-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathNew_DEseq2_emrichment_analysis.R
530 lines (352 loc) · 19 KB
/
New_DEseq2_emrichment_analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
### RNAseq using Deseq2 and Functional enrichment Analysis ####
##### Install packages, if not done before
# if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager")
# BiocManager::install("DESeq2")
# BiocManager::install("biomaRt")
# BiocManager::install('PCAtools')
# BiocManager::install('EnhancedVolcano')
###################### load the raw count matrix #######################
setwd("/Users/athind/Dropbox/RNAseq_using_DEseq2-april16/") #Path_to_working_directory
rawcount<-read.table ("RawCount_input.csv",header=TRUE, sep=",", row.names=1)
## Replace NAs by zero and changing the input to required format
rawcount <- round(rawcount)
rawcount[is.na(rawcount)] <- 0
## Discard genes, which are expressed in less than 20% of all samples (considering that we have 2 conditions in total )
## % selection is based on no. of conditions ## more condition means less %
keep <- rowSums(rawcount > 0) >= round(ncol(rawcount)*.20)
rawcount <- rawcount[keep,]
###################### Data annotation #################################
anno <-read.table ("Annotation_of_samples_12_Samples_ALL.csv",header=TRUE, sep=",", row.names = 1) ##In this case we have 3 coulmns (a) sample (b) Condition (c) batch
#rownames(anno) <- anno$sample ##add rownames as sample name (if not already), because pca function check rownames of anno == col of data matrix
table(anno$Condition)
library(tidyverse)
library('dplyr') ##HAS COUNT FUNCTION
### incase want to consider subset of samples based on some condition (when multiple e.g. >3 )
#anno <- anno %>%
# as.data.frame %>%
# filter(anno$Condition =='Condition_A' |anno$Condition =='Condition_B' | anno$Condition == 'Condition_C' ) %>%
# arrange(Condition) #Arrange rows by padj values
## sort anno based on condition ## good representation in heatmap
anno <- anno %>%
as.data.frame %>%
arrange(Condition)
##############################################################
############ PCA plot for pre DE investigation ##############
library(PCAtools)
anno <- anno[match(colnames(rawcount), anno$Sample),] ## reordering anno rows with colnames of rawcount
lograwcount <- as.matrix(log2(rawcount +1)) ## log transformation of rawcount for PCA plot
top1000.order <- head(order(matrixStats::rowVars(lograwcount), decreasing = TRUE), 1000) ## taking top 1000 genes having highest variance selected from all the genes in the input
p <- PCAtools::pca(mat = lograwcount[top1000.order,], metadata = anno, removeVar = 0.01) ## performing PCA
biplot(p, #visualization of PCA plot
lab = paste0(p$metadata$Sample),
colby = 'Batch', #Sample #Batch #Condition #sex
hline = 0, vline = 0,
legendPosition = 'right',
encircle = T )
screeplot(p, axisLabSize = 18, titleLabSize = 22) ## this plot shows how much variation in the data is explained by which PC component.
pairsplot(p) ## draw various combinations of the PCA plot
##############################################################
################# Lets check combat normalization ############
############## SVA #####################
#BiocManager::install("sva")
library('sva')
rawcount <- as.matrix(rawcount)
adjusted_counts <- ComBat_seq(rawcount, batch=anno$Batch, group=anno$Condition) ##In ComBat-seq, user may specify biological covariates, whose signals will be preserved in the adjusted data. I
nor_set <- as.matrix(log2(adjusted_counts+1)) ## log transformation of adjusted count
top1000.order <- head(order(matrixStats::rowVars(nor_set), decreasing = TRUE), 1000)
pp <- PCAtools::pca(mat =nor_set[top1000.order,] , metadata = anno, removeVar = 0.01)
biplot(pp,
lab = paste0(p$metadata$Sample),
#colby = 'Batch', #Batch_log', #Condition
colby = 'Condition',
hline = 0, vline = 0,
legendPosition = 'right',encircle = T)
## note for cancer related analysis ## new RUVIII method by can adjust for tumor purity
## https://www.nature.com/articles/s41587-022-01440-w
##### Do we suppose to remove any default sample/s #########
### subset raw and conditional data for defined pairs
##### Removing sample number 7 ##########
anno <- anno[!(anno$Sample == 'sample_7' | anno$Sample == 'sample_8'),]
rawcount <- as.data.frame(rawcount)
rawcount <- rawcount[,names(rawcount) %in% anno$Sample]
### Go back to PCA plot and check what happned
### perform combat normalization again after removal of sample
rawcount <- as.matrix(rawcount)
adjusted_counts <- ComBat_seq(rawcount, batch=anno$Batch, group=anno$Condition) ##In ComBat-seq, user may specify biological covariates, whose signals will be preserved in the adjusted data. I
############################### Create DESeq2 datasets #############################
library(DESeq2)
##dds <- DESeqDataSetFromMatrix(countData = rawcount, colData = anno, design = ~Condition ) ##rawcount ## simpledesign
## dds <- DESeqDataSetFromMatrix(countData = rawcount, colData = anno, design = ~Batch+Condition ) ###USE this one if you have extra col in anno data with Batch info
dds = DESeq2::DESeqDataSetFromMatrix(countData = adjusted_counts, colData = anno, design = ~ Condition) ##https://github.com/zhangyuqing/ComBat-seq/issues/7
##When considering batch effects in group design of Deseq2, it takes into account the mean differences across batch,
##not necessarily the variance differences. ComBat-Seq is designed to address both mean and variance batch effects.
###In theory, no, you do not need to include batch as a covariate any more. However, you can always try both and evaluate the results.
## https://github.com/zhangyuqing/ComBat-seq/issues/7
#View(counts(dds))
dds <- estimateSizeFactors(dds)
vst <- vst(dds, blind=TRUE) ### Transform counts for data visualization #options (1) vst (2) rld
##normalized_counts <- counts(dds, normalized=TRUE) ## extract normalization count after executing Deseq2 for visualization purpose
normalized_counts <- as.data.frame(assay(vst))
plotPCA(vst, intgroup="Condition") ### Plot PCA
## Run DESEQ2
dds <- DESeq(dds)
##ensure your data is a good fit for the DESeq2 model
plotDispEsts(dds)
################# contrast based comparison ##########################
# Define conditions (for contrast) that you want to compare if you have more than one #control #case
firstC<-"Condition_A" #case1 #case2 #case3 etc
SecondC <-"Condition_B"
p.threshold <- 0.05 ##define threshold for filtering
#In case of multiple comparisons ## we need to change the contrast for every comparision
contrast<- c("Condition",firstC,SecondC)
res <- results(dds, contrast=contrast) ## extract result dataframe
View(as.data.frame(res))
### Valcono plot
# add a column for labels of DE genes
res$diffexpressed <- "NO"
# if log2Foldchange > 1 and p-adjusted value <= 0.05, set as "UP"
res$diffexpressed[res$logFC >= 1 & adj.P.Val <= 0.05] <- "UP"
# if log2Foldchange < - 1 and adj.P.Val <= 0.05, set as "DOWN"
res$diffexpressed[res$logFC <= -1 & res$adj.P.Val <= 0.05] <- "UP"
# Create a new column "delabel" to de, that will contain the name of genes differentially expressed (NA in case they are not)
res$delabel <- NA
res$delabel[res$diffexpressed != "NO"] <- res$gene[res$diffexpressed != "NO"]
library(ggrepel)
# plot adding up all layers we have seen so far
ggplot(data=res, aes(x=logFC, y=-log10(adj.P.Val), col=diffexpressed, label=delabel)) +
geom_point() +
theme_minimal() +
geom_text_repel() +
scale_color_manual(values=c("blue", "black", "red")) +
geom_vline(xintercept=c(-1, 1), col="red") +
geom_hline(yintercept=-log10(0.05), col="red")
res$threshold <- as.logical(res$padj < p.threshold) #Threshold defined earlier#creating col with logic
nam <- paste('down_in',firstC, sep = '_')
#res$nam <- as.logical(res$log2FoldChange < 0)
res[, nam] <- as.logical(res$log2FoldChange < 0) #adding extra information, in which condition it's down or up
genes.deseq <- row.names(res)[which(res$threshold)] ### list of gene with Padjust < defined threshold
genes_deseq2_sig <- as.data.frame(res[which(res$threshold),])
########### Plots normalized count of top 20 genes ## sorted based on padjust and filter by |logFC| >=1
res$gene <- row.names(res)
View(as.data.frame(res))
# Order results by padj values
#library(dplyr)
library(tidyverse)
top20 <- res %>%
as.data.frame %>%
arrange(padj) %>% #Arrange rows by padj values
filter(abs(log2FoldChange) >=1.5) %>% #filter based on logFC
pull(gene) %>% #Extract character vector of ordered genes
head(n=20) #Extract the first 20 genes
top20_norm <- as.data.frame(normalized_counts[rownames(normalized_counts) %in% top20,])
top20_norm_v2 <- top20_norm ## will use later for heatmap
top20_norm <- (top20_norm+1) ## in later step to remove infinity bias due to log
top20_norm$gene <- row.names(top20_norm)
top20_norm <- top20_norm %>%
pivot_longer(!gene, names_to = "samplename", values_to = "normalized_counts") # Gathering the columns to have normalized counts to a single column
# Create tibbles including row names #for anno
mov10_meta <- anno %>%
rownames_to_column(var="samplename") %>%
as_tibble()
top20_norm <- inner_join(mov10_meta, top20_norm) ## we are merging anno of 20 with previously extract format to draw dot plot
################
## plot using ggplot2
ggplot(top20_norm) +
geom_point(aes(x = gene, y = normalized_counts, color = Condition)) +
## scale_y_log10() + ##want to scale it or not??
xlab("Genes") +
ylab("log 10 CPM Normalized Counts") +
ggtitle("Top 20 Significant DE Genes with abs(logFC) =>1") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
theme(plot.title = element_text(hjust = 0.5))
##################
heat_colors <- colorRampPalette(c("blue",'white','red'))(n=40)
### Run pheatmap
library(pheatmap)
pheatmap(top20_norm_v2 ,
color = heat_colors,
cluster_rows = T,
cluster_cols = F,
show_rownames = T,
annotation_col = anno[,c(1,3)],
border_color = NA,
fontsize = 10,
scale = "row", ## for VST_count you may not need Scaling
fontsize_row = 10,
height = 20)
file <- paste('Deseq2_',firstC,'_v_',SecondC,'_results_significant_padj',p.threshold,'.csv',sep = '')
all_results <- paste('Deseq2_',firstC,'_v_',SecondC,'_all_results.csv',sep = '')
res <- as.data.frame(res)
View(res)
write.table(res,all_results,sep = ",") ## no LogFC threshold
#####################################################################
############## functional Enrichment analysis #######################
####################################################################
### Option (1) continue from DGE analysis or (2) upload data from saved file of DEG
#genes_deseq2_sig <- read.csv("Deseq2_case1_v_Control_results_significant_padj0.05.csv")
###################### Extract various types of gene ids from Biomart ########################
library("biomaRt")
#new_config <- httr::config(ssl_verifypeer = FALSE) ############For certificate error
#httr::set_config(new_config, override = FALSE) ############For certificate error
### define the mart for h_sapiens
#ensembl_mart <- useMart(biomart="ensembl", dataset="hsapiens_gene_ensembl") ## either this or following line
ensembl_mart <- useEnsembl(biomart = "ensembl", dataset = "hsapiens_gene_ensembl", mirror = "asia") ## takes little bit time
###### following lines is extarcting other alternate names of the hugo gene symobols
###### in this case entrez gene ids
View(as.data.frame(res))
genes.entrezid <- getBM(attributes = c("hgnc_symbol", "entrezgene_id"), filters = "hgnc_symbol", values = res$gene, mart = ensembl_mart)
#genes.entrezid = as.data.frame(genes.entrezid) ## if not defined as df
res <- as.data.frame(res)
merged <- merge(res, genes.entrezid, by.x= "gene", by.y="hgnc_symbol")
######### Rank all genes based on their fold change #########
#BiocManager::install("clusterProfiler", force = TRUE)
#BiocManager::install("pathview", force = TRUE)
#BiocManager::install("enrichplot", force = TRUE)
library(clusterProfiler)
library(enrichplot)
library(ggplot2)
# SET THE DESIRED ORGANISM HERE ###https://learn.gencore.bio.nyu.edu/rna-seq-analysis/gene-set-enrichment-analysis/
organism = "org.Hs.eg.db" ## search other organism annotations here http://bioconductor.org/packages/release/BiocViews.html#___OrgDb
#BiocManager::install(organism, character.only = TRUE, force = TRUE)
library(organism, character.only = TRUE)
#We will take the log2FoldChange value from previously saved significant results file
#Deseq2_case1_v_Control_results_significant.csv
# we want the log2 fold change
original_gene_list <- merged$log2FoldChange
print(original_gene_list)
# name the vector
names(original_gene_list) <- merged$entrezgene_id
print(original_gene_list)
# omit any NA values ## excluding genes where no entrez ids available ## you may loose some information
gene_list1<-na.omit(original_gene_list)
# sort the list in decreasing order (required for clusterProfiler)
gene_list1 = sort(gene_list1, decreasing = TRUE)
gene_list1
#### Gene Set Enrichment of Gene Ontology #####
library(stats)
keytypes(org.Hs.eg.db)
gse <- gseGO(geneList=gene_list1,
ont ='ALL', #"ALL", #### Try GO with all different ont methods parameter ## BP = Biological Processes, CC= Cellular component, MF = Molecular functions
keyType = "ENTREZID",
minGSSize = 10,
maxGSSize = 800,
pvalueCutoff = 0.05,
verbose = TRUE,
OrgDb = org.Hs.eg.db,
pAdjustMethod = "none")
#?gseGO
# require(DOSE)
view(as.data.frame(gse))
#dotplot(gse, showCategory=10, split=".sign", orderBy = "X")
gseaplot(gse, geneSetID="GO:0030198")
### Lets exlore other functions with a sample dataset and see what analysis we can do with
## a list of differentially expressed genes
###### geneList dataset of DOSE package #######
data(geneList)
print(geneList)
gsecc <- gseGO(geneList=geneList, ont="CC", OrgDb=org.Hs.eg.db, verbose=F)
view(as.data.frame(gsecc)) ## or use ## head(summary(gsecc))
gseaplot(gsecc, geneSetID="GO:0000775")
##GO Enrichment Analysis of a gene set.
##Given a vector of genes, enrichGO function will return the
##enrichment GO categories after FDR control.
#library(clusterProfiler)
#library(org.Hs.eg.db)
library(enrichplot)
library(GOSemSim)
library(ggnewscale)
library(DOSE)
View(as.data.frame(geneList))
gene <- names(geneList)[abs(geneList) > 2]
gene
## you may to consider additional filter based on P-adjusted Values
## Last time we created df of significant DE gene i.e. 'genes_deseq2_sig'
## you can apply the above filter of logFC
##something like '
# subdf <- genes_deseq2_sig[abs(genes_deseq2_sig$log2FoldChange) > 1.5,]
# gene_list <- subdf$log2FoldChange
# names(gene_list) <- subdf$hgnc_symbol ### you may want to consider entrez gene conversion
#?enrichGO
ego <- enrichGO(gene = gene,
universe = names(geneList), ##background genes
OrgDb = org.Hs.eg.db,
ont = "BP",
pAdjustMethod = "BH", # "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none"
pvalueCutoff = 0.01,
qvalueCutoff = 0.05,
readable = TRUE)
View(as.data.frame(ego))
##### Visualization of enrichGO ######
d <- godata('org.Hs.eg.db', ont="BP") #prepare GO DATA for measuring semantic similarity ## required for next step
ego2 <- pairwise_termsim(ego, method="Wang", semData = d) #enrichment result #method of calculating the similarity between nodes #GOSemSimDATA object
emapplot(ego2)
emapplot_cluster(ego2)
view(as.data.frame(ego2))
#cnetplot(ego2, categorySize="pvalue", foldChange=gene_list)
###In the following example, we selected fold change above 1 as the differential genes
##and analyzing their disease association.
#### enrich DO (Disease Ontology) #####
##http://bioconductor.org/packages/release/bioc/html/DOSE.html
library(ggupset)
data(geneList) ## loaded the same data
gene = names(geneList)[abs(geneList) > 1.5] ## applied theshold
head(gene)
X = enrichDO(gene,ont = "DO",
pvalueCutoff=0.05,
pAdjustMethod = "BH",
universe = names(geneList),
minGSSize = 5,
maxGSSize = 500,
qvalueCutoff = 0.05,
readable = FALSE)
#The readable is a logical parameter,
#indicates whether the entrezgene IDs will mapping to gene symbols or not
head(X)
View(as.data.frame(X))
#setReadable function helps to convert entrezgene IDs to gene symbols
X <- setReadable(X, 'org.Hs.eg.db')
View(as.data.frame(X))
## Visualization of enrichDO results ##
barplot(X, showCategory=15)
dotplot(X)
#gene may belong to multiple annotation categories,
#cnetplot function to extract the complex association between genes and diseases
cnetplot(X, categorySize="pvalue", foldChange=geneList)
#upsetplot is an alternative to
#cnetplot for visualizing the complex association between genes and diseases.
upsetplot(X)
###### KEGG Enrichment Analysis #######
library(clusterProfiler)
## KEGG pathway over-representation analysis (ORA)
data(geneList, package="DOSE")
gene <- names(geneList)[abs(geneList) > 2]
kk <- enrichKEGG(gene = gene,
organism = 'hsa',
pvalueCutoff = 0.05)
view(as.data.frame(kk))
#?enrichKEGG ## you can defined background using 'universe' ## universe = names(geneList),
## KEGG module ORA (over-representation analysis)
#KEGG Module is a collection of manually defined function units. In some situation,
#KEGG Modules have a more straightforward interpretation
mkk <- enrichMKEGG(gene = gene,
organism = 'hsa',
pvalueCutoff = 1,
qvalueCutoff = 1)
View(as.data.frame(mkk))
## KEGG module GSEA (gene set enrichment analysis) ##
mkk2 <- gseMKEGG(geneList = geneList,
organism = 'hsa',
pvalueCutoff = 1)
View(as.data.frame(mkk2))
####### Visualize enriched KEGG pathways #########
## To view the KEGG pathway,use the browseKEGG function,
#which will open a web browser and highlight enriched genes.
browseKEGG(kk, 'hsa04110')
###use the pathview() function from the pathview to visualize enriched KEGG
##pathways identified by the clusterProfiler package
library("pathview")
hsa04110 <- pathview(gene.data = geneList,
pathway.id = "hsa04114",
species = "hsa",
limit = list(gene=max(abs(geneList)), cpd=1))