-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject.py
181 lines (135 loc) · 4.8 KB
/
project.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pymrio
import pandas as pd
import numpy as np
from sqlalchemy import create_engine
import psycopg2
import requests
from bs4 import BeautifulSoup
import json
import re
#%%
# Access Zenodo API
url = "https://doi.org/10.5281/zenodo.3583070"
r = requests.get(url)
# First check status code
sc = r.status_code
# If status code == 200, continue, else wait for Zenodo to get back online
head = r.headers
print(sc, head)
#%%
# r.text allows you to get the HTML code and then the URL links in the <script> tag
soup = BeautifulSoup(r.text, 'html.parser')
script = soup.find_all('script')
# Eight script tags return, we want the first one
script = script[0]
#print(script)
#%%
# Remove the script tag to get the JSON text. This will first become a string
# And then using json.loads, we get a dict class, and with json.dumps we get
# A prettified JSON object (class 'str')
for word in script:
json_data = word
json_obj = json.loads(word)
obj = json.dumps(json_obj, indent=4)
print(obj)
print(type(obj))
#%%
soup = BeautifulSoup(r.content, 'html.parser')
data = json.loads(soup.find('script', type='application/ld+json').text)
print(data["@type"])
#%%
# Load exiobase, concordance matrix, and get metadata
exio3_folder = "/Users/alyabolowich/Desktop/exiostorage"
exio_meta = pymrio.download_exiobase3(
storage_folder=exio3_folder, system="ixi", years=[2018,2019]
)
#%%
#exio3 = pymrio.parse_exiobase3(path='/Volumes/SD/bsp3/IOT_2018_ixi.zip')
con_mat = pd.read_excel('/Volumes/SD/bsp3/concord_matrix_bjelle_2020.xlsx').iloc[:,4:15]
engine = create_engine('postgresql://postgres:5555@localhost:5432/bsp3')
con = psycopg2.connect("dbname=bsp3 user=postgres password=****")
exio3.meta
#%%
# Get sector and region information
sectors = exio3.get_sectors()
regions = exio3.get_regions()
#%%
# Calculate all matrices and fetch interindustry flows (Z) and stressors (S)
exio3.calc_all()
#%%
# Get list of EU countries, aggregate the non-EU countries to create new list of regions to study (EU and 1 ROW)
EUcountry = exio3.get_regions()[:28].tolist()
reg_agg_list = EUcountry + (49-28)*['ROW']
#%%
# Aggregate sectors.
# Sector aggregation matrix based on ISIC sectors (UN Stats) and Bjelle et al (2020)
sector_names = ['Agriculture', 'Mining', 'Manufacturing', 'Electricity', 'Water_and_waste', 'Construction', 'Retail', 'Transport', 'Accomodation_and_food_services', 'Finance_and_real_estate', 'Public_services']
sec_agg_matrix = con_mat.values.T
#Modify the exio3 data to aggregate into the regions. Followed example from pymrio documentation.
ag = exio3.aggregate(region_agg=reg_agg_list,
sector_agg=sec_agg_matrix,
sector_names= sector_names,
inplace=False)
#%%
# After aggregation, matrices need to be reset and recalculated (per pymrio documentation)
ag.reset_all_full().calc_all()
#Show relevant matrices after aggregation reset
Z_sec = ag.Z
S = ag.satellite.S
# Turn all negs to 0s
num = Z_sec._get_numeric_data()
num[num < 0] = 0
#%%
# Diagonalize CO2 emissions
CO2_ag = ag.satellite.S.loc['CO2 - combustion - air']
CO2_ag_diag = pd.DataFrame(np.diag(CO2_ag),
index=CO2_ag.index,
columns=CO2_ag.index)
# Diagonalize vulnerable labor (in persons)
vl = ag.satellite.S.loc['Employment: Vulnerable employment']
vl_ag_diag = pd.DataFrame(np.diag(vl),
index=vl.index,
columns=vl.index)
### ========
# Matrix needed for CO2
CO2_econ = CO2_ag_diag.dot(ag.Z)
# Matrix needed for vulnerable labor
vl_econ = vl_ag_diag.dot(ag.Z)
#%%
#regions dataframe
regions = pd.DataFrame(ag.get_regions()).applymap(str.lower)
#sectors dataframe
sectors = pd.DataFrame(ag.get_sectors()).applymap(str.lower)
#%% Get all sector emissions
CO2_econ = CO2_econ.stack(level=[0,1])
CO2_econ = CO2_econ.to_frame()
CO2_econ.columns = ['val']
CO2_econ.index.names = ['region_from', 'sector_from', 'region_to', 'sector_to']
econ = Z_sec.stack(level=[0,1])
econ = econ.to_frame()
econ.columns = ['val']
econ.index.names = ['region_from', 'sector_from', 'region_to', 'sector_to']
vl_econ = vl_econ.stack(level=[0,1])
vl_econ = vl_econ.to_frame()
vl_econ.columns = ['val']
vl_econ.index.names = ['region_from', 'sector_from', 'region_to', 'sector_to']
#add unit column
CO2_econ['unit']='kg co2'
econ['unit'] ='mio euro'
vl_econ['unit'] ='persons'
#add year column
CO2_econ['year'] = 2019
econ['unit'] = 2019
vl_econ['year'] = 2019
#%%
### Create tables in Postgres
#regions
regions.to_sql('regions', engine)
#sectors
sectors.to_sql('sectors', engine)
#co2 all sectors
CO2_econ.to_sql('co2', engine)
#Z (economy) matrix all sectors
econ.to_sql('economy', engine)
#vulnerable labor matrix
vl_econ.to_sql('vl', engine)