-
Notifications
You must be signed in to change notification settings - Fork 3
/
dataset.py
340 lines (274 loc) · 13.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) 2023 PYCAD
# This file is part of the PYCAD library and is released under the MIT License:
# https://github.com/amine0110/pycad/blob/main/LICENSE
import os
import shutil
import nibabel as nib
import numpy as np
from glob import glob
import random
import logging
import SimpleITK as sitk
class MultiClassNiftiMerger:
'''
If you have multiple nifti files representing different classes for the same patient, then this
function is for you, it helps you merge the nifti files into one nifti file.
### Params
- volume_path: Path to the volume NIfTI file.
- class_paths: List of paths to the class NIfTI files.
- output_dir: Directory where the merged files will be saved.
- move_volumes: Flag to control whether to move corresponding volumes.
### Example of usage
```Python
# Example usage for directories
from pycad.datasets import MultiClassNiftiMerger
volume_dir = 'datasets/hips/hip_right100/volumes'
class_dirs = ['datasets/hips/hip_right100/segmentations', 'datasets/hips/hip_left100/segmentations']
output_dir = 'datasets/hips/merged'
MultiClassNiftiMerger.process_directories(volume_dir, class_dirs, output_dir, move_volumes=True)
```
'''
def __init__(self, volume_path, class_paths, output_dir, move_volumes=False):
self.volume_path = volume_path
self.class_paths = class_paths
self.output_dir = output_dir
self.move_volumes = move_volumes
self.segmentations_dir = os.path.join(output_dir, 'segmentations')
self.volumes_dir = os.path.join(output_dir, 'volumes')
def check_files(self):
# Check if files exist
paths_to_check = [self.volume_path] + self.class_paths
for path in paths_to_check:
if not os.path.exists(path):
raise FileNotFoundError(f"File not found: {path}")
def combine_classes(self):
self.check_files()
# Create directories for output
os.makedirs(self.segmentations_dir, exist_ok=True)
if self.move_volumes:
os.makedirs(self.volumes_dir, exist_ok=True)
# Initialize a combined array with zeros
first_nifti = nib.load(self.class_paths[0])
combined_classes = np.zeros(first_nifti.shape, dtype=np.int16)
# Assign new class labels
for idx, class_path in enumerate(self.class_paths):
class_nifti = nib.load(class_path)
class_data = class_nifti.get_fdata()
combined_classes[class_data > 0] = idx + 1
# Create a new NIfTI image for the combined classes
combined_nifti = nib.Nifti1Image(combined_classes, affine=class_nifti.affine)
# Save the new NIfTI file
combined_filename = os.path.basename(self.volume_path).replace('volume', 'combined')
combined_path = os.path.join(self.segmentations_dir, combined_filename)
nib.save(combined_nifti, combined_path)
# Optionally move the volume file
if self.move_volumes:
shutil.copy(self.volume_path, self.volumes_dir)
print(f"Combined NIfTI file saved at: {combined_path}")
@staticmethod
def process_directories(volume_dir, class_dirs, output_dir, ext='.nii.gz', move_volumes=False):
volume_files = glob(os.path.join(volume_dir, f'*{ext}'))
for volume_file in volume_files:
volume_filename = os.path.basename(volume_file)
class_paths = [glob(os.path.join(class_dir, f"{volume_filename.split('.')[0]}*{ext}")) for class_dir in class_dirs]
class_paths = [item for sublist in class_paths for item in sublist] # Flatten list
if class_paths:
merger = MultiClassNiftiMerger(
volume_file,
class_paths,
output_dir,
move_volumes
)
merger.combine_classes()
class DataSplitter:
'''
This class is for splitting the images and labels into train/valid/test folders. The format by default is the yolo format, it is as follows:\n
train\n
|__ images\n
|__ image_0\n
|__ image_1\n
|__ ...\n
|__ labels\n
|__ labels_0\n
|__ labels_1\n
|__ ...\n
\n
valid\n
|__ images\n
|__ image_0\n
|__ image_1\n
|__ ...\n
|__ labels\n
|__ label_0\n
|__ label_1\n
|__ ...\n
\n
test\n
|__ images\n
|__ image_0\n
|__ image_1\n
|__ ...\n
|__ labels\n
|__ label_0\n
|__ label_1\n
|__ ...\n
### Params
- images_dir: the path to the images
- labels_dir: the path to the labels
- output_dir: the path to save the split folders
- train_ratio: the train ratio, default=0.7
- valid_ratio: the validation ratio, default=0.2
- test_ratio: the test ratio, default=0.1
- delete_input: whether you want to delete the input files after split, default=False
### Example of usage:
```
from pycad.datasets import DataSplitter
img = 'datasets/dental/xray_panoramic_mandible/images'
msk = 'datasets/dental/xray_panoramic_mandible/masks'
output = 'datasets/dental/test'
splitter = DataSplitter(img, msk, output, 0.7, 0.2, 0.1, delete_input=False)
splitter.run()
'''
def __init__(self, images_dir, labels_dir, output_dir, train_ratio=0.7, valid_ratio=0.2, test_ratio=0.1, delete_input=False):
self.images_dir = images_dir
self.labels_dir = labels_dir
self.output_dir = output_dir
self.train_ratio = train_ratio
self.valid_ratio = valid_ratio
self.test_ratio = test_ratio
self.delete_input = delete_input
self.setup_directories()
def setup_directories(self):
self.dirs = {
'train': {'images': os.path.join(self.output_dir, 'train', 'images'),
'labels': os.path.join(self.output_dir, 'train', 'labels')},
'valid': {'images': os.path.join(self.output_dir, 'valid', 'images'),
'labels': os.path.join(self.output_dir, 'valid', 'labels')},
'test': {'images': os.path.join(self.output_dir, 'test', 'images'),
'labels': os.path.join(self.output_dir, 'test', 'labels')}
}
for d in self.dirs.values():
for path in d.values():
os.makedirs(path, exist_ok=True)
def get_filenames(self):
images = sorted(os.listdir(self.images_dir))
labels = sorted(os.listdir(self.labels_dir))
return images, labels
def split_data(self, images, labels):
data = list(zip(images, labels))
random.shuffle(data)
total = len(data)
train_end = int(total * self.train_ratio)
valid_end = train_end + int(total * self.valid_ratio)
train_data = data[:train_end]
valid_data = data[train_end:valid_end]
test_data = data[valid_end:] if self.test_ratio > 0 else []
return {'train': train_data, 'valid': valid_data, 'test': test_data}
def copy_files(self, split_data):
for split, data in split_data.items():
for img, lbl in data:
shutil.copy(os.path.join(self.images_dir, img), self.dirs[split]['images'])
shutil.copy(os.path.join(self.labels_dir, lbl), self.dirs[split]['labels'])
logging.info(f'Copied {img} and {lbl} to {split} set')
def run(self):
images, labels = self.get_filenames()
split_data = self.split_data(images, labels)
self.copy_files(split_data)
if self.delete_input:
shutil.rmtree(self.images_dir)
shutil.rmtree(self.labels_dir)
logging.info('Deleted original input directories')
class MetadataCopier:
'''
# Example usage:
copier = MetadataCopier('datasets/volumes', 'datasets/segmentations', 'datasets/new/volumes', 'datasets/new/segmentations')
copier.load_and_copy_metadata()
'''
def __init__(self, volume_dir, segmentation_dir, output_volumes_dir, output_segmentations_dir):
self.volume_dir = volume_dir
self.segmentation_dir = segmentation_dir
self.output_volumes_dir = output_volumes_dir
self.output_segmentations_dir = output_segmentations_dir
def load_and_copy_metadata(self):
# Ensure the output directories exist
os.makedirs(self.output_volumes_dir, exist_ok=True)
os.makedirs(self.output_segmentations_dir, exist_ok=True)
# Get all NIfTI files in the volumes and segmentation directories
volume_files = [f for f in os.listdir(self.volume_dir) if f.endswith('.nii') or f.endswith('.nii.gz')]
segmentation_files = [f for f in os.listdir(self.segmentation_dir) if f.endswith('.nii') or f.endswith('.nii.gz')]
# Assuming filenames are the same for corresponding volume and segmentation
for volume_file in volume_files:
if volume_file in segmentation_files:
volume_path = os.path.join(self.volume_dir, volume_file)
segmentation_path = os.path.join(self.segmentation_dir, volume_file)
try:
# Load the volume and segmentation
volume = sitk.ReadImage(volume_path)
segmentation = sitk.ReadImage(segmentation_path)
# Copy metadata from segmentation to volume
volume.SetOrigin(segmentation.GetOrigin())
volume.SetDirection(segmentation.GetDirection())
volume.SetSpacing(segmentation.GetSpacing())
# Save the modified volume in the output volumes directory
modified_volume_path = os.path.join(self.output_volumes_dir, volume_file)
sitk.WriteImage(volume, modified_volume_path)
print(f'Modified volume saved to: {modified_volume_path}')
# Save the segmentation in the output segmentations directory without changing the filename
modified_segmentation_path = os.path.join(self.output_segmentations_dir, volume_file)
sitk.WriteImage(segmentation, modified_segmentation_path)
print(f'Segmentation saved to: {modified_segmentation_path}')
except RuntimeError as e:
print(f"Skipping {volume_file} due to error: {e}")
else:
print(f"No matching segmentation found for volume: {volume_file}")
class DataRenamer:
"""
If we use the pycad splitter to create the train/valid/test folders, then this class is adapted for that, and is waiting for the folders train and valid with the subforlders images and labels.
"""
def __init__(self, path_to_input, path_to_output, dataset_id, structure):
self.dataset_id = dataset_id
self.structure = structure
self.path_to_train_image = glob(os.path.join(path_to_input, "train/images/*.nii.gz"))
self.path_to_train_labels = glob(os.path.join(path_to_input, "train/labels/*.nii.gz"))
self.path_to_test_image = glob(os.path.join(path_to_input, "valid/images/*.nii.gz"))
self.path_to_test_labels = glob(os.path.join(path_to_input, "valid/labels/*.nii.gz"))
output_path = f"{path_to_output}/Dataset{self.dataset_id}_{self.structure}"
self.path_to_nnunet_imagesTr = os.path.join(output_path, "imagesTr")
self.path_to_nnunet_labelsTr = os.path.join(output_path, "labelsTr")
self.path_to_nnunet_imagesTs = os.path.join(output_path, "imagesTs")
os.makedirs(self.path_to_nnunet_imagesTr, exist_ok=True)
os.makedirs(self.path_to_nnunet_imagesTs, exist_ok=True)
os.makedirs(self.path_to_nnunet_labelsTr, exist_ok=True)
def rename_train_data(self):
for i, (vol, seg) in enumerate(zip(self.path_to_train_image, self.path_to_train_labels)):
# Rename the training segmentations
print(f"Segmentation file: {seg}")
new_seg_filename = f"{self.structure}_{str(i).zfill(3)}.nii.gz"
new_seg_filepath = os.path.join(self.path_to_nnunet_labelsTr, new_seg_filename)
print(f"new segmenation file: {new_seg_filepath}")
shutil.copy(seg, new_seg_filepath)
# Rename the training volumes
print(f"Volume file: {vol}")
new_volume_filename = f"{self.structure}_{str(i).zfill(3)}_0000.nii.gz"
new_volume_filepath = os.path.join(self.path_to_nnunet_imagesTr, new_volume_filename)
print(f"new volume file: {new_volume_filepath}")
shutil.copy(vol, new_volume_filepath)
def rename_test_data(self):
for i, (vol, seg) in enumerate(zip(self.path_to_test_image, self.path_to_test_labels)):
# Rename the testing volumes
print(f"Volume file: {vol}")
new_volume_filename = f"{self.structure}_{str(i).zfill(3)}_0000.nii.gz"
new_volume_filepath = os.path.join(self.path_to_nnunet_imagesTs, new_volume_filename)
print(f"new volume file: {new_volume_filepath}")
shutil.copy(vol, new_volume_filepath)
# Rename the testing segmentations
print(f"segmentation file: {seg}")
new_seg_filename = f"{self.structure}_{str(i).zfill(3)}.nii.gz"
new_seg_filepath = os.path.join(self.path_to_nnunet_imagesTs, new_seg_filename)
print(f"new segmentation file: {new_seg_filepath}")
shutil.copy(seg, new_seg_filepath)
def run(self, rename_trainset=True, rename_testset=True):
if rename_trainset:
self.rename_train_data()
if rename_testset:
self.rename_test_data()