-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsampler_core.cpp
402 lines (387 loc) · 19.4 KB
/
sampler_core.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#include <iostream>
#include <string>
#include <cstdlib>
#include <random>
#include <omp.h>
#include <math.h>
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <pybind11/stl.h>
namespace py = pybind11;
typedef int NodeIDType;
typedef int EdgeIDType;
typedef float TimeStampType;
class TemporalGraphBlock
{
public:
std::vector<NodeIDType> row;
std::vector<NodeIDType> col;
std::vector<EdgeIDType> eid;
std::vector<TimeStampType> ts;
std::vector<TimeStampType> dts;
std::vector<NodeIDType> nodes;
NodeIDType dim_in, dim_out;
double ptr_time = 0;
double search_time = 0;
double sample_time = 0;
double tot_time = 0;
double coo_time = 0;
TemporalGraphBlock(){}
TemporalGraphBlock(std::vector<NodeIDType> &_row, std::vector<NodeIDType> &_col,
std::vector<EdgeIDType> &_eid, std::vector<TimeStampType> &_ts,
std::vector<TimeStampType> &_dts, std::vector<NodeIDType> &_nodes,
NodeIDType _dim_in, NodeIDType _dim_out) :
row(_row), col(_col), eid(_eid), ts(_ts), dts(_dts),
nodes(_nodes), dim_in(_dim_in), dim_out(_dim_out) {}
};
class ParallelSampler
{
public:
std::vector<EdgeIDType> indptr;
std::vector<EdgeIDType> indices;
std::vector<EdgeIDType> eid;
std::vector<TimeStampType> ts;
NodeIDType num_nodes;
EdgeIDType num_edges;
int num_thread_per_worker;
int num_workers;
int num_threads;
int num_layers;
std::vector<int> num_neighbors;
bool recent;
bool prop_time;
int num_history;
TimeStampType window_duration;
std::vector<std::vector<std::vector<EdgeIDType>::size_type>> ts_ptr;
omp_lock_t *ts_ptr_lock;
std::vector<TemporalGraphBlock> ret;
ParallelSampler(std::vector<EdgeIDType> &_indptr, std::vector<EdgeIDType> &_indices,
std::vector<EdgeIDType> &_eid, std::vector<TimeStampType> &_ts,
int _num_thread_per_worker, int _num_workers, int _num_layers,
std::vector<int> &_num_neighbors, bool _recent, bool _prop_time,
int _num_history, TimeStampType _window_duration) :
indptr(_indptr), indices(_indices), eid(_eid), ts(_ts), prop_time(_prop_time),
num_thread_per_worker(_num_thread_per_worker), num_workers(_num_workers),
num_layers(_num_layers), num_neighbors(_num_neighbors), recent(_recent),
num_history(_num_history), window_duration(_window_duration)
{
omp_set_num_threads(num_thread_per_worker * num_workers);
num_threads = num_thread_per_worker * num_workers;
num_nodes = indptr.size() - 1;
num_edges = indices.size();
ts_ptr_lock = (omp_lock_t *)malloc(num_nodes * sizeof(omp_lock_t));
for (int i = 0; i < num_nodes; i++)
omp_init_lock(&ts_ptr_lock[i]);
ts_ptr.resize(num_history + 1);
for (auto it = ts_ptr.begin(); it != ts_ptr.end(); it++)
{
it->resize(indptr.size() - 1);
#pragma omp parallel for
for (auto itt = indptr.begin(); itt < indptr.end() - 1; itt++)
(*it)[itt - indptr.begin()] = *itt;
}
}
void reset()
{
for (auto it = ts_ptr.begin(); it != ts_ptr.end(); it++)
{
it->resize(indptr.size() - 1);
#pragma omp parallel for
for (auto itt = indptr.begin(); itt < indptr.end() - 1; itt++)
(*it)[itt - indptr.begin()] = *itt;
}
}
void update_ts_ptr(int slc, std::vector<NodeIDType> &root_nodes,
std::vector<TimeStampType> &root_ts, float offset)
{
#pragma omp parallel for schedule(static, int(ceil(static_cast<float>(root_nodes.size()) / num_threads)))
for (std::vector<NodeIDType>::size_type i = 0; i < root_nodes.size(); i++)
{
NodeIDType n = root_nodes[i];
omp_set_lock(&(ts_ptr_lock[n]));
for (std::vector<EdgeIDType>::size_type j = ts_ptr[slc][n]; j < indptr[n + 1]; j++)
{
// std::cout << "comparing " << ts[j] << " with " << root_ts[i] << std::endl;
if (ts[j] > (root_ts[i] + offset - 1e-7f))
{
if (j != ts_ptr[slc][n])
ts_ptr[slc][n] = j - 1;
break;
}
if (j == indptr[n + 1] - 1)
{
ts_ptr[slc][n] = j;
}
}
omp_unset_lock(&(ts_ptr_lock[n]));
}
}
inline void add_neighbor(std::vector<NodeIDType> *_row, std::vector<NodeIDType> *_col,
std::vector<EdgeIDType> *_eid, std::vector<TimeStampType> *_ts,
std::vector<TimeStampType> *_dts, std::vector<NodeIDType> *_nodes,
EdgeIDType &k, TimeStampType &src_ts, int &row_id)
{
_row->push_back(row_id);
_col->push_back(_nodes->size());
_eid->push_back(eid[k]);
if (prop_time)
_ts->push_back(src_ts);
else
_ts->push_back(ts[k]);
_dts->push_back(src_ts - ts[k]);
_nodes->push_back(indices[k]);
// _row.push_back(0);
// _col.push_back(0);
// _eid.push_back(0);
// if (prop_time)
// _ts.push_back(src_ts);
// else
// _ts.push_back(10000);
// _nodes.push_back(100);
}
inline void combine_coo(TemporalGraphBlock &_ret, std::vector<NodeIDType> **_row,
std::vector<NodeIDType> **_col,
std::vector<EdgeIDType> **_eid,
std::vector<TimeStampType> **_ts,
std::vector<TimeStampType> **_dts,
std::vector<NodeIDType> **_nodes,
std::vector<int> &_out_nodes)
{
std::vector<EdgeIDType> cum_row, cum_col;
cum_row.push_back(0);
cum_col.push_back(0);
for (int tid = 0; tid < num_threads; tid++)
{
// std::cout<<tid<<" here "<<_out_nodes[tid]<<std::endl;
cum_row.push_back(cum_row.back() + _out_nodes[tid]);
cum_col.push_back(cum_col.back() + _col[tid]->size());
}
int num_root_nodes = _ret.nodes.size();
_ret.row.resize(cum_col.back());
_ret.col.resize(cum_col.back());
_ret.eid.resize(cum_col.back());
_ret.ts.resize(cum_col.back() + num_root_nodes);
_ret.dts.resize(cum_col.back() + num_root_nodes);
_ret.nodes.resize(cum_col.back() + num_root_nodes);
#pragma omp parallel for schedule(static, 1)
for (int tid = 0; tid < num_threads; tid++)
{
std::transform(_row[tid]->begin(), _row[tid]->end(), _row[tid]->begin(),
[&](auto &v){ return v + cum_row[tid]; });
std::transform(_col[tid]->begin(), _col[tid]->end(), _col[tid]->begin(),
[&](auto &v){ return v + cum_col[tid] + num_root_nodes; });
std::copy(_row[tid]->begin(), _row[tid]->end(), _ret.row.begin() + cum_col[tid]);
std::copy(_col[tid]->begin(), _col[tid]->end(), _ret.col.begin() + cum_col[tid]);
std::copy(_eid[tid]->begin(), _eid[tid]->end(), _ret.eid.begin() + cum_col[tid]);
std::copy(_ts[tid]->begin(), _ts[tid]->end(), _ret.ts.begin() + cum_col[tid] + num_root_nodes);
std::copy(_dts[tid]->begin(), _dts[tid]->end(), _ret.dts.begin() + cum_col[tid] + num_root_nodes);
std::copy(_nodes[tid]->begin(), _nodes[tid]->end(), _ret.nodes.begin() + cum_col[tid] + num_root_nodes);
delete _row[tid];
delete _col[tid];
delete _eid[tid];
delete _ts[tid];
delete _dts[tid];
delete _nodes[tid];
}
_ret.dim_in = _ret.nodes.size();
_ret.dim_out = cum_row.back();
}
void sample_layer(std::vector<NodeIDType> &_root_nodes, std::vector<TimeStampType> &_root_ts,
int neighs, bool use_ptr, bool from_root)
{
double t_s = omp_get_wtime();
std::vector<NodeIDType> *root_nodes;
std::vector<TimeStampType> *root_ts;
if (from_root)
{
root_nodes = &_root_nodes;
root_ts = &_root_ts;
}
double t_ptr_s = omp_get_wtime();
if (use_ptr)
update_ts_ptr(num_history, *root_nodes, *root_ts, 0);
ret[0].ptr_time += omp_get_wtime() - t_ptr_s;
for (int i = 0; i < num_history; i++)
{
if (!from_root)
{
root_nodes = &(ret[ret.size() - 1 - i - num_history].nodes);
root_ts = &(ret[ret.size() - 1 - i - num_history].ts);
}
TimeStampType offset = -i * window_duration;
t_ptr_s = omp_get_wtime();
if ((use_ptr) && (std::abs(window_duration) > 1e-7f))
update_ts_ptr(num_history - 1 - i, *root_nodes, *root_ts, offset - window_duration);
ret[0].ptr_time += omp_get_wtime() - t_ptr_s;
std::vector<NodeIDType> *_row[num_threads];
std::vector<NodeIDType> *_col[num_threads];
std::vector<EdgeIDType> *_eid[num_threads];
std::vector<TimeStampType> *_ts[num_threads];
std::vector<TimeStampType> *_dts[num_threads];
std::vector<NodeIDType> *_nodes[num_threads];
std::vector<int> _out_node(num_threads, 0);
int reserve_capacity = int(ceil((*root_nodes).size() / num_threads)) * neighs;
#pragma omp parallel
{
int tid = omp_get_thread_num();
unsigned int loc_seed = tid;
_row[tid] = new std::vector<NodeIDType>;
_col[tid] = new std::vector<NodeIDType>;
_eid[tid] = new std::vector<EdgeIDType>;
_ts[tid] = new std::vector<TimeStampType>;
_dts[tid] = new std::vector<TimeStampType>;
_nodes[tid] = new std::vector<NodeIDType>;
_row[tid]->reserve(reserve_capacity);
_col[tid]->reserve(reserve_capacity);
_eid[tid]->reserve(reserve_capacity);
_ts[tid]->reserve(reserve_capacity);
_dts[tid]->reserve(reserve_capacity);
_nodes[tid]->reserve(reserve_capacity);
// #pragma omp critical
// std::cout<<tid<<" sampling: "<<root_nodes->size()<<" "<<int(ceil((*root_nodes).size() / num_threads))<<std::endl;
#pragma omp for schedule(static, int(ceil(static_cast<float>((*root_nodes).size()) / num_threads)))
for (std::vector<NodeIDType>::size_type j = 0; j < (*root_nodes).size(); j++)
{
NodeIDType n = (*root_nodes)[j];
// if (tid == 16)
// std::cout << _out_node[tid] << " " <<j << " " << n << std::endl;
TimeStampType nts = (*root_ts)[j];
EdgeIDType s_search, e_search;
if (use_ptr)
{
s_search = ts_ptr[num_history - 1 - i][n];
e_search = ts_ptr[num_history - i][n];
}
else
{
// search for start and end pointer
double t_search_s = omp_get_wtime();
if (num_history == 1)
{
// TGAT style
s_search = indptr[n];
auto e_it = std::upper_bound(ts.begin() + indptr[n],
ts.begin() + indptr[n + 1], nts);
e_search = std::max(int(e_it - ts.begin()) - 1, s_search);
}
else
{
// DySAT style
auto s_it = std::upper_bound(ts.begin() + indptr[n],
ts.begin() + indptr[n + 1],
nts + offset - window_duration);
s_search = std::max(int(s_it - ts.begin()) - 1, indptr[n]);
auto e_it = std::upper_bound(ts.begin() + indptr[n],
ts.begin() + indptr[n + 1], nts + offset);
e_search = std::max(int(e_it - ts.begin()) - 1, s_search);
}
if (tid == 0)
ret[0].search_time += omp_get_wtime() - t_search_s;
}
// std::cout << n << " " << s_search << " " << e_search << std::endl;
double t_sample_s = omp_get_wtime();
if ((recent) || (e_search - s_search < neighs))
{
// no sampling, pick recent neighbors
for (EdgeIDType k = e_search; k > std::max(s_search, e_search - neighs); k--)
{
if (ts[k] < nts + offset - 1e-7f)
{
add_neighbor(_row[tid], _col[tid], _eid[tid], _ts[tid],
_dts[tid], _nodes[tid], k, nts, _out_node[tid]);
}
}
}
else
{
// random sampling within ptr
for (int _i = 0; _i < neighs; _i++)
{
EdgeIDType picked = s_search + rand_r(&loc_seed) % (e_search - s_search + 1);
if (ts[picked] < nts + offset - 1e-7f)
{
add_neighbor(_row[tid], _col[tid], _eid[tid], _ts[tid],
_dts[tid], _nodes[tid], picked, nts, _out_node[tid]);
}
}
}
_out_node[tid] += 1;
if (tid == 0)
ret[0].sample_time += omp_get_wtime() - t_sample_s;
}
}
double t_coo_s = omp_get_wtime();
ret[ret.size() - 1 - i].ts.insert(ret[ret.size() - 1 - i].ts.end(),
root_ts->begin(), root_ts->end());
ret[ret.size() - 1 - i].nodes.insert(ret[ret.size() - 1 - i].nodes.end(),
root_nodes->begin(), root_nodes->end());
ret[ret.size() - 1 - i].dts.resize(root_nodes->size());
combine_coo(ret[ret.size() - 1 - i], _row, _col, _eid, _ts, _dts, _nodes, _out_node);
ret[0].coo_time += omp_get_wtime() - t_coo_s;
}
ret[0].tot_time += omp_get_wtime() - t_s;
}
void sample(std::vector<NodeIDType> &root_nodes, std::vector<TimeStampType> &root_ts)
{
// a weird bug, dgl library seems to modify the total number of threads
omp_set_num_threads(num_threads);
ret.resize(0);
bool first_layer = true;
bool use_ptr = false;
for (int i = 0; i < num_layers; i++)
{
ret.resize(ret.size() + num_history);
if ((first_layer) || ((prop_time) && num_history == 1) || (recent))
{
first_layer = false;
use_ptr = true;
}
else
use_ptr = false;
if (i==0)
sample_layer(root_nodes, root_ts, num_neighbors[i], use_ptr, true);
else
sample_layer(root_nodes, root_ts, num_neighbors[i], use_ptr, false);
}
}
};
template<typename T>
inline py::array vec2npy(const std::vector<T> &vec)
{
// need to let python garbage collector handle C++ vector memory
// see https://github.com/pybind/pybind11/issues/1042
auto v = new std::vector<T>(vec);
auto capsule = py::capsule(v, [](void *v)
{ delete reinterpret_cast<std::vector<T> *>(v); });
return py::array(v->size(), v->data(), capsule);
// return py::array(vec.size(), vec.data());
}
PYBIND11_MODULE(sampler_core, m)
{
py::class_<TemporalGraphBlock>(m, "TemporalGraphBlock")
.def(py::init<std::vector<NodeIDType> &, std::vector<NodeIDType> &,
std::vector<EdgeIDType> &, std::vector<TimeStampType> &,
std::vector<TimeStampType> &, std::vector<NodeIDType> &,
NodeIDType, NodeIDType>())
.def("row", [](const TemporalGraphBlock &tgb) { return vec2npy(tgb.row); })
.def("col", [](const TemporalGraphBlock &tgb) { return vec2npy(tgb.col); })
.def("eid", [](const TemporalGraphBlock &tgb) { return vec2npy(tgb.eid); })
.def("ts", [](const TemporalGraphBlock &tgb) { return vec2npy(tgb.ts); })
.def("dts", [](const TemporalGraphBlock &tgb) { return vec2npy(tgb.dts); })
.def("nodes", [](const TemporalGraphBlock &tgb) { return vec2npy(tgb.nodes); })
.def("dim_in", [](const TemporalGraphBlock &tgb) { return tgb.dim_in; })
.def("dim_out", [](const TemporalGraphBlock &tgb) { return tgb.dim_out; })
.def("tot_time", [](const TemporalGraphBlock &tgb) { return tgb.tot_time; })
.def("ptr_time", [](const TemporalGraphBlock &tgb) { return tgb.ptr_time; })
.def("search_time", [](const TemporalGraphBlock &tgb) { return tgb.search_time; })
.def("sample_time", [](const TemporalGraphBlock &tgb) { return tgb.sample_time; })
.def("coo_time", [](const TemporalGraphBlock &tgb) { return tgb.coo_time; });
py::class_<ParallelSampler>(m, "ParallelSampler")
.def(py::init<std::vector<EdgeIDType> &, std::vector<EdgeIDType> &,
std::vector<EdgeIDType> &, std::vector<TimeStampType> &,
int, int, int, std::vector<int> &, bool, bool,
int, TimeStampType>())
.def("sample", &ParallelSampler::sample)
.def("reset", &ParallelSampler::reset)
.def("get_ret", [](const ParallelSampler &ps) { return ps.ret; });
}