-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
120 lines (94 loc) · 3.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from time import strftime
import shutil
import os
import torch
import numpy as np
import functools
import augmentations
def get_log_dir_path(root_path, run_name):
"""
Creates log dir of format e.g.:
experiments/log/2017_01_01/run_name_12_00_00/
"""
date_stamp = strftime("%Y_%m_%d")
time_stamp = strftime("%H_%M_%S")
# Group logs by day first
log_path = os.path.join(root_path, date_stamp)
# Then, group by run_name and hour + min + sec to avoid duplicates
log_path = os.path.join(log_path, "_".join([run_name, time_stamp]))
return log_path
def get_model_name(model):
if type(model) == torch.nn.DataParallel:
return model.module.__class__.__name__
else:
return model.__class__.__name__
def save_checkpoint(model, state, is_best, save_dir, epoch=None):
if epoch is None:
checkpoint_path = os.path.join(save_dir, '{}_last_ckpt'.format(get_model_name(model)))
else:
checkpoint_path = os.path.join(save_dir, '{}_ckpt_{}'.format(get_model_name(model), epoch))
torch.save(state, checkpoint_path)
if is_best:
shutil.copyfile(checkpoint_path, os.path.join(save_dir, '{}_best_ckpt'.format(get_model_name(model))))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def aug_func(image, preprocess, all_ops, mixture_width, mixture_depth, aug_severity):
"""Perform AugMix augmentations and compute mixture.
Args:
image: PIL.Image input image
preprocess: Preprocessing function which should return a torch tensor.
Returns:
mixed: Augmented and mixed image.
"""
aug_list = augmentations.augmentations
if all_ops:
aug_list = augmentations.augmentations_all
ws = np.float32(
np.random.dirichlet([1] * mixture_width))
m = np.float32(np.random.beta(1, 1))
mix = torch.zeros_like(preprocess(image))
for i in range(mixture_width):
image_aug = image.copy()
depth = mixture_depth if mixture_depth > 0 else np.random.randint(
1, 4)
for _ in range(depth):
op = np.random.choice(aug_list)
image_aug = op(image_aug, aug_severity)
# Preprocessing commutes since all coefficients are convex
mix += ws[i] * preprocess(image_aug)
mixed = (1 - m) * preprocess(image) + m * mix
return mixed
class AugMixDataset(torch.utils.data.Dataset):
"""Dataset wrapper to perform AugMix augmentation."""
def __init__(self, dataset, preprocess, all_ops=False, mixture_width=3,
mixture_depth=-1, aug_severity=3, no_jsd=False, image_size=32):
# print('using augmix dataset with jsd: {}'.format(not no_jsd))
augmentations.IMAGE_SIZE = image_size
# exit()
self.dataset = dataset
self.preprocess = preprocess
self.no_jsd = no_jsd
self.aug = functools.partial(aug_func, all_ops=all_ops, mixture_width=mixture_width,
mixture_depth=mixture_depth, aug_severity=aug_severity)
def __getitem__(self, i):
x, y = self.dataset[i]
if self.no_jsd:
return self.aug(x, self.preprocess), y
else:
im_tuple = (self.preprocess(x), self.aug(x, self.preprocess),
self.aug(x, self.preprocess))
return im_tuple, y
def __len__(self):
return len(self.dataset)