.961, 1, 0.929, 1, 0.451, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0.0275, 0, 0.667, 0.898, 0.941, 1, 0.996, 0.467, 0.529, 0.988, 1, 0.396, 0.0118, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0.263, 1, 1, 0.98, 1, 0.463, 0, 0, 0.396, 1, 0.973, 0.439, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.0196, 0.282, 0.973, 0.984, 0.961, 1, 0, 0.051, 0.051, 0.447, 0.984, 0.973, 0.369, 0, 0.0588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0.831, 0.992, 0.937, 1, 0.796, 0.0275, 0, 0, 0.518, 1, 1, 0.392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0902, 0.592, 0.922, 1, 0.988, 0.314, 0, 0, 0.502, 0.945, 0.973, 1, 0.427, 0.0431, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.992, 0.973, 0.957, 0.671, 0.0157, 0.0275, 0.00392, 0.824, 0.984, 0.984, 1, 0.325, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.698, 1, 0.945, 0.882, 0.0157, 0.00392, 0, 0, 0.886, 0.98, 0.996, 0.678, 0.0471, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.259, 0.831, 1, 0.98, 0.859, 0, 0, 0, 0.322, 0.98, 0.961, 0.98, 0.263, 0, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.435, 0.98, 1, 0.976, 0.816, 0.0745, 0, 0.0863, 0.624, 0.933, 1, 0.424, 0, 0.0431, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.396, 1, 0.996, 0.988, 0.537, 0, 0.0157, 0.537, 0.984, 0.992, 1, 0.247, 0, 0.00392, 0.00784, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.431, 0.973, 1, 0.965, 0.188, 0.00784, 0.502, 1, 0.961, 1, 0.639, 0.11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.447, 0.929, 1, 0.98, 0.396, 0.608, 1, 0.984, 1, 0.592, 0.0588, 0, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.416, 1, 1, 0.961, 0.945, 0.984, 0.996, 1, 1, 0.114, 0, 0.0431, 0.0471, 0, 0.0118, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.365, 0.922, 1, 0.922, 1, 0.976, 0.953, 0.843, 0.443, 0, 0.0941, 0, 0, 0.0314, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0.333, 0.984, 1, 0.937, 0.98, 1, 0, 0, 0, 0.0314, 0, 0.00392, 0.0392, 0, 0.0588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.00784, 0.463, 0.965, 0.871, 0.345, 0.192, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.051, 0, 0, 0.0784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0.0196, 0, 0, 0, 0, 0.0706, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0.0235, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0.098, 0, 0, 0.0784, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0.0157, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.00784, 0.0275, 0, 0.0392, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0745, 0, 0, 0, 0.0157, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0784, 0, 0.0118, 0.0588, 0.286, 0.729, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0.0745, 0, 0.0314, 0.992, 0.953, 0.0941, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.051, 0, 0.0314, 0.118, 0.984, 0.965, 0.184, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0.0941, 0.945, 1, 0.176, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0.00392, 0, 0.118, 1, 0.996, 0.22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0.0392, 0, 0.0941, 1, 1, 0.384, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.051, 0, 0.0314, 0.89, 1, 0.561, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0.0118, 0, 0, 0.737, 0.992, 0.588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0275, 0, 0, 0.0157, 0.675, 0.937, 0.557, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0, 0.0157, 0.702, 0.945, 0.694, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.051, 0, 0, 0.737, 1, 0.914, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.0196, 0.00784, 0.00392, 0.0235, 0.478, 0.949, 0.941, 0.0196, 0, 0.0275, 0.0431, 0, 0, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.345, 1, 0.941, 0.118, 0, 0, 0, 0, 0.0353, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0157, 0.0235, 0.00784, 0.0196, 0.216, 1, 0.992, 0.204, 0, 0, 0.0431, 0.00784, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0627, 0.808, 0.976, 0.463, 0.0745, 0, 0.0157, 0.0353, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.549, 0.969, 0.118, 0.00392, 0.0275, 0.00784, 0, 0.0196, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.00392, 0.0235, 0.0118, 0.0235, 0.00392, 0.498, 0.984, 0, 0, 0.0314, 0.0431, 0, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.00784, 0, 0, 0, 0.643, 0.961, 0.365, 0.0471, 0, 0, 0.0118, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0.0471, 0, 0.0118, 0, 0.878, 0.988, 0.125, 0, 0.0118, 0.0118, 0, 0.00784, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0588, 0, 0, 0, 0.0902, 0.565, 0.847, 0.0824, 0.0353, 0, 0, 0, 0.0157, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0431, 0, 0.0275, 0.0275, 0, 0.0392, 0, 0.0392, 0.0118, 0, 0, 0.00392, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.0314, 0, 0, 0.0157, 0, 0.0118, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0275, 0.0157, 0, 0.0431, 0.0392, 0, 0, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0 ],
# [0.0196, 0, 0, 0.0275, 0.00784, 0, 0, 0, 0, 0, 0.00392, 0.0157, 0.0235, 0.0235, 0.00784, 0, 0.0157, 0.00392, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0, 0, 0.0118, 0, 0, 0, 0, 0.0235, 0.0588, 0.0196, 0, 0.00392, 0, 0, 0, 0.0196, 0.0118, 0, 0, 0, 0, 0, 0.0118, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0353, 0.00784, 0, 0, 0, 0, 0.0235, 0.0275, 0.0157, 0, 0, 0.00392, 0.00392, 0, 0, 0, 0.00392, 0.00784, 0.0157, 0.0157, 0.00392, 0, 0, 0, 0, 0, 0.0314, 0.00392, 0, 0, 0.0235, 0.00784, 0, 0.0275, 0, 0, 0, 0.00392, 0, 0, 0, 0.0157, 0.00784, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.0118, 0, 0, 0, 0.0118, 0, 0, 0, 0, 0.0627, 0, 0.0118, 0, 0, 0, 0.0157, 0, 0, 0.051, 0.00392, 0, 0, 0, 0, 0, 0, 0.0157, 0.00784, 0, 0, 0, 0.00392, 0.0275, 0.0196, 0.0196, 0, 0.0196, 0.141, 0.38, 0.906, 1, 0.267, 0, 0.0275, 0.0353, 0, 0, 0, 0, 0.0275, 0, 0, 0, 0, 0.0118, 0, 0, 0.0235, 0.00392, 0, 0, 0, 0, 0.0471, 0.631, 0.933, 1, 1, 0.929, 0.918, 0.82, 0.776, 0.8, 0.278, 0.0627, 0.0784, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.0392, 0, 0, 0, 0, 0.0588, 0.345, 0.976, 1, 0.945, 1, 0.965, 1, 0.973, 1, 1, 0.941, 0.765, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0235, 0, 0, 0.0314, 0.0157, 0.0353, 0.153, 0.937, 1, 0.984, 0.957, 0.969, 1, 1, 0.984, 0.925, 0.953, 0.965, 1, 0.451, 0, 0.0667, 0, 0, 0, 0, 0.0235, 0, 0.00392, 0, 0.00784, 0.0431, 0, 0.00784, 0.992, 0.98, 0.898, 1, 0.976, 1, 0.988, 0.651, 0.78, 1, 1, 0.984, 0.992, 0.875, 0.114, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0.0392, 0.00392, 0, 0.204, 0.925, 0.992, 1, 0.941, 1, 1, 0.451, 0.0392, 0.0667, 0.337, 0.894, 1, 1, 0.996, 0.0431, 0.0118, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0.00392, 0, 0.0627, 0.604, 1, 1, 0.976, 0.988, 1, 0.467, 0.0314, 0, 0, 0, 0.263, 0.463, 0.835, 0.988, 0.392, 0, 0, 0, 0, 0, 0.0118, 0, 0, 0.0745, 0.0235, 0, 0.314, 0.957, 1, 0.945, 1, 0.541, 0, 0, 0.0431, 0, 0, 0.0549, 0, 0.0392, 0.69, 0.925, 1, 0.204, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0, 0.0314, 0.576, 1, 1, 0.933, 0.737, 0.106, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0.741, 1, 0.949, 0.655, 0, 0, 0, 0, 0, 0.0314, 0.0196, 0, 0, 0.0667, 0.804, 1, 0.933, 0.722, 0.0431, 0, 0.0314, 0, 0, 0.0392, 0, 0, 0, 0.00784, 0.294, 0.996, 0.973, 0.847, 0, 0, 0, 0, 0.0118, 0, 0, 0.0196, 0, 0, 0.855, 0.98, 1, 0.694, 0.0353, 0.0196, 0, 0.0549, 0.0314, 0, 0.00784, 0.0392, 0, 0.0157, 0, 0.631, 0.996, 0.78, 0, 0, 0, 0, 0.0314, 0, 0, 0.0353, 0, 0, 0.855, 0.957, 0.992, 0.306, 0.00392, 0, 0.0157, 0, 0, 0.0902, 0, 0.0118, 0, 0.00784, 0.0471, 0.424, 0.945, 0.835, 0, 0, 0, 0, 0.00784, 0, 0, 0, 0, 0, 0.863, 0.988, 1, 0.706, 0.0431, 0, 0.0235, 0, 0.0627, 0, 0.00392, 0, 0, 0.0353, 0, 0.647, 0.969, 0.851, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0, 0.0196, 0.784, 1, 0.949, 0.882, 0.0941, 0.0157, 0.0392, 0, 0.0392, 0, 0.0275, 0, 0, 0.0275, 0.0824, 0.953, 1, 0.741, 0, 0, 0, 0, 0, 0.00784, 0, 0.00392, 0.0196, 0, 0.659, 0.988, 1, 0.992, 0.835, 0.125, 0, 0, 0, 0.0157, 0, 0, 0.0431, 0, 0.663, 1, 0.996, 0.682, 0, 0, 0, 0, 0, 0.0314, 0, 0.0196, 0.0314, 0, 0.125, 0.635, 0.973, 0.984, 0.984, 0.851, 0.49, 0.0824, 0, 0.0353, 0, 0.0118, 0.00392, 0.29, 0.949, 0.965, 0.702, 0.0784, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0.051, 0.0157, 0, 0.114, 0.718, 0.961, 1, 1, 0.941, 0.663, 0.231, 0, 0.0235, 0, 0.298, 0.941, 0.973, 0.969, 0.0392, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0, 0.0196, 0, 0, 0.0824, 0.678, 0.992, 0.961, 0.992, 0.973, 0.918, 0.98, 0.988, 0.855, 0.961, 1, 0.894, 0.0549, 0.0706, 0.0275, 0, 0, 0, 0, 0, 0, 0.00392, 0.0157, 0, 0, 0.0118, 0.051, 0, 0.098, 0.255, 0.502, 0.886, 1, 1, 0.961, 0.961, 1, 1, 0.929, 0.384, 0.0118, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0, 0.0431, 0.0314, 0, 0, 0, 0.0353, 0, 0, 0.0314, 0.0784, 0.314, 0.729, 1, 1, 0.886, 0.761, 0.294, 0, 0.0392, 0, 0.0314, 0, 0, 0, 0, 0.0157, 0, 0, 0, 0, 0.00392, 0.00392, 0, 0.0431, 0, 0, 0.0392, 0.0118, 0.0314, 0.0431, 0, 0, 0.0392, 0, 0.0314, 0.0235, 0, 0.0588, 0, 0, 0, 0, 0, 0, 0.0196, 0.0157, 0, 0, 0, 0.0157, 0.0235, 0, 0, 0.0157, 0.0157, 0, 0, 0.0118, 0, 0, 0, 0.0157, 0, 0.0353, 0, 0, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0392, 0.0118, 0, 0, 0.00392, 0.0196, 0, 0, 0.0157, 0.00392, 0, 0.0157, 0, 0.0392, 0, 0, 0, 0.0275, 0, 0.0196, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0.0667, 0, 0, 0.0314, 0, 0, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0.0118, 0, 0.0706, 0.0157, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.0353, 0, 0.0196, 0, 0.0353, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0588, 0, 0, 0.0863, 0, 0.0784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0, 0.0275, 0.0353, 0.992, 0.235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0627, 0.0667, 0, 0.133, 0.973, 0.749, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0, 0.0196, 0.82, 0.867, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0118, 0.0235, 0.0157, 0.812, 1, 0.169, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0.0235, 0, 0.0314, 0.671, 1, 0.522, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.0157, 0.0275, 0, 0.302, 0.906, 0.835, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.00784, 0.0431, 0.431, 1, 0.761, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0, 0.0157, 0.294, 1, 0.82, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0275, 0.00784, 0, 0.231, 0.98, 0.812, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0314, 0.0118, 0.0549, 0.463, 1, 0.741, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0, 0, 0, 0.0157, 0.455, 0.992, 0.788, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.0431, 0, 0.0157, 0.678, 0.988, 0.459, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0, 0.0314, 0, 0.812, 1, 0.733, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0.0196, 0, 0, 0.859, 1, 0.439, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.00392, 0, 0.0941, 0.922, 0.973, 0.161, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0.0471, 0.502, 1, 0.89, 0.0745, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0, 0.0314, 0.816, 0.996, 0.686, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.871, 0.996, 0.529, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0.0353, 0.0118, 0.737, 0.98, 0.427, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0.482, 0.816, 0.224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.00784, 0, 0, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.00784, 0.0314, 0.0353, 0.0235, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.0275, 0, 0, 0, 0, 0.0667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.118, 0, 0, 0.0706, 0, 0.0627, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.106, 0, 0, 0.051, 0, 0, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0.494, 0.976, 0.553, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0.00784, 0.839, 1, 0.922, 0.439, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.537, 0.976, 0.953, 0.933, 0.129, 0.0157, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0.0275, 0.00392, 0, 0.0471, 0.0275, 0, 0.267, 0.976, 0.961, 1, 0.239, 0.00392, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.051, 0, 0, 0.0353, 0, 0, 0.176, 0.776, 0.976, 1, 0.651, 0.0902, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0.00784, 0.00784, 0.0667, 0, 0.796, 0.996, 1, 0.937, 0.263, 0, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0.00784, 0, 0.00784, 0.0392, 1, 0.949, 1, 0.502, 0.0392, 0, 0.0275, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0.0118, 0.00784, 0.522, 0.957, 0.992, 0.682, 0.0353, 0, 0, 0.0275, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0549, 0.00784, 0.533, 0.949, 1, 0.835, 0.153, 0, 0.0471, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.00392, 0, 0.00392, 0.141, 0.957, 0.949, 0.988, 0.4, 0, 0.0235, 0.0784, 0, 0, 0.00392, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0157, 0, 0.624, 1, 1, 0.847, 0.0902, 0.051, 0, 0, 0, 0.0627, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0235, 0.443, 0.953, 1, 0.992, 0.0902, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.118, 0.859, 1, 1, 0.545, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.0902, 0.859, 1, 0.933, 0.541, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.282, 1, 0.941, 1, 0.161, 0.0863, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.369, 0.965, 0.953, 0.773, 0.114, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.906, 0.98, 1, 0.365, 0, 0.0118, 0.0588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.149, 0.894, 0.988, 0.522, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.408, 0.961, 1, 0.443, 0.00784, 0.00392, 0.0353, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.89, 0.882, 0.247, 0, 0, 0.0118, 0.00392, 0.0314, 0, 0, 0.0118, 0, 0, 0.00392, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0667, 0, 0, 0, 0.0275, 0.0549, 0, 0, 0, 0, 0, 0.0118, 0.0314, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0.051, 0, 0, 0.0275, 0, 0.0275, 0.051, 0.0196, 0, 0, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0.0431, 0, 0, 0, 0.0118, 0.0196, 0, 0, 0, 0.0235, 0.051, 0, 0, 0.0314, 0, 0, 0, 0 ],
# [0, 0.00392, 0.00784, 0, 0, 0.00784, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0275, 0, 0, 0, 0.0118, 0.0824, 0.0196, 0, 0.00784, 0.0314, 0.0275, 0.0196, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.0471, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0, 0.0314, 0.00392, 0.0314, 0, 0.00392, 0, 0.00784, 0.0275, 0.0157, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.00392, 0, 0.0392, 0, 0.0157, 0, 0.00392, 0.0196, 0, 0.0392, 0.0902, 0.627, 1, 1, 0.549, 0.00392, 0.00392, 0.051, 0, 0.0118, 0.0118, 0.00784, 0, 0.0118, 0.0157, 0.00392, 0, 0, 0.0196, 0, 0, 0.0824, 0.0745, 0, 0.00392, 0, 0.157, 0.761, 1, 1, 0.941, 0.914, 1, 0.306, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0, 0.0275, 0.0353, 0, 0, 0.0431, 0, 0.576, 0.988, 1, 0.608, 0.157, 0.0745, 0.29, 0.984, 1, 0.522, 0, 0.0627, 0.0275, 0, 0, 0.00784, 0, 0, 0, 0.0431, 0, 0, 0, 0, 0.0353, 0.0706, 0.106, 0.875, 1, 0.741, 0.271, 0.00784, 0, 0, 0, 0.871, 1, 1, 0.918, 0.373, 0, 0.051, 0.00784, 0.0118, 0.00392, 0.00392, 0.0118, 0, 0, 0.0157, 0.0588, 0, 0.0118, 0.0745, 0.984, 0.984, 0.471, 0.0627, 0, 0.0118, 0.0118, 0.00392, 0.0157, 0.596, 0.592, 0.396, 0.984, 1, 0.486, 0.0196, 0, 0, 0, 0.0118, 0.0275, 0.0118, 0.00392, 0.0353, 0, 0, 0.0706, 0.804, 1, 0.639, 0.0902, 0, 0, 0.0235, 0, 0, 0.0235, 0.0706, 0.322, 0, 0.0667, 0.486, 1, 0.882, 0, 0, 0, 0, 0.0118, 0, 0.0667, 0, 0, 0.051, 0.204, 1, 0.663, 0.0353, 0, 0.0471, 0.0314, 0.0471, 0.0392, 0.0118, 0, 0.0157, 0, 0, 0, 0, 0.439, 1, 0.808, 0.0667, 0.0118, 0, 0, 0.0235, 0, 0, 0.0706, 0, 0.914, 1, 0, 0.00784, 0, 0.0549, 0, 0, 0, 0, 0.0392, 0, 0.0471, 0.0196, 0, 0.0392, 0, 0.627, 1, 0.157, 0.0588, 0, 0, 0, 0, 0, 0.00392, 0.00392, 1, 0.847, 0.0275, 0.0471, 0, 0, 0.0549, 0, 0, 0.0314, 0.00392, 0.00784, 0, 0.0392, 0.00392, 0, 0, 0.051, 0.98, 0.639, 0.00784, 0, 0, 0.0118, 0.00392, 0, 0.0235, 0, 0.949, 0.706, 0, 0, 0.0588, 0.0118, 0, 0.00784, 0.0471, 0, 0, 0.0275, 0, 0, 0, 0.051, 0.0235, 0, 0.522, 0.827, 0.0392, 0, 0, 0, 0.00392, 0, 0.0157, 0.0588, 1, 0.886, 0.0431, 0.0118, 0, 0, 0.00784, 0, 0, 0.0275, 0, 0, 0.0275, 0, 0, 0.00784, 0.0196, 0, 0.325, 0.965, 0.0275, 0, 0, 0, 0.0431, 0, 0, 0.00392, 0.792, 0.976, 0, 0.0431, 0, 0.00392, 0.0784, 0, 0, 0.0275, 0, 0, 0.0471, 0.0235, 0, 0, 0, 0.0157, 0.357, 0.988, 0, 0.00784, 0.0196, 0, 0.0235, 0.0392, 0, 0, 0.427, 1, 0.216, 0, 0.0353, 0.0314, 0, 0.0157, 0.00392, 0, 0, 0, 0.00392, 0, 0.0157, 0.0275, 0, 0, 0.337, 1, 0, 0.00392, 0.00784, 0, 0, 0.0235, 0.0235, 0, 0.173, 1, 0.871, 0.0549, 0, 0, 0, 0.0157, 0, 0, 0.00392, 0.00784, 0, 0, 0.0118, 0.0353, 0, 0, 0.533, 0.98, 0.0431, 0, 0, 0.0392, 0, 0.00392, 0, 0, 0, 0.604, 1, 0.569, 0.106, 0, 0.0353, 0, 0, 0.0235, 0.0118, 0.00784, 0, 0.00784, 0, 0, 0, 0.0706, 0.867, 0.757, 0.0235, 0, 0, 0, 0, 0.0353, 0, 0.0431, 0, 0.157, 0.851, 1, 0.58, 0.0863, 0, 0.0157, 0.0235, 0, 0, 0.0118, 0, 0.0314, 0, 0.00392, 0.00784, 0.102, 0.992, 0.482, 0, 0.0118, 0.0157, 0, 0.00784, 0.00392, 0, 0, 0, 0.0392, 0.0745, 0.902, 0.996, 0.549, 0.0275, 0, 0.00392, 0, 0.0471, 0.0471, 0, 0, 0, 0, 0.18, 0.91, 0.867, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0, 0, 0, 0.0157, 0.0353, 0, 0.565, 0.98, 0.969, 0.706, 0.322, 0.0275, 0, 0, 0.00392, 0.114, 0.376, 0.867, 1, 0.89, 0.153, 0, 0, 0, 0, 0, 0, 0.0118, 0.00784, 0, 0, 0, 0, 0, 0.00392, 0.31, 0.757, 0.984, 1, 1, 1, 1, 0.98, 0.973, 1, 1, 0.537, 0.173, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.00784, 0, 0, 0, 0, 0, 0.0157, 0.0392, 0.0235, 0.122, 0.439, 0.667, 0.639, 0.612, 0.741, 0.663, 0.235, 0.0588, 0, 0.0118, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0157, 0, 0, 0, 0.0314, 0.00784, 0, 0.0157, 0.0157, 0, 0.0196, 0.0314, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0157, 0, 0.0784, 0.051, 0, 0, 0.0118, 0, 0.00392, 0.0706, 0, 0, 0, 0, 0.00784, 0.0471, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00392, 0.00392, 0.0275, 0, 0, 0.0157, 0.0667, 0.00784, 0, 0.0235, 0, 0, 0, 0.00784, 0, 0.0157, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0, 0, 0, 0.0471, 0.0157, 0, 0, 0.0314, 0, 0, 0.0588, 0, 0, 0, 0, 0, 0.0392, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0.0667, 0, 0.0196, 0, 0, 0, 0.314, 0.973, 0.973, 0.29, 0, 0.0784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0.0392, 0.00392, 0.0314, 0, 0, 0.0353, 0.376, 0.757, 0.984, 0.988, 0.792, 0.471, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0, 0.0667, 0.0235, 0.0549, 0.353, 0.737, 1, 0.988, 1, 1, 0.957, 0.102, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0706, 0, 0.0314, 0, 0.184, 0.957, 0.933, 0.98, 1, 0.753, 0.816, 0.949, 1, 0.173, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0.329, 0.78, 0.992, 0.902, 0.992, 1, 0.98, 0.369, 0.431, 1, 0.937, 0.0824, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0118, 0.361, 0.922, 0.996, 1, 1, 1, 0.969, 1, 0.357, 0.298, 1, 0.969, 0.157, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.404, 0.89, 1, 0.937, 0.898, 0.855, 0.992, 1, 0.894, 0.376, 0.376, 0.961, 0.973, 0.176, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.322, 0.961, 0.988, 0.996, 0.706, 0, 0.392, 0.976, 0.953, 0.451, 0.0118, 0.345, 1, 0.992, 0.0902, 0.0235, 0, 0, 0, 0, 0, 0.0471, 0, 0.0314, 0, 0, 0.0157, 0.4, 0.941, 0.988, 0.969, 0.745, 0.141, 0.0157, 0.369, 0.812, 0.416, 0.0275, 0.0118, 0, 0.847, 0.957, 0.102, 0.0314, 0, 0, 0, 0, 0, 0, 0.0392, 0.0314, 0, 0.102, 0, 0.847, 0.957, 0.973, 0.502, 0, 0, 0.098, 0.125, 0.0941, 0, 0, 0.0157, 0.0314, 0.757, 1, 0.098, 0, 0, 0, 0, 0, 0.0235, 0, 0.0549, 0, 0, 0, 0.224, 0.918, 1, 0, 0, 0.051, 0, 0, 0.0667, 0, 0.0392, 0.0275, 0, 0, 0.745, 0.988, 0.114, 0.00392, 0, 0, 0, 0, 0.00784, 0.0157, 0, 0.00784, 0.0431, 0.18, 0.867, 0.945, 0.961, 0, 0.0431, 0, 0.0235, 0.0314, 0, 0.0392, 0, 0.0157, 0, 0.102, 0.776, 0.953, 0.122, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0, 0.71, 1, 1, 1, 0, 0.00784, 0.0549, 0, 0, 0.0118, 0, 0.00784, 0.00784, 0.00392, 0.341, 0.976, 1, 0.196, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0, 0.804, 0.898, 0.973, 0.416, 0.0627, 0, 0, 0, 0.0275, 0.051, 0, 0, 0.0588, 0.137, 0.933, 1, 0.89, 0.051, 0, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0.0784, 0.745, 1, 1, 0.337, 0.051, 0, 0.0235, 0.051, 0, 0, 0.0314, 0.00784, 0.169, 0.804, 1, 0.882, 0.157, 0.0275, 0.0314, 0, 0, 0, 0, 0.0431, 0, 0.00392, 0.0392, 0, 0.792, 1, 0.984, 0.996, 0, 0, 0.00784, 0, 0.0431, 0, 0.0471, 0.698, 0.949, 1, 0.894, 0.141, 0.0157, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.051, 0.0196, 0, 0.376, 0.906, 0.976, 0.933, 0.831, 0.737, 0.373, 0.361, 0.686, 0.729, 0.796, 1, 0.886, 0.557, 0.165, 0, 0.0118, 0.0196, 0, 0, 0, 0, 0, 0.0157, 0.0667, 0, 0, 0.0235, 0, 0.22, 0.953, 0.98, 0.945, 0.965, 1, 1, 0.98, 0.953, 0.976, 0.757, 0.349, 0, 0, 0.0157, 0.0196, 0.00784, 0.0353, 0, 0, 0, 0, 0, 0.0549, 0, 0, 0.0588, 0, 0, 0.165, 0.561, 0.949, 1, 0.98, 0.965, 0.996, 0.98, 0.643, 0.0902, 0.00784, 0, 0.0235, 0.0235, 0, 0, 0.00784, 0, 0, 0, 0, 0.0196, 0, 0.00784, 0.0471, 0, 0, 0.0314, 0, 0, 0.416, 0.788, 1, 0.816, 0.306, 0.141, 0.0314, 0, 0.0196, 0.0392, 0, 0, 0.0235, 0.0196, 0, 0, 0, 0, 0, 0.0392, 0, 0, 0.0235, 0, 0, 0.0157, 0.0588, 0, 0.0275, 0, 0, 0, 0.0471, 0.0784, 0, 0.0431, 0.00784, 0, 0, 0, 0.0275, 0.0275, 0.00784, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0.0196, 0.0627, 0.0196, 0, 0.00784, 0, 0.051, 0, 0, 0, 0, 0.00784, 0, 0, 0.0196, 0.0392, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0.0353, 0, 0, 0, 0.0353, 0.0157, 0, 0, 0.0157, 0.0471, 0.0471, 0, 0, 0.0235, 0.0196, 0, 0, 0, 0.0275, 0.0157, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0.0431, 0.0196, 0, 0, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0.0118, 0, 0, 0.0157, 0.0353, 0.00784, 0, 0, 0.0275, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0, 0.00392, 0, 0, 0, 0.0118, 0, 0.0235, 0.0431, 0.0118, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0118, 0.0118, 0.0196, 0.00392, 0.00392, 0.00784, 0.00784, 0, 0, 0, 0, 0.00392, 0.00784, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0.0118, 0, 0, 0, 0, 0, 0.00784, 0.0314, 0.0118, 0, 0, 0, 0.0196, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0, 0, 0, 0.00392, 0.00392, 0, 0.00392, 0, 0.00392, 0.0157, 0.0157, 0.0275, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0627, 0.051, 0.0353, 0, 0, 0.0118, 0.0549, 0, 0, 0.00784, 0.0275, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.051, 0, 0.00784, 0, 0, 0.0941, 0.671, 0.976, 0.412, 0.00784, 0.00784, 0.00392, 0.0118, 0, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.00392, 0, 0.0353, 0.718, 1, 0.824, 0.0824, 0.0314, 0, 0.00784, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.00392, 0.0157, 0.0431, 0.773, 1, 1, 0.0627, 0, 0, 0.0118, 0.00784, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0118, 0, 0.0118, 0.00392, 0.00784, 0.831, 0.969, 0.502, 0.0196, 0.0353, 0, 0, 0.0196, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0.00784, 0.0118, 0.149, 0.953, 1, 0.565, 0.0118, 0, 0, 0, 0.0196, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.00392, 0, 0, 0.271, 0.937, 0.965, 0.643, 0.0235, 0, 0, 0, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0.051, 0.502, 1, 0.984, 0.643, 0.0353, 0, 0.0157, 0, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0, 0.0118, 0.0314, 0.616, 1, 1, 0.494, 0.0118, 0, 0.0275, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0, 0.671, 0.945, 0.973, 0.263, 0, 0, 0.00784, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0196, 0.0314, 0.902, 1, 0.933, 0.0824, 0, 0.0157, 0, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0.00392, 0.0745, 1, 0.949, 0.686, 0.00784, 0.00392, 0.0431, 0, 0.0118, 0.00784, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.125, 0.953, 1, 0.714, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.0157, 0.0745, 0.996, 0.949, 0.667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0157, 0.00392, 0.0196, 1, 1, 0.718, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0, 0, 0.0745, 1, 1, 0.58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0118, 0.278, 0.937, 0.961, 0.267, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0.0157, 0.502, 0.973, 1, 0.212, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0, 0.596, 1, 1, 0.224, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0235, 0, 0.584, 0.957, 0.78, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0, 0.404, 0.882, 0.576, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0235, 0, 0.00392, 0.051, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.0353, 0.00392, 0.0118, 0.0549, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0157, 0, 0, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0, 0.0118, 0.0549, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0157, 0, 0.0235, 0, 0.0196, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0, 0.0275, 0, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0.0275, 0.0471, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0.0275, 0.486, 0.957, 0.973, 0.235, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.392, 0.961, 1, 0.961, 0.298, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.451, 1, 0.992, 0.992, 0.239, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0549, 0.0235, 0, 0.0275, 0, 0, 0.275, 0.925, 1, 0.839, 0.0549, 0.0667, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0627, 0, 0, 0.051, 0, 0.051, 0.255, 0.855, 1, 0.933, 0.396, 0.0275, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0, 0.0118, 0, 0.643, 1, 1, 0.733, 0.0118, 0, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0118, 0.0471, 0, 0.0314, 0.149, 0.933, 0.973, 0.855, 0.318, 0, 0, 0, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0157, 0.0196, 0.0157, 0.0627, 0.788, 1, 1, 0.502, 0, 0.00392, 0.0588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0627, 0, 0, 0, 0.443, 1, 0.945, 0.675, 0.11, 0, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0.0588, 0.31, 0.894, 0.937, 0.765, 0.149, 0, 0.0588, 0, 0, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0.133, 0.976, 1, 0.992, 0.639, 0, 0.00784, 0, 0.0353, 0.0118, 0, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.0235, 0, 0.6, 0.945, 1, 0.937, 0.184, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.247, 0.863, 0.976, 0.976, 0.69, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0.00392, 0.831, 0.973, 1, 0.741, 0.0941, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 1, 1, 0.965, 0.349, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.58, 0.969, 0.949, 1, 0.11, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 0.976, 1, 0.976, 0.518, 0.0118, 0.0784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.165, 0.992, 1, 0.784, 0.0627, 0.0196, 0, 0.0627, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.294, 0.933, 1, 0.882, 0, 0.00392, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0824, 0.769, 1, 0.824, 0.0549, 0.0353, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0, 0.0196, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.00784, 0.0471, 0.0196, 0, 0.0157, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.051, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0, 0.0157, 0.00784, 0.0314, 0, 0, 0.00392, 0.00392, 0.00392, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.0157, 0.0353, 0.0157, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.00392, 0, 0, 0, 0.0196, 0.0353, 0.0392, 0.0118, 0.00784, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.00784, 0.0275, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0.00392, 0.0314, 0, 0.00784, 0.0588, 0, 0.0353, 0, 0.00392, 0, 0.0118, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0667, 0, 0.0196, 0, 0.255, 0.349, 0.808, 1, 0.945, 0.384, 0.0353, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0.051, 0, 0, 0.357, 0.839, 1, 1, 0.929, 0.969, 0.914, 0.639, 0.0667, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.0314, 0.949, 1, 0.937, 0.98, 1, 1, 1, 0.918, 0.392, 0.122, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0627, 0.0392, 0, 0.0353, 0.922, 0.98, 1, 0.992, 0.976, 0.984, 1, 0.831, 0.0902, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.678, 1, 0.984, 1, 0.976, 1, 0.988, 0.98, 0.808, 0.0196, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0.0118, 0, 0.361, 0.91, 0.929, 0.984, 0.984, 0.867, 0.996, 0.976, 0.961, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0.914, 0.992, 1, 1, 0.776, 0.169, 0.71, 0.988, 0.98, 0.776, 0, 0.0118, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0.0314, 0, 0.0314, 0.0353, 0, 0, 0, 0.216, 0.608, 0.925, 0.996, 0.757, 0.718, 0.0784, 0.0118, 0.333, 0.965, 1, 0.796, 0.106, 0, 0.0235, 0, 0, 0, 0, 0.00784, 0, 0.00392, 0.0314, 0.0275, 0, 0, 0.0157, 0.00784, 0.875, 0.961, 1, 0.557, 0.0549, 0, 0, 0.0275, 0.0157, 0.69, 1, 1, 0.396, 0, 0, 0, 0, 0, 0, 0.00392, 0.00392, 0, 0.00784, 0, 0.0157, 0.0157, 0, 0.482, 0.918, 0.976, 0.529, 0.0392, 0.0118, 0.0353, 0, 0, 0.0275, 0.169, 1, 0.988, 0.373, 0.0471, 0, 0, 0, 0, 0, 0.0157, 0.0314, 0, 0, 0, 0.0157, 0, 0.137, 0.796, 1, 0.969, 0.0588, 0, 0, 0, 0, 0.0157, 0, 0.216, 0.949, 0.969, 0.431, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.0353, 0.0549, 0.0196, 0.0196, 0.737, 0.996, 0.925, 0.263, 0.0157, 0.0627, 0.0314, 0.051, 0, 0.0275, 0, 0.125, 1, 0.937, 0.431, 0, 0.00392, 0, 0, 0, 0, 0.0235, 0.0196, 0.0353, 0, 0, 0, 0.00784, 0.804, 1, 0.675, 0, 0, 0.0275, 0, 0, 0.0706, 0, 0.0471, 0.18, 1, 0.894, 0.118, 0, 0.0353, 0, 0, 0, 0, 0, 0.0196, 0.0118, 0, 0.0392, 0.102, 0.447, 1, 0.992, 0.141, 0.0588, 0.0353, 0, 0.0431, 0.0392, 0, 0.0196, 0.224, 0.898, 0.902, 0.78, 0, 0, 0.0275, 0, 0, 0, 0, 0.00392, 0.0118, 0, 0.0235, 0, 0, 0.482, 0.961, 0.965, 0.208, 0, 0.00784, 0.0157, 0, 0, 0, 0.176, 0.886, 1, 0.91, 0.224, 0.0118, 0, 0.00392, 0, 0, 0, 0, 0.00392, 0.00392, 0, 0, 0.00784, 0.0471, 0.392, 0.992, 1, 0.098, 0.0549, 0, 0.0392, 0, 0.0157, 0.518, 0.827, 1, 0.82, 0.259, 0.00784, 0, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0.0314, 0.0118, 0.0196, 0, 0.0824, 0.82, 0.992, 0.922, 0.831, 0.302, 0.188, 0.29, 0.639, 1, 1, 0.757, 0.306, 0.0275, 0, 0.0275, 0.00784, 0, 0, 0, 0, 0, 0.0235, 0, 0.0157, 0, 0.0275, 0, 0.0275, 0.745, 0.976, 1, 0.973, 0.98, 1, 0.922, 1, 0.937, 0.804, 0.282, 0, 0, 0, 0.0118, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0, 0.0471, 0.0314, 0, 0.224, 0.702, 0.914, 1, 1, 0.953, 0.965, 1, 0.447, 0.149, 0, 0, 0.051, 0, 0, 0.0353, 0.0118, 0, 0, 0, 0, 0, 0.0157, 0.00392, 0, 0, 0, 0, 0, 0.0471, 0.251, 0.678, 0.953, 0.671, 0.302, 0.278, 0, 0, 0, 0.0118, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0.0196, 0, 0, 0.129, 0.0314, 0, 0.0157, 0.0353, 0.0196, 0.00392, 0, 0.0275, 0.0549, 0.0118, 0.0353, 0, 0, 0.0353, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0588, 0.00392, 0, 0.00784, 0, 0, 0.0235, 0, 0, 0, 0.0392, 0, 0, 0.0157, 0.0118, 0, 0.00392, 0.0431, 0, 0, 0.0196, 0, 0, 0, 0, 0.0275, 0.00392, 0.0196, 0, 0, 0.0431, 0, 0.00392, 0.00392, 0, 0.0275, 0.0588, 0, 0, 0.0392, 0, 0, 0, 0, 0.00784, 0, 0, 0.00392, 0.0157, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0.0235, 0, 0, 0.0392, 0.00392, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0275, 0, 0, 0.0471, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0, 0, 0.0157, 0, 0.0235, 0, 0.0667, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0314, 0, 0.0588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0118, 0, 0.00392, 0, 0.286, 0.98, 0.882, 0.302, 0.0471, 0.0275, 0.00784, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0.00392, 0.0196, 0, 0.00392, 0.278, 1, 0.988, 0.922, 0.694, 0.0431, 0, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0.0196, 0, 0, 0.11, 0.631, 0.933, 0.91, 1, 0.953, 0.529, 0, 0.0157, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.00392, 0.271, 0.929, 0.922, 1, 0.973, 1, 0.922, 0.325, 0, 0, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0275, 0, 0.0196, 0.0196, 0.192, 0.886, 1, 0.992, 0.91, 0.914, 1, 0.914, 0.286, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0.541, 1, 0.996, 1, 0.973, 0.957, 1, 1, 0.937, 1, 0.455, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0.00392, 0.00784, 0.557, 0.961, 0.969, 0.984, 0.988, 0.663, 0.38, 0.616, 0.992, 1, 0.745, 0.0941, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0.392, 0.965, 0.961, 0.914, 0.867, 0.627, 0.0784, 0.00784, 0.549, 0.992, 0.976, 0.973, 0.133, 0.0235, 0, 0, 0, 0, 0.0157, 0, 0.0118, 0.00392, 0, 0.0314, 0.0275, 0, 0.157, 0.851, 0.953, 0.984, 0.973, 0.608, 0.00784, 0, 0, 0.149, 1, 1, 0.953, 0.976, 0.118, 0, 0, 0, 0, 0, 0.0314, 0, 0.00784, 0.00784, 0, 0, 0, 0.0667, 0.4, 0.996, 1, 1, 0.933, 0.518, 0, 0.00784, 0.0235, 0.0353, 0.557, 1, 0.953, 1, 0.647, 0, 0, 0, 0, 0, 0, 0.0314, 0.0157, 0, 0.0118, 0.0745, 0, 0, 0.643, 0.929, 0.957, 0.867, 0.098, 0.0941, 0, 0.00392, 0, 0.00392, 0.588, 0.949, 1, 0.788, 0.0392, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.0431, 0, 0.0235, 0.565, 0.992, 1, 0.965, 0.416, 0.00392, 0, 0.0275, 0, 0.0157, 0.173, 1, 0.976, 0.804, 0.169, 0.0588, 0, 0, 0, 0, 0, 0.0157, 0.00784, 0, 0.0275, 0.0157, 0, 0.00392, 0.71, 0.945, 0.996, 0.969, 0.459, 0.114, 0, 0, 0, 0, 0.118, 0.941, 1, 0.204, 0.051, 0, 0, 0, 0, 0, 0, 0, 0.0471, 0, 0, 0, 0.0667, 0, 0.482, 1, 1, 0.992, 0.741, 0.00392, 0.0196, 0.00392, 0.153, 0.435, 0.533, 0.957, 0.694, 0.373, 0, 0.00392, 0.0196, 0, 0, 0, 0, 0.00784, 0, 0, 0.0353, 0, 0, 0.0353, 0.812, 0.973, 0.929, 0.769, 0.227, 0, 0, 0.0392, 0.243, 1, 0.914, 1, 0.247, 0, 0.0824, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0, 0.0392, 0, 0, 0, 0.682, 1, 0.973, 1, 0.549, 0.275, 0.62, 0.973, 1, 0.969, 1, 0.498, 0.0667, 0.00392, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0.0157, 0.0118, 0, 0.576, 0.996, 0.965, 1, 0.961, 1, 0.965, 1, 0.988, 1, 0.812, 0.341, 0, 0, 0.0353, 0.0235, 0, 0, 0, 0, 0, 0.0392, 0.00392, 0.00392, 0, 0, 0.0196, 0.098, 0.667, 0.957, 0.996, 0.996, 1, 0.98, 0.988, 0.953, 0.961, 0.792, 0.22, 0, 0.0196, 0.0275, 0, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0157, 0, 0, 0.141, 0.769, 0.992, 0.965, 0.992, 0.882, 1, 0.702, 0.4, 0, 0.0471, 0.0431, 0.00392, 0.00392, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0275, 0.00784, 0, 0, 0.0784, 0.761, 1, 0.976, 0.396, 0.267, 0.0667, 0.0118, 0, 0.0392, 0, 0, 0.0157, 0.0353, 0, 0.0392, 0, 0, 0, 0, 0, 0.0275, 0.0157, 0.00392, 0, 0, 0.051, 0.0314, 0.0235, 0.00392, 0, 0.00784, 0, 0.0471, 0, 0, 0.11, 0, 0, 0.0275, 0, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0.00392, 0.0235, 0, 0.0118, 0, 0, 0, 0.0235, 0, 0, 0.0196, 0.0118, 0, 0, 0.0314, 0, 0.00392, 0.0627, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0, 0.0392, 0.0196, 0.0196, 0.0275, 0, 0.0196, 0.0235, 0.0118, 0, 0.0196, 0, 0, 0.0275, 0.0353, 0, 0, 0.0431, 0, 0, 0.0784, 0, 0, 0, 0, 0.00784, 0, 0.0471, 0, 0.051, 0, 0, 0.0235, 0.0118, 0, 0, 0.0157, 0, 0.00392, 0, 0.0157, 0, 0, 0.0314, 0.0235, 0, 0.0196, 0.0431, 0, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.0196, 0, 0.0118, 0, 0.00784, 0.0196, 0, 0, 0.0118, 0, 0.0235, 0.00392, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.0157, 0.00784, 0.00784, 0.0471, 0.0275, 0, 0.0392, 0.0235, 0.0314, 0, 0, 0.00392, 0.0196, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.00392, 0, 0.0235, 0, 0, 0, 0, 0, 0.0157, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0431, 0.0353, 0.00784, 0.0353, 0, 0, 0, 0.0549, 0.0275, 0.0471, 0, 0, 0.051, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0.0196, 0.0235, 0, 0, 0.0549, 0, 0, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.0863, 0.208, 0.227, 0.431, 0.514, 0.529, 0.388, 0.31, 0.349, 0.149, 0.11, 0, 0, 0.051, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0.00784, 0.0118, 0.0157, 0, 0.0118, 0.00784, 0.0863, 0.6, 0.0157, 0.0314, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0, 0.0706, 0, 0, 0.133, 0.42, 0.318, 0.0314, 0.114, 0.965, 0, 0, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0235, 0, 0.0627, 0, 0, 0.525, 0.984, 0.949, 0.506, 0.153, 0.894, 0, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0, 0, 0.0235, 0.714, 1, 1, 0.376, 0.161, 0.796, 0.0157, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00392, 0, 0, 0.0235, 0.275, 0.949, 1, 0.855, 0.184, 0.114, 0.467, 0.0235, 0, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.0118, 0, 0.0471, 0.627, 1, 0.973, 0.392, 0.051, 0.0392, 0.0863, 0.00784, 0, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0, 0, 0.00392, 0, 0.843, 0.996, 0.98, 0.22, 0.00784, 0.00784, 0, 0, 0.0118, 0, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0118, 0, 0.0784, 0.91, 0.961, 1, 0.318, 0, 0, 0.0196, 0, 0.00784, 0.0157, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0196, 0, 0.439, 0.953, 1, 0.933, 0.227, 0, 0.0118, 0.0118, 0, 0, 0.0314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0.808, 0.996, 1, 0.761, 0, 0.0157, 0.0353, 0, 0.0431, 0, 0.0157, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.00784, 0.0157, 0.196, 0.984, 0.992, 0.961, 0.365, 0.00784, 0, 0, 0.122, 0.0235, 0, 0, 0.0235, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.333, 0.965, 1, 0.702, 0, 0, 0.0118, 0.141, 0.322, 0.0157, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0.0275, 0.439, 1, 1, 0.627, 0.0196, 0, 0.0235, 0.192, 0.412, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0667, 0, 0.855, 0.957, 0.898, 0.247, 0.00392, 0.00392, 0, 0.0902, 0.243, 0, 0.0157, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.847, 1, 0.404, 0.00392, 0, 0, 0, 0, 0.0235, 0.0275, 0, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0.188, 0.918, 0.973, 0.216, 0, 0.0588, 0, 0.00784, 0.0118, 0, 0.0431, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0.702, 0.984, 0.871, 0.0667, 0.0314, 0, 0, 0.00392, 0.0157, 0, 0, 0, 0, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.867, 0.976, 0.404, 0.0118, 0.0196, 0, 0.0196, 0, 0, 0.0235, 0, 0.0235, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0.855, 0.702, 0, 0, 0.00392, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0, 0.051, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0392, 0, 0, 0.00392, 0, 0, 0.0314, 0.0275, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0.0863, 0, 0, 0.0235, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
# [0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0, 0.0745, 0, 0, 0, 0.0471, 0, 0.0275, 0.0118, 0, 0, 0.0275, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0.0118, 0, 0, 0.00784, 0.0353, 0, 0.00784, 0, 0, 0.0353, 0, 0, 0, 0.0118, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0196, 0.0196, 0.0745, 0, 0.00784, 0.0235, 0.0549, 0, 0, 0.0275, 0, 0.0275, 0.051, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.0118, 0, 0, 0, 0.00784, 0, 0, 0.00392, 0.0314, 0, 0, 0, 0, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0.0196, 0, 0, 0, 0.0549, 0, 0.0667, 0, 0, 0.0706, 0.0471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0, 0.0667, 0, 0, 0.161, 0.592, 1, 0.957, 0.502, 0, 0, 0.0235, 0.0353, 0.0431, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0549, 0, 0, 0.0824, 0.365, 0.686, 1, 0.91, 1, 0.941, 0.463, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0275, 0, 0, 0.263, 0.804, 0.973, 0.984, 0.98, 1, 0.937, 1, 0.937, 0.459, 0.0627, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0, 0, 0.0392, 0, 0, 0.0392, 0, 0.00392, 0.263, 0.863, 1, 1, 0.878, 1, 0.976, 1, 0.918, 0.957, 1, 0.478, 0, 0.0314, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0, 0, 0, 0, 0, 0, 0.592, 1, 0.973, 0.949, 1, 0.98, 0.984, 0.925, 1, 1, 1, 0.804, 0.0392, 0, 0, 0, 0, 0, 0, 0.00784, 0.00392, 0, 0, 0.0275, 0.0235, 0, 0.0118, 0.502, 0.933, 0.98, 1, 0.961, 0.992, 0.976, 1, 0.984, 1, 0.906, 0.941, 0.933, 0.173, 0.0196, 0, 0, 0, 0, 0, 0, 0.0118, 0, 0.0118, 0.0549, 0.0196, 0, 0.0353, 0.914, 1, 1, 0.969, 1, 1, 0.992, 1, 0.922, 0.98, 1, 1, 0.89, 0.565, 0.00392, 0, 0, 0, 0, 0.00784, 0, 0.0196, 0, 0, 0, 0, 0, 0.0235, 1, 0.961, 0.984, 0.945, 0.922, 0.929, 1, 0.984, 0.584, 0.11, 0.353, 1, 1, 0.89, 0.224, 0, 0, 0, 0, 0.00784, 0, 0.0196, 0, 0, 0, 0, 0.263, 0.878, 1, 1, 0.851, 0.329, 0.4, 1, 0.949, 0.467, 0.051, 0, 0.329, 0.933, 0.969, 0.984, 0.286, 0, 0, 0, 0, 0, 0, 0.0196, 0, 0.0196, 0.00392, 0.161, 0.729, 0.969, 0.937, 0.957, 0.424, 0.0118, 0, 0.302, 0.251, 0.0549, 0, 0, 0.294, 0.98, 0.918, 0.718, 0.0941, 0, 0, 0, 0, 0.00392, 0, 0.0235, 0, 0.0118, 0.0118, 0.282, 1, 0.98, 1, 0.957, 0.133, 0, 0.0275, 0, 0.0275, 0, 0.0471, 0, 0.318, 0.969, 1, 0.976, 0.275, 0, 0, 0, 0, 0, 0.0588, 0, 0.0314, 0, 0.333, 0.91, 0.98, 0.984, 1, 0.984, 0.486, 0, 0.0157, 0.0392, 0, 0, 0.0353, 0, 0.294, 0.965, 0.992, 1, 0.255, 0, 0, 0, 0, 0, 0, 0.0157, 0, 0.271, 0.929, 1, 0.984, 0.98, 0.839, 1, 1, 0.553, 0.0314, 0, 0.0353, 0.00784, 0.0392, 0.125, 0.914, 0.984, 0.992, 0.533, 0.0157, 0, 0, 0, 0, 0.0275, 0, 0.0941, 0, 0.267, 1, 0.941, 0.976, 0.718, 0.145, 0.576, 0.506, 0.561, 0.133, 0.0235, 0, 0, 0.431, 1, 0.98, 1, 0.478, 0.0157, 0.0549, 0, 0, 0, 0, 0, 0, 0, 0, 0.349, 0.996, 0.937, 0.733, 0.0549, 0, 0, 0.0235, 0, 0, 0, 0.0627, 0.153, 0.776, 0.984, 0.976, 0.58, 0.0824, 0, 0, 0, 0, 0, 0, 0.00784, 0.00784, 0, 0.0157, 0.31, 0.945, 0.988, 0.588, 0, 0, 0.0235, 0, 0, 0.0824, 0.00784, 0.671, 1, 0.988, 0.949, 0.0627, 0.0392, 0, 0, 0, 0, 0, 0, 0, 0.0235, 0, 0.051, 0, 0.227, 0.973, 1, 0.769, 0.604, 0, 0.00392, 0.0588, 0, 0, 0.761, 0.949, 0.933, 0.808, 0.443, 0, 0.0157, 0.0745, 0, 0.0667, 0, 0, 0, 0, 0, 0, 0, 0.0353, 0.294, 0.914, 1, 0.937, 0.925, 0.859, 0.847, 0.851, 0.843, 0.882, 0.906, 0.949, 0.765, 0.0824, 0, 0.0392, 0, 0.0471, 0, 0.0353, 0, 0, 0, 0, 0.0157, 0.0471, 0, 0, 0.00392, 0.267, 0.635, 1, 0.988, 1, 1, 0.933, 0.984, 0.992, 0.992, 0.416, 0.00784, 0, 0, 0.00784, 0.00784, 0, 0.0431, 0, 0, 0, 0, 0, 0.0353, 0, 0, 0.00784, 0.0157, 0, 0.204, 0.933, 0.969, 0.961, 1, 1, 0.878, 0.561, 0.275, 0.137, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0314, 0.0353, 0, 0.0118, 0.0157, 0, 0.0627, 0.0627, 0.0118, 0, 0.0196, 0.0196, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00392, 0.00784, 0, 0, 0, 0.0471, 0, 0, 0, 0, 0, 0, 0.0118, 0.00784, 0, 0.00392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00784, 0, 0, 0.0314, 0.0118, 0, 0, 0.0314, 0.0235, 0.0314, 0.0275, 0.0118, 0.00784, 0.00784, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
# ]
# ys=[0,0,0,0,0,0,0,1,1,1,1,1,1,1]
print(len(xs))
print(len(xs[0]))
print(len(ys))
test_set_x, test_set_y = shared_dataset([xs,ys])
valid_set_x, valid_set_y = shared_dataset([xs,ys])
train_set_x, train_set_y = shared_dataset([xs,ys])
# train_set_x, train_set_y = datasets[0]
# valid_set_x, valid_set_y = datasets[1]
# test_set_x, test_set_y = datasets[2]
# compute number of minibatches for training, validation and testing
batch_size=1202
# n_train_batches = train_set_x.get_value(borrow=True).shape[0]
# n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
# n_test_batches = test_set_x.get_value(borrow=True).shape[0]
# n_train_batches /= batch_size
# n_valid_batches /= batch_size
# n_test_batches /= batch_size
n_train_batches = 1
n_valid_batches = 1
n_test_batches = 1
# allocate symbolic variables for the data
index = T.lscalar() # index to a [mini]batch
x = T.matrix('x') # the data is presented as rasterized images
y = T.ivector('y') # the labels are presented as 1D vector of
# [int] labels
ishape = (28, 28) # this is the size of MNIST images
######################
# BUILD ACTUAL MODEL #
######################
print '... building the model'
# Reshape matrix of rasterized images of shape (batch_size,28*28)
# to a 4D tensor, compatible with our LeNetConvPoolLayer
layer0_input = x.reshape((batch_size, 1, 28, 28))
# Construct the first convolutional pooling layer:
# filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
# maxpooling reduces this further to (24/2,24/2) = (12,12)
# 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
image_shape=(batch_size, 1, 28, 28),
filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2))
# Construct the second convolutional pooling layer
# filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
# maxpooling reduces this further to (8/2,8/2) = (4,4)
# 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
image_shape=(batch_size, nkerns[0], 12, 12),
filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2))
# the HiddenLayer being fully-connected, it operates on 2D matrices of
# shape (batch_size,num_pixels) (i.e matrix of rasterized images).
# This will generate a matrix of shape (20,32*4*4) = (20,512)
layer2_input = layer1.output.flatten(2)
# construct a fully-connected sigmoidal layer
layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4,
n_out=20, activation=T.tanh)
# classify the values of the fully-connected sigmoidal layer
layer3 = LogisticRegression(input=layer2.output, n_in=20, n_out=2)
# the cost we minimize during training is the NLL of the model
cost = layer3.negative_log_likelihood(y)
# create a function to compute the mistakes that are made by the model
test_model = theano.function([index], layer3.errors(y),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size],
y: test_set_y[index * batch_size: (index + 1) * batch_size]})
validate_model = theano.function([index], layer3.errors(y),
givens={
x: valid_set_x[index * batch_size: (index + 1) * batch_size],
y: valid_set_y[index * batch_size: (index + 1) * batch_size]})
# create a list of all model parameters to be fit by gradient descent
params = layer3.params + layer2.params + layer1.params + layer0.params
# create a list of gradients for all model parameters
grads = T.grad(cost, params)
# train_model is a function that updates the model parameters by
# SGD Since this model has many parameters, it would be tedious to
# manually create an update rule for each model parameter. We thus
# create the updates list by automatically looping over all
# (params[i],grads[i]) pairs.
updates = []
for param_i, grad_i in zip(params, grads):
updates.append((param_i, param_i - learning_rate * grad_i))
train_model = theano.function([index], cost, updates=updates,
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]})
###############
# TRAIN MODEL #
###############
print '... training'
# early-stopping parameters
patience = 10000 # look as this many examples regardless
patience_increase = 2 # wait this much longer when a new best is
# found
improvement_threshold = 0.995 # a relative improvement of this much is
# considered significant
validation_frequency = min(n_train_batches, patience / 2)
# go through this many
# minibatche before checking the network
# on the validation set; in this case we
# check every epoch
best_params = None
best_validation_loss = numpy.inf
best_iter = 0
test_score = 0.
start_time = time.clock()
epoch = 0
done_looping = False
bestConvW=layer0.W.get_value();
while (epoch < n_epochs) and (not done_looping):
epoch = epoch + 1
for minibatch_index in xrange(n_train_batches):
iter = (epoch - 1) * n_train_batches + minibatch_index
print 'training @ iter = ', iter
cost_ij = train_model(minibatch_index)
print cost_ij
# print learning_rate
print "layer 0 weights"
print layer0.W.get_value()
print "layer 1 weights"
print layer1.W.get_value()
print "layer 2 weights"
print layer2.W.get_value()
print "log reg layer weights"
print layer3.W.get_value()
if (iter + 1) % validation_frequency == 0:
# compute zero-one loss on validation set
validation_losses = [validate_model(i) for i
in xrange(n_valid_batches)]
this_validation_loss = numpy.mean(validation_losses)
print('epoch %i, minibatch %i/%i, validation error %f %%' % \
(epoch, minibatch_index + 1, n_train_batches, \
this_validation_loss * 100.))
# if we got the best validation score until now
if this_validation_loss < best_validation_loss:
bestConvW=layer0.W.get_value();
#improve patience if loss improvement is good enough
if this_validation_loss < best_validation_loss * \
improvement_threshold:
patience = max(patience, iter * patience_increase)
# save best validation score and iteration number
best_validation_loss = this_validation_loss
best_iter = iter
# test it on the test set
test_losses = [test_model(i) for i in xrange(n_test_batches)]
test_score = numpy.mean(test_losses)
print((' epoch %i, minibatch %i/%i, test error of best '
'model %f %%') %
(epoch, minibatch_index + 1, n_train_batches,
test_score * 100.))
if patience <= iter:
done_looping = True
break
end_time = time.clock()
print('Optimization complete.')
print('Best validation score of %f %% obtained at iteration %i,'\
'with test performance %f %%' %
(best_validation_loss * 100., best_iter + 1, test_score * 100.))
print >> sys.stderr, ('The code for file ' +
os.path.split(__file__)[1] +
' ran for %.2fm' % ((end_time - start_time) / 60.))
# print "bestConvW" + str(bestConvW);
# print sum(sum(sum(sum(bestConvW))))
# print cost
if __name__ == '__main__':
# evaluate_lenet5()
# evaluate_test1()
# evaluate_test2()
evaluate_mnist_1()