-
Notifications
You must be signed in to change notification settings - Fork 36
/
ProjectGPSOntoSwath.m
235 lines (203 loc) · 6.72 KB
/
ProjectGPSOntoSwath.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
function [ds,db,mag,unc,nc0,ec0]=ProjectGPSOntoSwath(SW,x,y,data_width,nc,ec,nu,eu)
% Usage:
% [ds,db,mag,unc,nc0,ec0]=ProjectGPSOntoSwath(SW,x,y,data_width,nc,ec,nu,eu);
%
% Description:
% This function is a special version of ProjectOntoSwath for GPS velocity data that
% also calculates the magnitude (north and east positive) and uncertainty of provided
% GPS vectors in the direction of the swath.
%
% Required Inputs:
% SW - SWATHobj onto which you want to project the GPS data
% x - nx1 array of x coordinates of GPS stations to project
% y - nx1 array of y coordinates of GPS stations to project
% data_width - width (in map units) you wish to sample, measured from swath baseline
% nc - north component of velocity
% ec - east component of velocity
% nu - uncertainty of the north velocity
% eu - uncertainty of the east velocity
%
% Outputs:
% ds - distance along swath of station point
% db - distance from baseline of swath of station point
% mag - magnitude of vector along swath line, sign indicates direction of projected
% vector with respect to the direction of the swath. Positive values indicate that
% projected vector is pointed in the direction that the swath is drawn (i.e. in the
% direction that the swath distance increases), negavie values indicate the projected
% vector points in the opposite direction
% unc - uncertainty along swath line (slice of error ellipse)
% nc0 - north component of projected vector (suitable for use matlab quiver plot)
% ec0 - east component of projected vector (suitable for use matlab quiver plot)
%
% Examples:
% [ds,db,mag,unc,nc0,ec0]=ProjectGPSOntoSwath(SW,x,y,10000,nc,ec,nu,eu);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function Written by Adam M. Forte - Updated : 04/02/19 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extract parameters from SWATHobj
xypoints=SW.xy;
swdist=SW.distx;
xy0=SW.xy0;
try
for kk=1:numel(SW.xy0(:,1))
[~,bend_ix(kk,1)]=min(pdist2(SW.xy,SW.xy0(kk,:)));
end
catch
% Less efficient method that doesn't require Statistics & Machine Learning Toolbox
for kk=1:numel(SW.xy0(:,1))
d=zeros(numel(SW.xy(:,1)),1);
for ll=1:numel(SW.xy(:,1))
d(ll)=hypot(SW.xy(ll,1)-SW.xy0(kk,1),SW.xy(ll,2)-SW.xy0(kk,2));
end
[~,bend_ix(kk,1)]=min(d);
end
end
% Extract bend points, find number of segments, and find bend distances
swxB=xy0(:,1); swyB=xy0(:,2);
num_segs=numel(swxB)-1;
if num_segs>1
kk=1;
while kk<=num_segs
x0=swxB(kk,1);
y0=swyB(kk,1);
x1=swxB(kk+1,1);
y1=swyB(kk+1,1);
xx=x1-x0;
yy=y1-y0;
dist_to_bend(kk,1)=sqrt((xx^2)+(yy^2));
kk=kk+1;
end
dist_to_bend=vertcat(0,dist_to_bend);
bends=cumsum(dist_to_bend);
else
bends=[0;max(swdist)];
dist_to_bend=bends;
end
% All points along swath line
swx=xypoints(:,1); swy=xypoints(:,2);
dist_in_swath=zeros(numel(x),num_segs);
dist_from_base=zeros(numel(x),num_segs);
mag_on_swath=zeros(numel(x),num_segs);
unc_on_swath=zeros(numel(x),num_segs);
nc0_on_swath=zeros(numel(x),num_segs);
ec0_on_swath=zeros(numel(x),num_segs);
for ii=1:num_segs
% Find start and stop of segment
swx0=swxB(ii); swx1=swxB(ii+1);
swy0=swyB(ii); swy1=swyB(ii+1);
% Find distances within segment
x_dist=swx-swx0;
y_dist=swy-swy0;
seg_dist=sqrt((x_dist.^2)+(y_dist.^2));
if ii>1 & ii<num_segs
seg_dist([1:bend_ix(ii) bend_ix(ii+1)+1:end])=NaN;
elseif ii==1
seg_dist(bend_ix(ii+1)+1:end)=NaN;
else
seg_dist(1:bend_ix(ii))=NaN;
end
% Find distances of points from end node
xn_dist=x-swx1;
yn_dist=y-swy1;
n_dist=sqrt((xn_dist.^2)+(yn_dist.^2));
% Find angle of segment
sw_angle=-1*atan((swy1-swy0)/(swx1-swx0));
% Rotate all points in swath and dataset
[n_swx,n_swy]=RotCoord(swx,swy,sw_angle,swx0,swy0);
[n_x,n_y]=RotCoord(x,y,sw_angle,swx0,swy0);
% Loop through all the dataset points
num_points=numel(n_x);
pd_in_seg=zeros(num_points,1);
DistFromBaseLine=zeros(num_points,1);
for jj=1:num_points
xoi=n_x(jj);
% Find the dataset point distance in the segment distance
% Controlling for points beyond the end of the segment
if abs(xoi)<=max(abs(n_swx))
distances=n_swx-xoi;
[~,I]=min(abs(distances));
pd_in_seg(jj)=seg_dist(I);
% Find distance from the baseline
BaseLine=n_swy(I);
DistFromBaseLine(jj)=abs(BaseLine-n_y(jj));
else
pd_in_seg(jj)=NaN;
DistFromBaseLine(jj)=NaN;
end
% Control for points that are within bend overlaps
if isnan(pd_in_seg(jj)) & n_dist(jj)<=data_width & ii~=num_segs
pd_in_seg(jj)=seg_dist(bend_ix(ii+1));
DistFromBaseLine(jj)=n_dist(jj);
end
end
% Index for points that project to segment
idx=isnan(pd_in_seg) | pd_in_seg<=0;
pd_in_seg(idx)=NaN;
DistFromBaseLine(idx)=NaN;
% Do GPS vector calcs
[mag_seg,unc_seg,ec0_seg,nc0_seg]=AngVecSw(swx0,swy0,swx1,swy1,nc,ec,nu,eu);
% Filter gps and load out
mag_seg(idx)=NaN;
unc_seg(idx)=NaN;
ec0_seg(idx)=NaN;
nc0_seg(idx)=NaN;
mag_on_swath(:,ii)=mag_seg;
unc_on_swath(:,ii)=unc_seg;
ec0_on_swath(:,ii)=ec0_seg;
nc0_on_swath(:,ii)=nc0_seg;
dist_in_swath(:,ii)=pd_in_seg(:)+bends(ii);
dist_from_base(:,ii)=DistFromBaseLine(:);
end
% Find distances of points that are closest to their segment line
[db,c]=min(dist_from_base,[],2,'omitnan');
r=[1:numel(c)]; r=r(:);
ix=sub2ind(size(dist_from_base),r,c);
ds=dist_in_swath(ix);
mag=mag_on_swath(ix);
unc=unc_on_swath(ix);
ec0=ec0_on_swath(ix);
nc0=nc0_on_swath(ix);
% Set any points greater than the total swath distance to NaN;
idx=single(ds)>=max(swdist);
db(idx)=NaN;
ds(idx)=NaN;
mag(idx)=NaN;
unc(idx)=NaN;
ec0(idx)=NaN;
nc0(idx)=NaN;
end
function [n_x,n_y]=RotCoord(x,y,theta,x0,y0)
n_x=(x-x0).*cos(theta)-(y-y0).*sin(theta);
n_y=(x-x0).*sin(theta)+(y-y0).*cos(theta);
end
function [proj_mag,unc,ec0,nc0]=AngVecSw(swx0,swy0,swx1,swy1,nc,ec,nu,eu)
% Orient swath segment in N quadrant
if swx0>swx1 & swy0>=swy1
OX=swx1; OY=swy1; HX=swx0; HY=swy0;
elseif swx0<swx1 & swy0<=swy1
OX=swx0; OY=swy0; HX=swx1; HY=swy1;
elseif swx0>=swx1 & swy0<swy1
OX=swx0; OY=swy0; HX=swx1; HY=swy1;
elseif swx0<=swx1 & swy0>swy1
OX=swx1; OY=swy1; HX=swx0; HY=swy0;
end
% Find directional angles of swath and gps vector
[swT,~]=cart2pol(HX-OX,HY-OY);
[pT,~]=cart2pol(ec,nc);
% Find magnitude of vector projected onto swath
theta=swT-pT;
mag=hypot(ec,nc);
proj_mag=mag.*cos(theta);
% Decompose projected vector into north and east components
[ec0,nc0]=pol2cart(swT,proj_mag);
% Find uncertainty by finding radius of error ellipse at the angle of
% the swath line
unc=ellipserad(eu,nu,swT);
end
function [r]=ellipserad(a,b,theta);
% a major axis
% b minor axis
% angle with respect to major axis
r=(a.*b)./sqrt((b.*cos(theta)).^2 + (a.*sin(theta)).^2);
end