From af82a45bbfc88fdd1c29c6d1e338e157e4e54e8f Mon Sep 17 00:00:00 2001 From: almeidasilvaf <61153286+almeidasilvaf@users.noreply.github.com> Date: Tue, 28 Nov 2023 16:09:08 +0000 Subject: [PATCH] =?UTF-8?q?Deploying=20to=20gh-pages=20from=20@=20almeidas?= =?UTF-8?q?ilvaf/HybridExpress@87e88681126333610d720ed00bd875c5acdd9d43=20?= =?UTF-8?q?=F0=9F=9A=80?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- apple-touch-icon-120x120.png | Bin 12306 -> 12306 bytes apple-touch-icon-152x152.png | Bin 17189 -> 17189 bytes apple-touch-icon-180x180.png | Bin 21470 -> 21470 bytes apple-touch-icon-60x60.png | Bin 4926 -> 4926 bytes apple-touch-icon-76x76.png | Bin 6557 -> 6557 bytes apple-touch-icon.png | Bin 21470 -> 21470 bytes favicon-16x16.png | Bin 1245 -> 1245 bytes favicon-32x32.png | Bin 2347 -> 2347 bytes pkgdown.yml | 2 +- reference/pca_plot-1.png | Bin 56772 -> 56586 bytes reference/plot_expression_partitions.html | 9 ++++++++- reference/plot_partition_frequencies.html | 9 ++++++++- reference/plot_samplecor-1.png | Bin 108298 -> 108584 bytes search.json | 2 +- 14 files changed, 18 insertions(+), 4 deletions(-) diff --git a/apple-touch-icon-120x120.png b/apple-touch-icon-120x120.png index 8d07ae327bbc92b090ebaf904c65d17e607dd178..b3ca33e19093239a16dd58d175c001c647b9d53e 100644 GIT binary patch delta 89 zcmbP~Feza|HM;=2o~m`im5ojJ^_sekrd2W+85kMs8XD>vS%es(Xvo}uvupBV{d@q#qZp7WPnHpIcm}wgrSQ!{>lSyG=U|>)!ag8WRNi0dV i%FR#7OsixtGB7gMH8j*UvIsFm(Qw@H&W_28_45Jaxf@IX diff --git a/apple-touch-icon-152x152.png b/apple-touch-icon-152x152.png index b971c6f40fe8d00a17730bcbd81ae296ad107697..8a7535da8784941839f755846b8d72585da9b792 100644 GIT binary patch delta 64 zcmZ45#<;YNaY8k_0K0yWO@PzJrcaK7W>yB~Rwm}!1_o9J2K%OFHBD}HQa}|wf8vte I delta 64 zcmZ45#<;YNaY8jazX^NGjLM@Mn?5-Tnp&9}Ss9pX8yHv_7zkwNZLV{*i2If{K#@Yr3Rt5%MxBMnfo+qS$Dr(*SO?UEn Gp?m;9of3=y delta 62 zcmdm|woh$BH9NlvbMx1|cQ!V03kjN9nHpIc7;76CSQ!{RQSn|pd7h90s_4|p&+?Pc H3*`d G$$S7`0TVX> delta 62 zcmbPhJlA+aH9NlvYt}T0mm8b1Bm_;ZOpUAzOtlRRtPBj=ztqi~{8vH&RrK4+W2%$& GB=Z4$hZHmb diff --git a/apple-touch-icon.png b/apple-touch-icon.png index 36e53ad4fdbe54538592d00310439109e0706667..96d595092dbc457dc2df1b03bfaaafa614de2b1c 100644 GIT binary patch delta 64 zcmcb&obldr#tGHz0_=t>jB^z?Hmwd4G_x`=w=%KRHZZU7Vm`Ke Iavn=Q0CM*d82|tP diff --git a/favicon-32x32.png b/favicon-32x32.png index f715cae559cfaa120021b9133a3914b5937bc117..8dd2848b72da85f7908c048cc8673fdf1bd39c1f 100644 GIT binary patch delta 62 zcmZ22v|4CFHM;=2#l`nmTQ@fSU>7vAGBCF?HPbdQure^X;*q#wayN$ps_0VDn|SfGIcrvp8Z~OZRJb8cL&-pi!C+{x z*RI^cU?^-cm~D4|I~PL#w0y68=#hJe-H(ySgu%G>|6bAF{2kL(vTt(h#{alV?f+l#t477gOV93Q zwemPNBq+=N`t>V!JePRZyywbTYu3b5!bwifpPsZlXYFSmSWR?j!{1Zx-K(ml^Owg%}s56>~Pvau(3{s=_zU#x-GRcM1p*xN^4m(P-D z$c=*awPglT>m*7_O779lbOZUC_rmDkqK``l4jlMwKWmspXiC0~RcEWu)Lz5k{QMeY(FZYMvy>&US+J`7#V&B&_>x<$_M z#y4UWxwyCF4!pL&e^mGryBV z8tCtjm-b=S&o)YLo*7NA9r^v~?)TbS!rJPxRafzr^Nf3=9BpR(OOfd)=`m^wCSms5!OU0UU z6ciNkQeKBN@@+qj7cQHSX0d+9xg;cts?BXWow8t%JXlXJulg^~cFxwx@()i}@vAB* zylGwWW)Q3^-7AsQ(4aIs+N@Z&_-4LI({y&k_Gwm!eN}$w8H3k7y}dO#O)1*MsS9h5 zd%o_*4wg<*iA8Mgi|l>d^Bc9`UNLg-^~G&OLRvoEm5z5(O;QWzFIhF3E) zPCZ?pHf8_*{o$sCi{CCR>6O1`YDv|5COwNLp*7QZ;GL?jQ^r*vX5&oxF!A z{hd2^F6SKBnD>UW+w%o4T3UYA$b9rryfe#G_ocYI-h;jh-vJV=1}7iik6yu%#zcdT zuQE9CmC4IK-)JQ|x_(KsC||qw!lYnUg_Pk&MaL~HOz0KaxTWj6=dM}qW=sx8u?DrF zyuS+VNcv1-_DZ;hZ1cNWZyFV|I-T?E#B9d3XlZGc&&4cEQSZGl>8frt6;j&iyqrwP z*ticyaLX1`8gp1wlE{S%`B#?n?MT(c(|5mB=#$obuEN^|`1*#wdPN-_9i0=>tohF0 z{~(jNqZ+OuRqt|!X=leHhn|-ws);?)*B3M{U3yZu&_mU3Q7e`^npSm?nK?z4zd*^R z!!CB|jbHL4rALK)lhf2&vrV@w~=-I}0}t4;~>Q zmDQ!$`n-w4#QIoyhqLk;8t?Rfe28x~$*Xa6nI#fb@j3-Fu@bA;_rj(rllgtU4{gFoDejUugIn;c2RCs+*rNYKv9ymR-i)$&-D(dk#kE@4G(me{wn@i=!`% zTQi6Ex-2{su^PEoSoCDuPP8ea*S29FI?gg}n3;c->wR{1_QN=8>^E?47np6P`>+-t z*zdOIT5&9$ef0b1Bk(gm{8fDQFj@Cf&OfYU&&p(zex2R;!PmE&G+VSfrx|I|o@+u} zncmO9V7SuDvd(#WZh4}J-$v`c^JkT04P`xT+$%1{82|Gg^}}bs`LO7AGvZ!}J1zMy zFaCIYx^(n?K)`*+`F0!kb`yS!!g3auwo}xl72m%LEX@onj<>vg`I4ilsh%`xIOXZ- z`TavVUFSw1ay=oLFY`?A{EgW93riP8T-Z`mwDWRjD{E>R;}v782g`gc;<&+^h1hhQ z4%>S~s5-gb>iRPyj|o_kw%4w4Np_@x;ZTS1(_yfOh)YB~nsrOqy~$cRx9sffz-2NB zJ$k!`MLbDjeX&-5UC6lQLCrfsT$H9sj@0n*Fy)>-O$o}0+{%P^f=2#t-rN@VdGSJF zeQlMNjxP3$!4J;Ur*G2J)8nGR7jyCP-6&eDF_o!4^SJL?O{iF_V@KRgHf@U&5a==C7QY{zt3T_fr#Mg z<3p$pJ_9>MyzJ}Op)WgGlzP8;XWXwkNlqMly33SK99X2ueG>((t?ONLRb)AC$A7y_-!&**D%a>~S}rOVUvcHMUt$ee&N!djUafTXW}`1C`o^( zsg6$QC-dH`k>Kb}M0c!D2Nn4bIlwe$F(uNK{sKe7pvxPDkc8rpWN)bZg?CN~y`@8ltL*avAE`?vU%4|*wJ^DQv(XbAVIhX(; zpEsk{IICS>=L84GFnngNvZc)C?0P@H%P%8*fl7~74}@-S`ZM2*=|-LA+XqSMI$omo zGjTUUFK}TQPTh88c3Cl}*ts)r_EYmC24RyADcL=g*umQ0R%2hS7Qygqh{0zJ5+J5T zrx4;5PZZ2|I1G@)9OjhN?m}F^;cyLLs#%0*&z=c7Em>v}cF-_HLCjP=c5J+e(`>On z$Y{E+a)87nYVDt+1It}fQt}yW=)eRUC+9VSwoS;~XmcbWAMBuMMHcKj%Fc5B8gLgE zCg$N48^KK^#l>-Ei3`1#L*{Bd`diPLAI!Ku$6~Nr{9lujDmJ;_Wr%y*`HsWuiqZ_${d-I_nw z$k#mm2x4Dzb2Baq+z1S;sJaj~pAephvf~2mqI)_Je0rmIbd&)i8jg<*6$m?V{J2W4 zd)mRhrvXbPf&mBS+&u>#3w+Sc_d>=pj(CEuO93E{CcqD zdi5Ov@XN_`T{X40r=M zHN=FKO>Zc3xtL1o>Q!!5R>||{&*P#1LnJCEs?eP!RPh%*3f;0?!RGT|VY1s~4Ax|6 zq1UHoP}F*qbDp|MSL5>oUjz-b6^wD!7AhP8=cF@Fmeq3Hz+!W{GQ>{9j?6G_Re|l| zSK6&$Xqcd5+f9+)Zjwd(cEq%y-KI17h-v<(wxiAy9R=?sTnY=pF6&1yvrAx3;hwT_|u-###Mz}M->l3ccS-YcN+h3@4-T6AVVqUBf z_^GSG!NCYUU46|sY&~H72hG7IfB;|DmSZ7X?fd?HA`JT`;GV|kyZ`wN@dFSXig0N6 zggQ=RomQsGTMC`>S{FY(iCZwx_3aULFE}3&{_$gR;ydT~g`7N`Y2oD!&nv%wQW9s` z=`VUrAAe=E0Hn$!;oL@S z(c;S+6(BA3Rr)b|n}^hLV}o?;hbi!5-WnN(4`Bl=bv@f_IZ#a>BIclSMCj2^_+ZVE zTH1pL(R!lAYyAyQWLS57DJY7Rr-4v^b@la-^A=Y-9ZBA>^^Ls`pOy>}v3e{T%C>K; zIla8Mu(GmpzzV#M7_;gHNA0wGFQr|Mdr8~~6W1Qe4_N#YVWoluDQ9n$r#w$5*T*PAjH;0Y0|gyavpK^Poyq%}al6IG3Vr|Kc_ z=e*FplVtTbgm)b6avSb&m=Lsy6Jgwg*n>Qqi4-#}6_vo0qBVQcabpMuD7lcG;bE?Z z;P5T6#dBg#%zE_g9ww2#M%y6pK_s!5n3xejrCeF-VC*#^;X&Hg!6KGJW|xTeCHm

aMSF7!dhfWkm(2&FlR93u3D?^#Mt_Be0uds_*WLA|0EB z6!nof3uNM|Bo7Y{qpvUa<9GzTc&J`#Gb0;cIsb3{gj<%8AG&r1+9nz~CpWJe!W18jtmHb!CpfyJ$Hbb_4^ zz&B8{6HsF^Kq5zR+sWH_L!+jo;MPS*>uX4cj^->*Gro54>S_hBcmSqNoB;430MYI+ zQ7~Wx`O@sdw?}jl3*O^^!q4;Sw~#fMYC~$FgP#H?$a(IZ z8g6DN(q|-RF!ap&mx%1u<#{6Pd;uGA`48uQjV)09yTY97^I120uSiKfgir|EA!w0j zKr!a}FMlpYWWlhEfH$vu>|v?{Ym|AVn|k|+{rtFg&n!TU@A)R3g-$O?c4AYIyaktE zydEqdRVy~%MnRDR+!FzOfU4NiP$VwOAk^+Ef58k6A*n;W8bb?Hy&Ace@d9Vg)SUk3 z#Epgwf(~(3qhqKc-fzcV<|O{2m0JLOF1u6T1g{|Y;O9}q)If-D$u^H{4K7aB%xVJE zS~CdgNj;EXpC2^~M90PwfyZckv7fC0ro+wMeFSjM63k^yx;~3t-+t1`-{!sF;%|hA ztyibgWV-TrgLV+#x<~_xaf{+|4auxlr=* zWp6-}0iuYst1b)(2nsT2vnM7qI}K#DJ@)bq2vENB8c4fHK(_s_3wk_xUV)oqfPC>m zL!7T>E1S=S9-+=x^k=FwCyLfPB5Ngafbo^|i@=70SAqN*Yzp-AyPL@YSvAbHiOZa< z!^~)N{W*()>%qi=e=}9IDIT zZOX?51qZ|CwCGXmyr<8eH3GhFcO=!=1FIMC;X@LvC+shk=pO-)q*y;Mg<$GkJoy2IS)FNmfMvGObcM!xH(bBTy(0JCSmI!k~Ze~ee-^EJp^_)be-x$+#b zk6*uDp*bRS9b!pZ^CLu#L27_-%R?}8L%=#A0*~k*;~@PXF~*@kdK1y8@>$X1;v`0|-&!AoulI$WShl2Y7E`(EvBxra&nL|EWQo z%pjw&2yT2r08`9{7;^H@(KjbM0u%h}n+;taMzM~5S>xM@`ToavT<I*1QP&O1p=)^0v->p!0v*svvVOh z`v`DC0Nmoi?J$T~#sNT#`S|guu0QqW{W%&cT<13`7WXsh4jr<;KmcHQ*06ySA|PUS zA>)LKPMY<28>)4PE%y06&)@uR!WD07+r7*eII&AmJ2-gYR*p|s8J(_@y?rjqF@XG) z$0;c&e5BKLya^udmJhR7LzZc$4B^kii`O3-I9M$B(yILeGI$o15sw zLk{>J$|cQX*4{^iZ{ScKTXE_Yw;jvo;|((z=q3jS2NOSjya+BoWkw5#G=KK?$5p%> zEh7!_k+40v#l*A$6Q#^(Y<_7{R&e}z>n`N~GG4$X+{~-PrK_KRd zu2lfS>{#H-xH4A1^WYo6pIh}+?1!v3wc1W4MJpcMZ$OJRWG+62o9;`2)R65u-w>~e zi=v=9^x(&b^Cre&E^9eZ-Vg+~7-mV-FrHKJTe655}j!U z$z;h!;lOp`Yf}afZ{Ef3aM)E87;dHBtsN{bD>re7t%no}3&G}1jlLpGwSLXJXb3w1 z`_12pSQ)yB+MN*)V2`gpl93~MM^%FS-uo8D$7u1A2ELNd#FlAvF_W<{bwCu|{O9;} z1)wMn?%%Ihs8i(Zgy={B4mZ(?kNyq^eo@tsSKc(m8gLk=m{>tWCQJ_(2S@ZRtBnb* zZGOt`aLqfq3v745qCVKVK_T^ zbMw)dNeMyjETokih|xzZtzleULr0hv~zj<#*{I~XdV=?bd>N*M>GOWim+U*8IprjWGe4sy| z8mR7o^(o-g>O0hJaH-VUi48uklpgi%wu2+qd-R?#2GlQMw0UzFl z(|LUM6U)B3I(-VGWeJb5LeS^s-NWBW{Xx2c&4&Q)08o*K`3vKhAxGNcI_DpJ3eI}I zkEuSSdHgfE^`df*sru#={WoyrDE2#-*%E|T*Pu-Y?Rx8mfl-CSk(tKVerO+cxsfpn zy4?y-za`yC>Z(6lfJ|rM!JX0f=^m`~h~c8%iwI6zC}S}4sm}n@K+&Ed$u^q@>mD`b zHJ|E7hdKGwb@Td2P*h=APAp+-?y_-@7R~-vzu!kYQlQM0K-;s}A>i;r?lL}K zDM-r0L74^9aBusDLsr`6cH=VMxj=r5&%41`o1gcWb9i@(*RhAC;b&JrXn&MtH411I zK7&`V+Y{@2;eF!I+qK&|J{}#mRM`RpwSBVrMutc8J}NwHrVt4XRE$VY>ozf8me(I? zN(nN&y)65El(d#`Fy!3(M2S^h9w~P>`wKQ^ZoNBVJ@L7V9t zO9XK@j~&FA8{RTwclUnc`g$lTH$(Cu{nZ%^M)~FYB=W}<y) z1nxGgV|^5^#TSdI&;nc(RBYUs#08ekX>F{?VJw&0ZKJ)*ZcA~|pKl(2JRPFp>o^kO zmdE!zKaLy7Aba501%Vqa`}U3d!UZjGpYbO7Q&*w-p$t`(S(}%Fo~7My+D(GmO$gxe zR<-x6d14{%XB)nm(~}`CC=XYy6e8aeuBgNxQO#gHh3XE>t;bHO{xO2VCOn}wxPDM z*o|q!_SF1&+6sOfjH`To^LgT4OyGog|HQ4^#~|-p0?`2n*03(>CB$@H!))T6^kz$l zCJ)LyX>n0d=X(Iv54z~4chy!qOrgqOB>Tl>QwVeW(i4X9L&C#Er#4#}W(Snr1qX9s zktYS0J@_lzd39-c;Js-edjXKrpt(?1VcYj&(-3x@0vmo;H2hq=**3qSJg<|v&M94Z zr)4(J>cn*&NgbuH-DX4JKZDrYUDj8TDn+%|075CC79$uMu-?ljN5H`&Wr=XRr5}*k zwDk1xz*QRpwtz%bE5~RBvNytLb9z9C)7qn>4>yR&v>d zQYGsFC-6?pA@i|?1qT*T8mfzv%Zjxu9iVhtasGOh}`x;>vutOpg7wUkqk(qIU zlKB0sRzYCov32vEE~ev6?U}~!*(--F-{HsFa?-0c>g(#xLa}6axLz8Hj5k5WfXI>N zbc3Mf#f6bGDG#4go7mC)i~%f!GzzCr|LTlJ`wGK{qw#QVTB$i9V_a2fV_5#u!nr8? zo$yok0yA0B_J(-hBH8#kcWU~GM0}wJRMTc{xOAF7KlFo&o1Tu%L`VCe(P&GCEWA7v zzoJ=~4gijWy2TYpsiot`KtQm^<8rwV3t_syY8JTOz!p4MTnkhf0rNR&JR@FvzP>Uj zp^>id4KgFXbYp-*D6?mW0*^Pdn1*8P4PGmnAdor?C1-UAgcSiLWe;#ob}SF7v;diu zf!R5BY|wN#!)e(XUOoOwC(7u7&E&T@VFl3}5@eWH)qn@2G6SuDK5hDQOnsu1lQ+GY z8?*d_?m63&;ch?f4Qg_?1^k%kbJD}6tyu`wc19n)2sNC_e3RD9j`(F9x%vINX`QY77kU=A*j?Vl)BT@%)vT$Qrmd!Wk~^(BmzH$ zC}pIFfb!Tik)pfvo$G5^=S_fX7NEYIu3v*=pB?&j8C=XMYM7SB$l66%F~lPDS&B45 zQVI;A8r-c3)IqaTLwS9qJueG3<^-uWJLb+#Q`fs2p5tRSo5AC=(-WH8)@SopOPDvI0%R0Rv2)b&yOQQjb8DKS0d^-o_rPfE*zb z)+HIQ`3=p+x@bTrQ2b=uY_mZa*U6JfS7=~5Q~~!g0|~b}i+ADurK6-21-Q!ym1s`s zJq2OKM3cC~+#@vmBfla&giP9onp8UWbhNc;0sD6mypqhdYd^svW%J9SnqUP$7@WE? zRBb*Rw+dyw&rlvXlT!Kn3pw(*x}Ej*{^`M%%N>*1-WhHC+>9<1G#NO{wHHsPqhewb zG_y?l#l@FL&t#p3ayg11_d$;Z8ATw&t{oH<55XpZOUIRVbDowqpPHJohf=wWaUMw6 zYK&ABhKUS7Fe&S26D>t%L0M)5INpA)*+7=b6dWZ`OR_it0fFz1VI7F#w6h*ZN&zPy zAo?4hQc$sDq0sdc6fH6#L`m`9cds^rIL7OfOoePVl{_RJnmGTUpcA_5X^VByvK&~5 z5FFP1hv*I*hyd%A1;zsReRLikoHr)I%Ln43??$#WzocbpY@$hd4kzT^ML~oa1_p{J z!w2jembogaTQX76-%HU#oHQK{=%wbMDx&ONpv@zNsZJd44Q%1pqU3O_)+b zzTO`@84v}mvA?MFLr3+?;4?31q{qcwgJ{*{%O-8PFsX-hPG}Nv9J19RnT35KKf*z| z*FQ%^NqGxO)`-kC?kp^55T~1_C;Y`qb<<+8O0g=bOP@K#{1dq4?y{Y=QZr~@{}t$( zJH^n=m#@5XTn8je$n*+Adtv)U7dp?4szZ%0B_=l3;jF5OiAk`rb>6(_pp*J#AU@rC zkKgzZ2Q?bb6DP`(d0~4&s?-QcEUGQoDtW|$js(&&v%+ksVq~2zvOE@MF86Ie4cQAT zJ=MFWJ0TKJ>u_W7{_645-6M{6Vs38RzpeNDGu|Uc--oDt$v8;H=YEw$Eg5Q${jF1@ma< zdd-QpGB=PvB84FP@O#t3U+}bi1_@wC1zLe#IF4-r0>O<=4NI5k4)KRL^eYl77xka+ zmd~^p;p0s^3sHmwS|P!5j9JY78V;m8d5@Rr-StAZK$&EaJ2^h)=mtLe$PjnrP{fZQ zf}-t%RNbZ%ZBqA9K1oSK6F^S$zgJXDKG1?(735rs`pY!JZAY=F_7g0<_1d6KQB%C4 zGz1{1t4u{qduk^!Xc_F=%Os){r1cmZyb8*s(b+cI9Ei~zA$y0aMBVRzyiDH#0+5rA zwA__HxN|?eJib*s;%y7v{EAG8_JX96lK&w-EzaQ;yIcqlzo2+lHEMd;{Sd!S5@Oza zQBltz!=zoKZn5hONF*C_m>ot>-#0Me0rUwRddg_)lq^lkk!*koiPhp>bo@=gQ1`-M z=r7o&va+(WV^Ko&;fBFWaqv~Sy{|>tvG7?%VE6ya&<@ZuN9>ihEO>B?znjnT;bhkr zR8D2b0w^76&BDV}M8l00VP7^3)Vzm8jT=gT>QLutd~@tFNRkmr9UE$&&~V;Z=)E{7 zc7VH0*3MHw1(6arDyx+RbEuTb%gD&wf?1h`Oi&JY)@9An;>0JsRuTgW*w{gzr?%kG zW}t@34Jk92W(z+{^4=qhAlhsmV|{|8KUWQvZ9G)47Pmt7}e) zb!k)ykC;ldmE6E5Bp4A=(3JT@VBWTK&jSc4(Q{+alH6*F0HvqWDZGkD#D36y4I0DhtF_Qdh3TxvZ}(L6CupjA6$c zn!^2HeccnR3Yo+8u}0k`ZZg-e&)9GwSLk}{u>0A8Fi~J<3D4iRYR$~1lc;7#Bg70D zX;b**MuyYk%rd+ajWSuz`}LAS@}K8DF{*fT43)U6+NLN!F6nLNK8;`TEkc%5HXNN3 zeH?9&NlO0N(SwO^g3RbJTlWg9lR1Z@7yCp$v{FY9k4GJ{yCTel-%9~Ua zel89IqkKa1O@7Ol_k(65Z96>f7!vA?+xcc6RO4F*jYhI|2KcH@A=3cVe^c7*w#Kp@+sBKucf;>_{EvxK$to{Yy$0_dS$uD0*0^<-8j7Uhlc2zdbvxU zhkeSej1ENmx^yOd9(^jXyl;H##V)oD|JzlhaW*db5)xL1upV*-fuIS$F8FnN!|0lhzz$dn6-ac{s~7;U#(*Cg)1ynlG`7$g|Ce{ ziKrp0@GLiDm(7;qJLe+EkqQ%MqW0pDSd;7~UD`!qy;)wtvbIrRs8}~%2dvBMfATBk zl+DKNyGo>fUv7w0|J*~Aj;nYBNjnc(K*uNP*MjZbC_hm=B>2$lBy01tDg{YCQ&WLq8D|cX#W|m|R$(zcH_*7iTKe--n1!W4X-qKjwQa##y6|Tec%yvgotR0Q zO@@d&-dIapO6vJi9(BeeHR;usvxpQczf0*w9a3GP+OBbI#6jwnDiJ6cPQazD0$VWR ze+-jjI|a5VFEhBP>J5A2ZmM5hKg@N!EBQ~>ee(}%Of}(c??^VMRo;P#<8HgR0Y5O9 zlb)N%@&D&n!5_Y#8R^&fwoY!@93iHGlejl}IEB8GSPJ>>g z3B~GB%~`|u}c-h+L_5)8|xU4Ps`g`2sz&a z%pmE}GX5eXF^sEWDIG9P<$}eOn`?+s;9U?vbd=P`%^N@ykFr!YQL@78;?)hWg2Bip zem5hyy`g*ZcP0a^PM08-Z~Na-tJRfJBfe_?gFm;veSU41jrI!DG^mTJOtKtieiym8 z7#QZ*Vy3Lm<=s=+zLiq}?9IOa2YKKK$xYn6fo$JC27{fxMpH-UVG#Ak>Cll8C)LPbJK*Y?L}N zCy%{>VY{#px{`sWhT_q~#p(VL0Qr!ItY{zLe!0o{V0PI)IXs@b;BW#j3^^Abc(uyT z`+qGTv+w8D^KDj;h%7?{9Y)HtD3ZbAp2Me#YiYyN{!GBW)TDjmxoXGyynTFB9Ub$d zNHFtDfB*JP(!udut?D=PNMQ~UyXui{p<@ovKdNQQ#hrgYX68wKxn7keQwf&brG9sN zQ}U;t5jW*w5l|TMWwm#kDGe{}q8360YVywtj+gVAqPvw!mF&nu-a&jr=1yXPL#~n? zki1A3NnOfG+JEGTX1`$Z`rn7ViC~o!yt@z(xZ6&<+a$J%@5iTILPvfv|NTI5(t&B6 zQ8PNTW19}=;zg<%6l>Ntwq94z_gB%6XHc*O0Le@tD? zv*<&B%kDyPDzMtOV@87>q-@HG$^X~`i%J$f8JJv?w z{POSPtUi(N{&#DsX()Su+urpjGs2|iCs5k$w%I@Q=e5B4MIeH@(f(;w``9w6jIztb zO_+|km~pEay{5`$h=n~gD2c|bM)T*b5;#oB7xw?Xz$;I_K>PPXh9?@C8vWl31!?39 zOn)vIKG$`Jp~mg`JF>gkk{x_O()-6FGI)Ql z_l-y7{u%TCFc$nz;>Q2^vlqSZ^bL-T=IxD}l-RkVO{wtkU%&ZkMQioKuyy}&UZs}j zNB)aX-LKVc@?{*_CnC}%_D`2g|DA)eRkCk#Yy8tb_)&w02YD;EfWKE-5;)0Ml>c7Q zm_AFsLi_hh%ajoLO5@*U*2wuu_GtgHtdVJC5Uc}*~A08j+uhD0`^nZsUcBS z9yJ?5me_A8BKD3S@(ti^l6w+vD*u^|+gxjuWPf_-;6WhUhj6ldH^Hm4LSqA>Ss26} zv+d_b;~@c|9E8f*yOu0dm;Kz*%74tl_5Olro7I#}1rKUiY651ZjTz-MITo=m0u-nmM9`H2W}!kNouxn~X_GNy&iR z6G*2Zl}2qEtY!?g8qofOXB&o2^G)mfR42O*vg(wGJy5>{_A zJHGg{k+<+FlxhcEq_*>#XyN7Ner)706z=g^zlI@MJ^dfr!~dm>;A$w59SG4^>zL_iVj?YLeYOlCcV!w_xdF3t)kLF|oU5R_dKA!v zSx@xcG6C7@YzY-V@SC7yjstQ<1XQXhYem8<)S>{1C-IjSaGZhl!za@VQd57b-iMgh zwceapJIPtKV%pmoj5Xb-aq!Jg@6Xp1bGJ}ji61GE*)OGbBTx3GjSgR_I?dcxGAVoK|@BTw&13Uxe({^B~%y+`XI2vihC?DhJzlJ=uwL z;K4PH+gy|fZJx~clzE}-^7?T<9j94kGJVkR9cu$scvT%cDb(5^4qb0twoudaVR?-$6Kk%}6?z|z|CMAhdGC_u$PO2~EUl)`bp_}`n6N$L87 zk{4B98g??s-v6duTsg6I0?HxmSP<~>&N;$EIIu;qe9DCHH8sl6$by7uy*oCP?-!31 z?z4NDH+itARq-QiTG)&MhQOweE<#-!%U!=SSv%Y861gvu>HOm>ur=!-HB?U5mxJak z9bk)kXf~B-+iXeJG+(uCah(($z_kY1{(x=nCok^HZZ%xjpI`)l1&a&h(@uao$03m{ zkVQjoIs%eVMO$0jcw#;j5I`As@6+JcZQJl7J2&P|V)9#sY@1u`qIMTA7P^H|x(=K@ z;&u(2lA4t#&V$|^6}^;@p}jl%kTtzI2`T`@XM4qe0&R&O40X6M0e!LYrqkn~IRMt; zdML4k&#UZ`^o|I!C=(Bnq$3gEm|P=~{bw zdO!uKVwMj=Ui*Py10;|i>nzd*jtx1pJm=lyQDdCTj zvsglLaq)r9o*LlSXNrDqCWLpD_4_!+OOC+etOBh*1AJ;6P`vhizS3G6sCf!-PhD)7 zv&MtHIK2Zlf|L8{{?fZ*-uos^6*qw2YWCKt7vU@Y0Pt%%b60y7nO5|Ix z1X1f_3n{%?f3yIfh>mRMpnaxG1F$u$>J9LxfR}j*g@qgUFMcI&X3ZYWeS>1vUIJ){3^-b z7;#;w<9!UwE{IS27Lq+Lv8yg8AG#-T>jklm2V)e}CI7j44aZk)rxY%> zcCF2=mTfbAFUBLE#t{?#G-cw-e_o&1-u|<(o(g3HogTnkj{dFN^+aRw0 zO=L?lU^^ijlWHhHNJ=bT zGRHOd3{R0K!}Up1^rJ?L&LZBt(iDy&M_#ObO7G#|d()HmE|%@H?amqSPjnU6D*l}zfgJP%KQ-a1mQ-1CO~=;CW-W!fiL`5oyUCQBx?T0UQCHj>~L9M`Gz z4GH%OD?CZ;4r{-#5xvbk>UvV@ak_>2@;VFbTlrT!t=13qKT_9OJ2ED8KY7LL(V(I? z3p%F*gUOat?@9T`m#*+dG1Wv@YE`J!rOfmbecAq8=U=URHR#pkFkKP^6S#klDmGviU&OWk^-E8!fdMD~ z!)MbtAx_Se^b(VGzw2N0_{8e%&GKaDb#wM?+VDibOq&(!bcyOd+nd9WPV5=!8N^rm z`YFc{Nqbg4u6&O4WE7Gbh|{2Th%3E$=QnKpDzChQEHl2cgr;A+$(L8$tYyxHqI*`J79OYX@hh6CID;r=>&g1(-XP?Zerqm zf41c($@zgW@rVyKRorv8{mj>cYVP$&93f9wzPBiOmOEbEa+C23OH*Bx_S4c}vl%2j zR_c0Icl}cMt&4ADYx&f8SX*h1H^lAQLz1Q8wsSKO7VWRlNMB}7{)eRf09&YeYT_WLAeMuM z<+$H?zz6Xlkw6__Ad{CKxZKY=8FA}eQVy>4ZP5&4P7t?c7}wEjdQRU|7Pb+p^=?wi z9o7kVAkUqv`2~2f3-orR>FIkJ8nhtn{Qdj4q%Ls#=uib{oQsFLm3mH2PFadMv{H+a zs?Qj9C$LPbxB2^qHsSvcg$d5a)h=}I2EhucKj9Ryi-i^ zZMVJ7G6NOwXq|;NY&Jv~y+l!E-raI2Sz5;ZRMppyf%+<{*gt@N7^r;P`z`|rj)d~U z5F`dlpjZTHoj<4|K?Hdj)pVgwBQ}|MNoqe#-Sy)X4TV46M4!wU$+L8+klS{!$;C1F zS$d9!vD9lvsVzI4u5B!S++kDCyc?mf^UI+7DF6fy99TF6BZg7cQFRtda8~6^HWl{- z9zyPflsxF{kB|#?w?LAMgUSl@M#n(tk@xm_3{zaUUC7w9T4aY~g}PbQc*5LIQA(3m z&6uvAckriG6O$qAB?!&&s*illUAazvYX$R;!!{xLr>8q?d%bZ{&@cj`p+k(iuyD|w zu?GF>aS(|p%H@vxEzM8hQQIx_)q#%5Ji7Lk=kCcF%p}W~sVr^-;`gfMDU~-lSG6gG zJcaKuTU_~Evh+&%xA9)i^}b`x_3J#aPpZ2c@1@+Fn0{YE+lJqWFo(#zZkhP?$8RlCH-ttp2uTvJrnX#NEnRmk-XAyshujzN^Mpe7Pfvj3_`4yEmHEvML?KAyF|HbmjY<7ExSu7 zP}3dsV{z4Mpu!@^PLSY%25O>!2rWr7rzlOq1cJ9dqZK!c*m|ThPPUWZclA!COSk$R z2JWQ6YZPBIQ@-xr*k!T7a>onmp%;FRHB4MoARCmF zl%!-j6MP-*FA%(Jp`jPJqHi%gVFSW#BT$hd_7R9mgjkF^^6kbMkL+NZEI9+FpK(Ls zwpYq`iCp=nKJB#FSnahp>8Wv5EHO==3$~^hf8QBG9!6Iz>(wQ+=+KG`z zRKAmtcKPkwx0IbldZjyPSj4rUA`0cZc=3gABVyd?_S#9=Q`>m zH+&a=ACGTVT5k#ucpYZv1-+Uu30)|h)}bShZWp^I7LHL(d@T~(_^_>@L7%a5VsNZ9 zS0I0xHh@J)d{HMUI-3ZT-YH-h`)!;KuMcc|zH2sLaC+%hTR;@PXicLkh@XH?#(``Q z6oS9&*}h2qK`;y3O}+9957}@$1eJ{2+U`#2Kj^7;GO&W^Wln%bM@S!VQ7B0UbL4P_ z-nFXI`iLZWt=)4;miO_&C(bj5GHTK8<5ALy?j(s*@Y#QOq@a6ul{v7Ud-Y3Gs!m65?kAA@{ezqLG z1qXEm+8Tq{5A~fojOR$haR^zgs^;GNq=tInd9|_?pdQ+| zNE!?X3&Vq^8&pjALQ&i$*by>cVlx3yZTa4 zcAI6vHJJ&w1hS@Z4Ycn(&>S&QFdquMi6;9%pfpI}1@%g{L*up<8cIzKI*A8$?o2P zHZ|(zgJGj%4S+w2OOt-$LC=KX5ZR`S}wkH$eK4i*PGOr7A~ z;>&IS`N$}=NccoJUE@v}CH5AuBUDTipzdTJ_Tn#$t2Xc25&v|8 z@b+V{ha_0;u=8OP9UFYYh>#mmqX`*6H12YH7MmvyJ+ zN0|rkfF{z|k^DsF#*IKYMgdeFpd>y?4r|&>J9R4R{~d{I!nginQ6ON@v0QKffIX-W zARym`#>Vj9M!m3(cfV016NKIy-{wau(42~t9O#G@5U!y2>gD~tM5i~k`1(af*?P2pEG$WvM*x>EdPaZ>v44k-(KWE`vO=dILCcU8oHo^NUe1JU8Q7%= z*rFZUKF{eU1OBxuSAGl4E-N7NkO~wvb#s9nL(G0g0d$X`LhTusj>Ii${JY(XRp}4e zl3>U{3KvY4P{Dn1(9RW|pP&Df1e~2RP)3Nmh2CmJG9ytZMB-NrTSE0~gQk;1Ln9;^ zbDBdpnno}fPGNA7h!{lRb*|Nv0LL55f~z!wMMOsgTEhB2B?5hkbR?iIAw~!3)WJz5 z$)I(G?s0J(_~1JSZQqzV20Km4;Qk>~X(X=?#YrErk8W@1Zew zVZj#J2)7+Bzz$*`hzIn56wR3$n3~7pxGQ0ZiX`t(Zg-km} zN6t;2(nT9_BlIo^1Z|suNDvRadcjPcEHr`2I3ffzDu9pH1k_>1NwP(@c>F-sHxgmCDH z4T*Gb)i~&JCcZA(RO053!291@^KQ;1QE~8ZWcZG^esCm;zsr-0KOt~IjIt{Yqe_RQ zN>CU@$B94?0_qc}rl&?-VIO?w+p4zR7kk$?Z0`A0+rirXapp^ZVsGI?LNvBG-SFEy{D-461Sf^hje~Q>Uj2B}B`~ za?HKhfu2-spiOVX!6hmxKe28_Wjb9Fo5N^}&V)D-YAXp^Y1L;tXc{0mq4N}=DZU=g zQy?GzR$xCXa7Sg~6eNrg(TS#cmgZBI&HVQR?YuwK0B2Qmfpvq95+9l;Z#dn-$6WzP zJgJEeafDN(K7tI&2%;r8^-v_;tqBn&ypaA#c}luTX@(TWGnspYdp1WZ^Zq#(8TFSg z0gQ8x@d3*uk^XTVqnQ^Qv*axUN!Jw}u&ntmD+W;Rq3#Kg6T?v}&>zl_an@05E&g8r zYW@ubU=2P5Kxz|Q`{B(hZh5`#5gbhyxnk~3-^#apMcx*Bd1x(cQ=bn z1UAN??>-PL43|5)3T|DwvfZ2x#|}x5z(4B=UR0r~fum^M&N^42f+m)<^KpM1ov8)Vh=o@e2!0drEi|)aVya zxCr*qFUI0H^5g_Gsns`ftHZGou-sz|U9wuv&uq{sgP;`vou^jc2aqnq$qvwN2O$NH z)kNqD9T|X&`uzDU(tk^=RUGjx{H|A{+>~HrH5JBR`7U2Gb3NwZ>pa}OtV-vp57R#5 zeq(KwPfM>BRcdOq1+YsuQCtpX^SC_sXic7(JP#e;8ncOC-{()#nzToBqcdv?SEgmL zQSO7#J57L12$x)tCp?~4X#nN@_^rBpcQm3=Y@Ju@TMApo}@criqo ztZRA9>w383+oKyVRx*U*5Fkj+uA0iqU(hDWj>Q+uX}ly*Y~TI>k`!DN91fae#F+hL zwo3>MM1A4*Tv?rIT7Q+V4R%hJF2H5QHOa%e!u~9FG1l3yw@!*e$Vhj*LbC~0a|@we zAtggrJC?e3gEkur?N)m z>BJC}Rmcq4ksRL1tJ2au0@KsX(U4L^>o`pJ^%to1_Vly~?xEI~Yt|h#_v83Dxg}3- zt}RKDCTmw-!BBWL$upbu>j0Z65SxnEvcd(V8@cD5aO{3qJ*V=@gZq>|EpH&`W89+S zBFY&R@1YC}ZQoFIDy*JgA%(3&TlO1BlDofEDyX+xgrX*U3hSk)`wN(wBK^Nn}h68js%l`>1e$4C8Iwek=d zCzzGSVd5R3f)a;q4y=;U2D=bsMn#;C7kqkgaU61W1l(#NzlBL*DU-G2ME7rDPfum? zC)S)64tN~L|F!bUExjXIl2`9qvL1(KEjEdHTKeSl^LEQ>r|ExLL`T0_XBy*f6u_37 za#s96_toibE>UW{x5xhEh_@$xMNU!Cm|~W`6b{*=$s_L?3{VYi8uRS>)Kmo#PYLVa z>041yMnO_Qg7b%K;(%9bMUgLd$}{SS5O}ABHi73ZLroI*A%t~(`E9ig#zy_?PT5!9 zVaX&^T6uqQzawLCC`MO{b!hVqc->>y$Y}V>uF`ZFduDVobIPTdC1KISCVDo-&iOTi z5l6;0>pCXg6`hj$kzKdzjOi?&wT~l9we1 zbElx@M^Oxk7`1#Wci+@Tg-!-#oPzBrs!9P{2**5^sKP(3`YV&<2Izkc7fkj!$1(({|YEEiz zG_ggu#=agVN}s3vMuF4^Mw37NFbYlmRGVN@O?xu@4c3WkDA$;+_3PdiCwBiDkimka zi!bJ=i-z2I6jxx_abrtGrF0PcOGwi`wywdc3l03$9Dyma?V@TsRCooMajwA!ww9?) zg&j~}YN-JeW!Tl9CL;&JFkz0c>TP{P*?Yq9yl=%GqzRL!cGxyPvZh7t7PMXkk%#HM zrS~CN;JPs(xrV4+{m79!kvjrzpFiK=fnxIS8}bg3!WLi$DHIExQzQ;t4jy0Rh;7Yr zct<(4BuwFy$Hze~P3AH<=nmZ*z+-0K{4xMwG$mNmyMjKOvi8ohHzEm#m|V24qy@(l zi_)A*ShbPO$@=lg@kyPB2erG~4kB(QSWmIu9u5+Jqfjz4i{X|+#9BD2^Xw-kw=x%` zOtbxa_Ub?#e6lhyl0~1;ClHK+a?*dt@9S$1Le)?bGN+Ik8T}5L17r7q+`7|C1D9Jp zpHuS3P|eb5!x205R*Wxl#g|odQMbNF1~J(Uuzl*_113AQ>mn<~h-hPS$O1?upCzT0 z&04Z48s)DT+!4q)xJMm2Vvq#%6VhhybwG?PE=_0F=UwDXKm)Fa>W}Lr!A^yy?BJDj z%H*QIGzP$>^!C;n?vSo$Al>Is;@kDu!N@fajlQUTExM3c=xD4EPiTpDlMp0CaE%}e zR0Ec~WYo)BDpsysNtE&sR6fufNmFx>;qvKrPtRzoPU|J5(P#<{B}?ud-8f+Pj%eIA z_myfE(VDl7O{ZXj2ivUic$0h53#vahIXoL)%c3V;!B@MFmU z9^=>}h}CFKe66U3oLa8lADt!P(#0hulxKjS^LOb21R?{+D~0q?>>jmS$Q3~{2mGc{ zMGJGWR4IV66iMn(Hkm`PrJwDZjKsZoq+#YGOtDPQM6zEV-PIKoVrUi+HWfwIRu=vY zo;bO)h>{i)VXD+&rggHPTNtdLD2D^_q&&|d{M z_E#R)^+30Q6%N0NWy6!dmyFz%nJg{-a^6qj-I=%i#Ma+$eK9s>#uocUJ@WDoIGs$V z&&};O8yT|6BI~L{ej6JuwDQTjO?oLRGLtkblB+t% zxhle>ONfBY>4h*xm}8YqshT_QFcRlnq2QYS;9xDN8bm@-ONwVq5s7D~tq^6m9{3jJ zaU$SaI_cu)3fLXo_RAezU!@!pe#k=1oy9}J6Fw2H=YQ=AG;Z8!d{sm_ z^77c&(#RK%gDt;>qD?8#OuPwBUf5yB@_;~^pSnGXKwvGI^j>w+)(tUbqEgF?2LErQ5r!)4=I={~) zLQOVmzMF@8;`%{S-fud@Z+Lk6%q!_nlhta68;qV51*L8JFV0WFpO@!2!l;Tc=#Whf7>qDc;*uj zXYU{@^lmY)dv%S$6ru(fYmA&Uz0K|%YF+J^Ey%N8wwHxGX?_M~6zEmP1OOvw+TbabMZ6=NUr<@UR2-s-b8iRRu zHGI?4I;S!<)dLNjj@HkxZ}ju14Y+HtUE-I>(1+iR z(pKm1OqMoMaC8!kjlhl)Hsce7oSHW%H&wGdP}k)xA!1Xw?UKjWum{O;aoamH3L z8hSqu?9ep#&(ska)g8xnygogBZs6Czc03+qoldk4iWF@$_<#X+_aXcNq!Rhe@I(#G z=~|3sO8|Oh65#<`53+{1C_oF>aPxu368VGNfuu({a(a|VL~@1^1OgRd!3AlE#LXoUn!+6lZC7R+$K@YQ z6^1JM{+?B&Y3=_?!G;u(h?}8KHq+w@V`h~Cd|a?i&c=`v)yl(mw|xRUGCCiiADre- z(q_C~yQ(|IqGTJPx)tnTgfE}9xAo-ZgZb*2ZZr0{klAg6h7e4bxV-#cGzLZZp!^FL z#sLRdki2QUp;o`c6Zt)!oFI%XihF+%`$7){D!%rVDw`5K@s^DT$A8{)OEu}?^afDv zw1Zty2RRe9{nJLTsm4rvDp$0>PT(4AplP6%11aH=AoM7`Xq(bF=Eb<&coTTAWFVv- z=77GZ&z#xYD|+%-cWyguk?WAkp*2HLN_#wjqU^q@8ln-bP}5*@I93rhemUx*&Yvf$ zXmaWlW9HhxS3>gk;c$ts2Ll4)-U81kWwzl&@zj5QLM}6wSjrMv%r$lT`9(lKV2%@sa#U76 z9shL7{5o`n&Pw-s&ivc-?N1 z_^R@<56O>oQcudzzZgtTKLHlfhM;vC9|BQmDbg&aOr4r>koPEt?CE32 zHMjlDP?;~_a%qwLZTS2t!G_3M63{>bY=V@!Yr?eBNwj`t7`Lqt^iw-FTRF?|fJg?T zdxqEd@9~4Nq|U7BnDPu`Z{pCy0r_Z03g6iV8$2)=paj{HAFe6_Zn$hV*89&N#xEGd z(`0pKhO(JiBm%c2uw6cX{s--Ykg2lKkKh+kK8e!JWUV*NpNCV4rf85N8;3azxyzW; zgd!>z#2oJxzj^`GKZ(*5Sv4BiT47#TMn@oP{mHK`l)VR0vA^(0{cMjS3W2e^1u7c7 zaFR`pLXF*Hz9F#Rv_(DTfqAc@{jk9Pd)}k z6c{MM1brrD-z-*AePV(H9AR&BDp2pK~(% zrJ29mI^K2o!l&XL`}RmVoe$8aoQ@aTu|g|m04cx}z)p=C$z^~nEZ;V9H*)qrUzoKE z2XTexr0+=gqM4A1Mi`HzX(Mm%V&rzY9NPV7Tz1X);SZsw0z?gXE;Sr{(egl3Fu-=zSzUIAEhDnoVT`*c#TKI_dRl%N}fwJr1 zb9I;#DENuM0g_x{>!B8YnHBGmP}Zr}tV0w?nx>YP6D9^(kQ@U8h3G)0SuT`Uzi8I> zfC?yJiqJBxx2fJh?H6`#A}i2M^da$4eD&%gKMmeh2+9A^&gm3(P)jUy>|M7&8;4^* zv;d6H3I~ot?*r8c;e$B5;_)4_ZNi;I$-5Xf5dnd>sEkbVzE_~2t&smj<4azeT{mPrRF zDVpHN%wzEc?PJ>}A3Po!_w-xVjT3p71n(M0kxB?rk410=I3mP^LLD$g>l|^aNWes} zqY;p9DBN`*Q74T8@S!*$GJgFjHb~l8vEzCOwg6Pb`Xu8btvcov&@`{zn?C&>@c7P^ ziDj&OeEt%b1Z}uB`Z{Y2u#k?m9L(?V(=#T#q3_Au-BjVQq&)6cp=Y>FF=rI5MJWkw z|GdPPnyIOjv4(gWOo=;p`WFcj+_`q9w+J&Sm@L0{($Q_~i6^V6$@!Es01s9;4rqRP zLBuHG(zoFh9P08IGl==;bzvWvG^Wq5u=(F z;|2)l?Nfg1{PqR(LmX1mtXPKo?D4uW6T+Xo%M;qwQMjB+Tu zFoW*Y=?`!kf%3Zwns7`R)*<6Y}`3r7oO^PDKWMbt`Ttf=BHj!hB(vnXP+#RN~}5PCH&%u zY&)gPm06YnssfnEjjhA{GXf-kzT~hMSTLobNE&5mld6Q2U$hEwc{u3e(@+0D`@-tT1gMfUxaJ(iMup$Sbp^Y{Exj{jb--o`m)6I zR(rF=y|>)^16B$6(0e96ZRii)&Gwx6Ll){EmN3xx`%kP$^aO}cjkN^elj>feF!RMvS=Dk zP|za1r4s=JCtpFxgt}FYb<@3nFWMS*sTIU&#>wN|0Tfs>4JQ7&=M4OHB)sWiW0W$^ zipIv&hD;M(S6A0hv)2XsUB500=#66Fz!vG^NQzrN@$pRT<-522{(CD58I~~QC4}3; zs+fT{=98_6*+z9k@Quad+@&b7xPueFS9?^xTU8TT{uJ$x1gFynBdl|ZFc|>ZQWOby z1xjkvw&&-6yXvZ*8Z*enhr&fmRn?nz&C=3R&4eyQy6y_v5Q>(S2I0NSI-UqBW?$(< z4Wixz*$yd*#84UByLZpj%|+Q03~Lxvh4baPx(U3gFH=-f%z1B)p{x!fSxRLmgkosU@ z>!jKkQ92?f_Sgn=V*C|NO9Cf=@pG~Z)_i*_{E*fl?&UTnytSeRV$nm6IwDf*H? zX@pQ>GO3JRU9RRp=fu`AuUWHh1l0s&V!twn26D#Yk;3HLJ_>W76@YkFI39xgIurNB z_lz1Bpkjs7gdAYwu|-1ofALE8e(W{u^AkUJGA|-G6XP10#rWeb#XkXj3=#e`bzE1% zV9?795dQ2qc&5zoC^x4Kx3R8xJir;Q)7^&Cvv!4shO+tgKiGuWOt}LSr+)VgsVVQV z>{MB3JUWYi;;uI|trC@b7z~zv|lQ4t^>O18p*xkeW)AWaBRCz|!dJ>x;xDpj}uqMhm_*5#DO2^jJ0z z2F*w?%Sv(^u%WCy@G2#EYKSI5!9qh5q@{O*W}~tNphP6W_1Lpm;WWN8>&3*GDH_OF zF0cUYFq)NUjLT_-B9>AFk!WsTHjHd(l2=)v-r073qGmmrhlV2-5m!Nuk7W+%;0PQF%&}LIiyBo^R(p z7oN3i)^{re>{vk`4r$bO&w9o$Tl4|CSoGw%UO;~YuSFRK{$YTWI~1{(UmOy*4~8<* z&hD;o8)!Ejh&%ZLODvNqkd~E%#)rU7!-1+JvY_*HznrWasGh^iE%5BI+py@qe!O0` zl)U`l*gfZ#{W|`GW6w-lehFWqUab}I#BSMzmp|XzvCuhqPDx~`Vg4Hb$gNR#0;aNq zZU_YSR;~T;=iGP3?3lV6zczTO-L?>7{^h-}hu`$)gP(#v4~Ny(FFZP{{nX=AEgv${ zqz0=8Mndw3{`ZmB=kyk7P%3D^u1YN<>oW@y%ZyvdtB4A5Ds; zeNj@9xUKU?-^lz)q_HMBB7y0dCjsct+$$nANk)xe!`S!Zv<~C4zdu*2L$knGfavmt zX1G`nOtbV6w~hy$3U!y=J-doSYhOHj7S%coQVn=!ZCgw5_`MGq%|KV#)ZQ-9)^fp1 z*(fYDYoc>n`hcj8xwJ*s_tdskfX&wNBZ2**GZL|dy37}MMLu!U0| zKE;k>`;5ZWK_tSbSk_Etc&?2wdj94bU&NU59^;d#Uo4Bd3wOoP9=xFhdyZ2dM~5pF z(Fjcj{a1pEdq_6W$7l>4OdkM(cC1&O@pJ%dXLn4^48JwzG%Q_{c2wn(;!rfyyZRr8 zaOBV&HA?eEMqr{r$?Mm&s7z*TOp1aAFoo5lkTY(`q zx31>8NSB!X3Pleqp?fKP-8g)8Rj4#Q9`cX_gq zsu;nlY5>tC)d_C(9!U4C-)Q_4@fN7RMjB0Z=6H;@czDOpz<3yQ^JuIG&fTXd#(OaU zyA?XuA&>`Z-=~2(BMeEn4VC<=igjU~ahkbS!#huB*JR3~k-d{IIsTxkzutt|Vof(H zKyCw`fARQnnBixv&=91nGK=wgK4&v!6%`e!TgMhlt!(CRahq+kK6we#a0PwLe5z4* z!QM?tum}$AC@0A*dL9bOG)LAD#6JGs7nWl8Z{6dK(7foEH`SH2+r~Ac3`WR`L;lJl3WJ@glv8e=n)=%o``BIe7H}YYVMINtCUqKM#(G+($;L5`u+F53ZsBg{~(6D57I{gBWc8OBIH4Y z3E)dCab@Y!iR_bT9o4Ey21u92uv?T)zVfL+aq`N2oBdm+_$P;@-TANs=%g7SVI~Ws zC-yqJjX{WU&WIL}Bt5_4M?JCr;&D63;&Lsu>{Utk;svKmHIM`b?l^v+X|Incz3P z8QJPPP;%3ghNrvL7ISnTAJ>heqJWz|9QHEf!Gi~Dg)RU>S8(YL=}bfW=Kz+@$SfQA zzDyRtZK?!Fc}X#^!WK}sn6kHzG~hVsH#mFW5mo0)`5eVfLgUYxofpCj)hWLc6Ex#N zst9znjwF-PrPZ(oo4^0w3iI_GnuS0kIlzZm{nR5!Xfcf1qv z$!oa7v#NVqmO!^cM-lnNFs(KO8=n=RIS7CPX^WyZ3VjCYPR?%&L(Q(!sf>;BJ*9eq zPmILHFv1Mo3QVF7_w;0#nwnamlc4ce1vTxM#wg9CUqxpm$|RCYe6%R~bL_nC{x}}i;ozw!9*cj@oL_hE z-i?8-dr%M1s48mSE?>Spy~4UE;PT1DgmZ|CJ=$PI~sn|@VoF~?pCdSX1+cz=6fuX(=mz{KdG09x$oA7n&%gqd; zRVE?_8PTQyK#~wb&ZNm19St_>ffLb1jAYNe16PEB1`3|d0Ix@G6vMXymhuxR5)pA)PZ$1L#@ay8M5Dn$>b-0>6WEg&rdnV68VEbPkW8+H`z z?5WV)d`!{R(bZNjb<##Kc=q={2Wu9zKAb&>Tj~_>#=MktkqFdC&)_e$pV(fMC0AqQ z9rQAoOs@x^9NG-F&5t&SA{&1aqNm`~Vv!rwOs$?dmNG7-W-zM%8A6mMMmtO$P!2Z@ zv&6hIYx+gyY;NvRklFCHrG0N3Y79oZtIlw?#%Kq;V8{?K}G-qo{Ki z(0l4DPqrF-H@`1i%TmVn&7QC&8TduZ%=|wyWyjxoo#EG4C<%QHkbSi9q7{7_MhiF1 zt*PO>U4_?W?llWKL)XstMZiCwf*W=vs^j$SmDFXp59tQ&;Cl8>ch^rhUR0@lSTW$J zDtYEjoiDdbtX@d*Pj};1JTeL#n$sgRbE=Hx$2JbvOg4(~ZnGV| zfqSjaOZ;=K=5xRE#P8cX@#T)kxU9YL+s}wD<^D|EKi}Z~-9AI>ncpt3BVF>+gURyM z$(XuZrb!^WIZm=M>XWq14p7U zazN#Qno%q`krz0EWzf6>aVspdp1dos7C{ry=c>i3llQNrd%p;oGj9OY_F;_aUaZ^_ zATKByMVN9n)kQFT^+Gk)_G0C&QpC-eK(CmV_Tj!eNL?IQ#n}9P*brz^B@B>6CwB3| zg`gay@h!dNSE_x7y56dD11U?_3Haz7-eu(Ew9t=r^Vm)$BWXt`vdu?tg@-5vb2Gp% z8JQL)?^*Tk?*22zCq8Y3=c`=V+3&Dypw6B>dp`d4Bfum~E!w+Er>eK^j)Gsj=|3;N zE$p|eQB&d!ie9m8BDUx!_m{tX>)zDia5avqJ7vi$i1MQRCKQVN`u@`B_^p7JH+!5I61 z(#*`$lGWA?X19ppiPan5NB6`eQ?@YG$q+`$r^j&+xxJk-6dvqRfa+6$;E+ zf8x-{h-6|WH?9>AU<*JS&;i^1ENO5j1S~y$eNLKs%CA09$;DY?@Z7-QlGQKdeezsR z7hCbM4B9*3Oh+}h^B+#uCsQ1WIMA(dpm758=@%Sq?K}$FLoKUl6~-hI1T2g#2y)M( zWJVzC6`WI=ph4s9Oqfh2A+88z13*k}&~wsJi4|I=H~IXw<4r4X)-#~2Kzv%?=AuxQ zT`^ZLU&b2ZHwD>=4xS(?Al4eFwo5U|G#d>OEbm2VVASs18`zQv@fC$7)6k7no0=pX z>acY^KO#$s$fKj9Xf-69O$Y@+95?Dw^l@=0@Mz=$MfI1Wd7JYe?}uS&MDd5X8utwm zT&-Ic6O9QF<~V|pj7COkNCLuPEW^1RLpM3g<>*-sDTYDxXyOzi{|9U*^z;JZ#;n|? zck*sfZjdUJ@_^7^0C0{Zvnggq5CsNO3yziNLLRcd7isJHBX%>TNaBLzACL_M>Dc0{ zkEhr{HQ4*^o>ip%6ecYhrjhP^b3HXR_4e)Cm?fEaa>-5D?ac~<#LhhYg}HYAOhW%~ zWN7c%6HQ&%OCg$SCQL%xNs}gRt+=p_hEGvIHU=wi$6b;cIwCs0(=~7?@DXpI2_{ntL|C$w_?X?9Q;0ihDYQKuavG ztzQNQ{W7j5Wl`AEpElynfQVS(Z~-a=%>`QV{P}bHir#^NRJUx@g{*wV#0@J~Zby>? zE@^9~r$;>KHdZ){4;$`iEq?7)OlPCG(0n_pBYk5GxTmKbvU zF8ijRAL_>21che2fA(xUi<+su@w%A~Xj6rm0LhQ-iBh=97r~9Cou%Wz z$>R@;&}4097DF|%xIE_KVU;#IL+#d8BnWbf^Mb@Zj0#@(4|+ws9M;j}{pDE7a{xRi zo_q`vRw7ESZWLd7=3xj%XshAkqZF?|HR=5nd-!?`HwGrC8*O&z&>@ZMR&!DG&}82w zOO`+|Zx$e9e7uRDSqv70XzSbUXf&wuhq?0(YDP`x@ARG}hB^jeN{444bF-7q@UdHL z`{1#iul=I@H6A>;kRN0<S)KDb&5TEwZ}%SG6;pQS_`$*TG4Get8N``8 zd-iOE>a`JK@&M?SeZoS_MIvMVIqA7^KVk)ypyW=1s0qR*?w~VRT!}V;%ocN2l1u#q zM&5y1rxAa6ofvdG0Q^K1H1}iAgB)gSfDDP(p^$RB0gM1Qg5-FFGl7`Glv#}az6I1p zySb(LBku|;r*DvGbc(XmW9?dDRPJ1B?5G-l`9W$l4jC@u;&}`BBQfcEm_$GgA*Ztl zsyCv%QN;hH_SmSccL1@EEhN2*8>pevD=rg7Nl7JTC-E)b$WSCs(80?=|JH(n3|*p&9w{vC9%N z&t~F^+RerdbVUP(V0k-At%EpR8=E39mPjz@(J1jb@Ep?EXSV14$oVs;l7RuqdMvo$ zBxcXPblc&S$H@Ies9Y6JOu8XVBaILTDE|2YMC@Y8yMP(?p+)d(`FT;l_M5{hO|)`7 zr^g)OJ%SuF>^dlT0nR=zi`Vvkame0jMp>kkQefOC78oS;{rv7U;RA1#p*@>h8i_UW zA@TO#m1g4Etkh#R7S2K3Jucc9E&Ch5*rn*(^in4aaw|fe1FPrH8`>x5G$SLu(uuoA zgbYE^L7tHwFndlCc0Y4p-V|#JMS|d2gxAtvRbMBRmVv*fF6ZL%by1Jap3m7+XLkHf zCklfh!>!9VTsU`5gUZv1TKnNdOU0;*q*ciM%H8>`!CF*jBZx3dbz#@k8zl;B6({!d)4+*W#)@a3r>hIo=PNk$p>xT9}5?Sh^Xl?6(&R*tTx*-2mw85$ z%Fa!6Mov#*a&|;Pbf5wv0H}^X-oEI``R6Z(-o2|%)|#U=0P;cKqgbAT-}m|U`&*C_ z0nFp$MJj#Bc3OSqAR2do&Hm_i>p8lre_gnMnS%Ald;_z%D+ z`}{ghOeR8kb32T(U3Cy0Bkfd3@fFxlggDWT*jlmqKthNr^m_x_6o>Ox8BmSu?%%&` zBfH>R`m;?JIX&>QF%D8D4=AIfLVY_n*mE=+BR5xBFI6*Y;*rXY9|7=>x=O5~nw+}+ zs4SZ={zABBsn+hzB1%e1|MBD2Z;eBAjR8^-Ul5nDEX3>ED_N5o64j~7*@_bg`Y9{b z$Rh~~&E@M0to^zTOI00v3(4g+ZaQ-e7mCPNsu6LB#h|I6fk;k3MCLezg@uv(18uuG zkdlAblEs}jiiJf)EFkv>mO251*N%(u;v5N54#%C-Uw zUQkLvV7CFo%aq6qA26|urGNKziaJPGiq zA@g)Ah?xqCHUJca3!Qji>4DAMO_`QWDn&!WlcR0f0eB0?j_gWj?V|+7Qr-;74(WUV zC4vMA0%vI49iF7E4p&($8cDXXGff3JIClREP<4)N#UkV_!Q%$^?~R(_^Z!FtYuXvK z8G2QS4nlz_NkF^{PNW1137P^+5Ef`aC|(bx-#iZ4lYYvP02B_s*RDkZBo>3A4FY4D z-i3$?!_nD4QG-ffc1mq+Z4j+F`B{=8FXQA$##M#bAQa3T=!~ua1aWZ|=&_O@ zOMm?Yp;-~)%g*#wSRygW)$|c!)5WNqqZJOXa)#6Vze0!FT zQD|>w%LCot@kr2`55FjW7<*D4x^WYe+Bp>jP@;PvVN@R5AYK_R& zXWw_{Iubj<9zT|cf-It3`RKR%v=9#op6Fe1=%Yznrx0(vRet)84(9INdg#=+wj@f= z17@}6lLCO(chbDF8 zFd-XK>j;CEkEQJx{^w?LP9#tDUOsD_-1aoUq{$2%Sk4;4#4gKj>1Q#MxMf=`80ORI3oiJtn z(U#2i<;$1*JTeS~p@QW4J>A_!c)r!L#~`))l_|8@HK`D?BS#!noQ~Ama;!t(vE1Hb zaFK0x-!-U#yfADKuQ~4mrD(yR0M)Q0t^*eaptV=(il;GRh)0w@Gx z-gRp5Q?3+QI&hHC9BIhhhM=K^&CrZ2mT#cocdW~ul>Mc_hxGMmvkj7tfq$S}8nl@p zPL@JZId5^?UHnGoGr6zDWQ#!EyqjW$Q6|$Ki^^LZV~(%~V3S929+>YG*^RQ5fLP-D z@xNl!+7bxI1&Kmp1Kd@~&!*O2lqR0c=sr|(ku-IZZSy#y69zL#^V^}zI;WdpEC~#W z=0aDX{B%TaqB*c(!q90iM8t5$p4^R~W=S(Zrx!mzzsS<1OQ|468{9K6AYCy+Lqvg2 zQMeuKsbNT_BL52lM)dG@C7f5=te&5Qd?yNk?#lXnk@Q5TPfuo2q#2H`u)4as=^l!G zeh)2^^^I!2Ut|Ek5g337JZz{u=`JuV)4>tOLAXS=7^9l$mVZ-t2Uu4vNS%-&&fy$e zgj?r#?%X*nWmHSmvnFOBFw&qNMLld2_kL;?o<4HpQjIg%V@hFT#AJ|NF0|I{$&)9( zL$ALh3k|lX4PmC-KMhj#X)9-{VLf0NOdF3S`8tNA)|?#fAQ>&rk-o}}x~86yLn}@m+L=?&7`t`IaG5Qf%wz=CGjZ3U3~Vy>f+iSPeivPZAzld2m*3c3grj`^gG?;(9+7UR*) zzeDM7xKn8Q%8v8#q*BWAWtr=ybV8>_mjEI>znV|jiJ9URKIPEZi!jmm#*wm{oc5qA z$sa+sV{%>_ZgiOq4?f9J1XA+-ZaL4cFO)2i=Tcp(_ z9ymz;BFKh%LH*|+TI;9Z0-*`zIn~^&9qmsw?dLTJAtz&a#<@GIpVNz?-K|Xo%Oiir$_fu&M}kDkhQ}5aEvNC_Ru( zP7<*3Rg2fnpGm88J-X7xNZ={;bpHC~)2wG;QMEfy@~&yAw3Ad_HeL(!5A{CYxOL0q zUYDeR52crpRSV>f2G$;^>Y$V7x1iG$W@2INiXZPp7!1wDGhLotSg6NIgAf#U-rXHF znR+B^!tUDC*0#5P7*Khzyu-GeH*d~z{?y#utU8nv!tIvu27+P=r(~JRJGNdXrV!QW zz);DpQSAtQ#Is-;K((TB&LvaPq7!Ec}O;Y5-heE0a-~u|G1ijPO#~8gy z2?R}sg-Il*Bst;6w#?@p?+h9C`{42EtN2N$DHBsN7~@0~_xJ6zCie6Hwj=&88cX!9 z-^MdBspYAH>Xe}&ANUUnKePNev+UbgA3KNfmJCdIlkq_=lOPHk`-R}LlaN$V$V6OK^m>8^ z=qvXX&F&??7;I8;21h0E%Rpc$b}-H$W_@8D08jd=Hbe;xNPl;F24C8@!8VM4;Q%rp zL8y>Ao2XTUQIXLb@(2y2!uMi*wLzc33Wq?Bx)-cdJ%CiSV?$i6Cc?2skJS0!_edT6 z{EHXI15IVJkTHzSc>}5AfPs}@{6Y*4X@wJ!xQ$ki{``^5d>~uHp@(Zl-;|uW0&*7o zEiKpyaB#~&g8;zn_w5%KiOF`sxJi*vAVOgISWZ`h4n{T(NX}t>K+}*}8jSOn+{D@g zdEN(F_{K=#hh-?joHlC_$+w`9s_!1Ol$f}tAzqO867G+Rh6ZgX+14tOMTzVhbhzNq zvA}!J!2C~&OoIY|()+NVm64$fef5F9k5EKFrH0RwfoZ+`bB7KjT%6DX%nie5BQT2w zCG!9DQwY%5Ypvw)qh0~>ck)eI*JS8GC5^ru?z_u5IXRf@pnAs*eM=cYKpMLM{()Q} z2;S?3m@6OcBl1G>nvpOginmUxd&E}tCU}gfK`t*YDk^#df37wfwGGkz07E9!k>rnP zY-x$Y?pZmqWA2vkG<5!A_07F61CRk2Xd-5&RJu=M>XBY;cQspIztp`djBIR(U!+{#3p=-q)k3_dy z=s)tY9&xzfE)tq3EC$0fG?!@mi&4ZxU0u1G$PeJFWDBN)jXdml8dhn1rr;H1e20PS zptMN1lF6^LY11a}M+dm_SR^>gGg-J>7^u;4P1;~$=o`bZ@zk^>Mfe0h56}}*_2u)F zrg-080}z=a7D>_HtJ$uSMyTv(hQi`lpSgUXS`Z7;>-WkjVU9B_ch9H;V1X5Ph% zUm{=|prPI(Y-tQ0$JS3exsU9HP`n6RfJqT~iufA+Rn^HB&>L!)I5Gd(i%a!@Q27Z- z6o3yFW@3psZCHscC^VDDo_!q|=`gm13rQGh3MzT*z*lC3F+*fe>44;aUJQ{;Wk5zh zP}s01GALNE+cE9a3MvKWLkp7eWDoWN)$GGYM2B*}O4sxsyQ^zfn1HHq!G&!BubOXL zp}*it|ByTi+?uN}A`K=jd7u-=oPVnN+Oucs!m3#YDF3rDdo-e-hW=)5E?+ruEGaK8 zAyP+N;n#;ZL3?amqy~Qq7(i9S*O+dCa~TrAH_2pcM$7^1tI6CIFe-hft_L&I$#;fL z=maTW-cL#4&jU5g{Zd~1;lJ)5HyAGc`RDxuLxLtJ;PJ#o2*2fA_4LUTB)|Lp0K@gl zl~HRuD5aPn6P(f;Ge6Lz+YH1l{`u#hs$~gk6QG5s!qa`LTk*W$UA}=b$O+=9+xNhC zP*;cMb5_OnZQBISrptm0rtvh5U;sha3)Hk+GqBMBbA-xY=g25lEafLNH7SX1Xsp0w z6m2M6`Or@JTp&UbAc781k(zZUB$i7{zZP>cJT-xwMxQ}z7fDYv=9N=fJ$2TiXlz=s zkcpEa8wocA3SdIJ=x>S?p4A*qcLyitv0Z}reOB6ZQI$DfF8gq>l!N={y zzCbb3=wTf(ZWm$YS(Vjf5XIg{Cj)xYcz_o%_}~imjem_|j<+Q=l9n|Y$+S`81hXGd zg5#H>QsEQJuy68)20)57q|u>vq~`WRJJe*LSk z6DFzTKfKFn`-TY(D1#M_^i+^7;1;z1%RKNMx&Zp z>MMhkJdCMaByW?!q}Yieic%>}JF?jPhW^4GIWF2U@`6UyKi7@IFGuMTqRW;&BrVTG z0W7GRb8_p(!o{nOSv&Q}f>suE`o5GeWsDCvpP=((ZE0R5WoX{}_!p z-TY?j;z^9^A9+Q&6w5_qYwh8nq>U+3rssNIot3HnnUPyF@#gVaw_34M=QVk+qW&14xFS+3vmi*%JU!G&>}Xl-PYnM*AWOmlBA)d0z&#+lMPkyI z9CYLJOV?>4w{ek!is%6%1Z2o)m5Itp?w5w)~&+ ze4mVy?$P9XQA2<7Zk&+gsD4Jj@dnLM8GO(ekEG-nEb`F8HLi*V4TQ`e)*oXOd9+iA z7rMoG=KB?K;sWJ23(~_!EVjqRNH9D%PRyqDT9h3W-uSXqHNM8q@^JbkCx&_^*Us|4 z6}uYiZz9|R)wmcOD_EVxE>mj3bJ4k`gi zlysmwMRe<$&5)y$4-|Nd&#Tl5#7WZhGnyzN0nsWYucJEX15zT6!3Kz=xziYR&ctd0 zOOBqMa%*!49zC7ddmju>ciOl`>C4%4hO-$1c1`*GU`X`LUjZ2>(gN?C)Ur*+Xm;n# zpD(&}=`HV+y*5-~Q$ZVv%Q1z-pm@kCIwoMR}ad3xOgt8h`&y8 z^wT8|Q4x`dEmnYs6VM7!97+)+58_Gvm>`0g1AESvYo7xN*M^rR?{9j=j-U&7N5+ace@;;RJ}BFYE!c5%*0L{ZAI7H3lDK6GRdSwt7zpwte~ zRn!95WOk%Xk0+gl#QL0!9k&#-x74#KkE5Wo51x-!ih{>Ows>k57B)aP9V`;$5jwvO z{)}k^lrQlPc=lt@0RZll;AC!Y4$IF|gt4J|@IHTjRf|^WdR}p-9ai#Iu=iEOhh6dM zD~<<_zH^H`Kh-$?%+NAn;os5l@#~i)S!fwOII$O2GIA|r)5wOESEF7A56H0uIor|C zZ=?X=*{8{VQzb!(SUa_^H10&V9?BJ+e_1 z*^Zl4GNl(Cb2VZl`$R=Wl~{hOVb`_@UAVYhrK%E5pLp_vUmesHPq4Troc7f-7SEhk z3~xy;eSiJFTE%p>o|-kIQ$j|jtg{dC=-B?rY*nvc<aKl8- zSwT_;PB#Kw&bjUKS-4r;AaR8||7}rw$$O$Sh<%v+=+->fc2CRfbI?@j=q@-kc4r48 z*#u%Ht#)9N9OsC0_VuRE=h4(r%!p=1PEWps_r;6lv@%e4(M(AeqEh+_ zH+Go=mY@_PrQnlGX7E49tMG zA=&qhx$mV*muP;W62_Bo-X=z2Th(aFKn#8boKUpuK`4&{IJ9-oS->uFsOTctIf&FC zH#BMe0g7m0KO>kETODobI6FwY@Yw(E+a2H+XnYE4v{IN`Y7krp5jUkuf~kfrv_jLQ z)T`$kO_Mw2|0wl{`XM7S^pE7z#$6`P0-aDX>iYtngQy(I14*H!*yP9^T}-?jouBgZ z>E?1a7J%wWpii+>oz6L07(+?M1vCYSZWLU+;8g6vX{4vZSKVZ6Y1r#E|856hVE2W^ zmGUe~L_>Iqt8^N{l%s~b6vNFG^6U*ux`|guAOgRTkT~-n=0cQdsyHqGn;Jto8FPf# zHle%zsRI91EB>oklam9wNn>#F=pS>Eh~7^cG5YdUh{D3RME3~5+ptFU!Vj=S!IBwQ zUA$Bdx!i$5hE9BOAZ_?cT>VlNjnw&eR zfR20fr#oBA-g+OuP$2RAHkH5cVfki+=?K;|);A?RkPUh#RvUO?{T&sPsIu=F$_K{p zZ^%Va+cc}WS2Of#BgfPm{_y&E+R%D)Vugi!Fshks!As@_97WTnmJRVxSj`#V971MA zo2OY_JvrjN%TQkD*T$NY{R>SSO?A_y0ba|zsKQG0vz02vcCW+!k&!FSE9|QEO&=RA zbX%72)>0QWhE8Y4^Cn>`&w5AX{4cgU_Ma8U=gH+&&~+)XLY?m_XB@vYYRh7=Z^k&j z!YAGud|vXX`_7(}IUBtuF``$EpDmsS_PS|S2c;X0u4e5Nh>Otdqaq;g_*)V7trrhM zus=%Ftb}ozH@4kwW8o}k>ywLnj9-qJ#qNZWY7m|WzfNq;3nyMY zhHY2TT(PVRMZ53t*t^WntS;Z2M)|GS8pAh5zz?E^z4c|Eau&n*ivSn9yG!G9i zm(yz4A$$Mj%;SoM0S>ILmd_(6-hUVLDbWAc2}M&qj?B|$txU_Ab~99ck|fIBFN?k84Q!$BnT5543F5YnAuBS3dI~d9{cuE61w^xfhbz^59FW?I- zkI2hkeO_pIrJ+Kk!&!gMrjrNye~f63kmLTswsG{u&Wb(VSwhDvODsLA*S#~wa@cQ= zp!`aVF0)-?3_gnq(H^Wna*Dcni7>>VuMPy!dwW#yE!&PtH#aBtj4pa*I+)wIi zc;j{L2ZnhlZ6ohC-1INlm_u7SGbZtJu_ktt3GaO@%Jh@s zH?`3JxX3NU?NJar{A20VOPMXtRPsd&ExI=_Jg=SQT}9dI&DHVvfXr8wYj&Hatc~C4 zW8u5T+AGw_;@;YsVH!`rVV)Zr=MuM|i^D33v4ru6xT{ymJAnC#D&1L2v zCNbC^yr1*`oP?~jhvyHCTz1p<60$Ap7)q*~+R-wDVZN7l1*8r?zx?WMdd7LH;_E1e zOpVr9RSc?JP*}mJ8{)~>?9z4LpVVL7z{l6IsGg(AY4Va?#(Dc7bH`d4PFihvm(G3* zjj)S9GSUT@^SFY2$-hfR+MW*HexXM~(R=)*+^JPnQxbO`+b@nt8kp;C`Ov!J#> z)A-%T&$?b&ohe%n;_L72}{<_hNFHYo9)5m}5^!U@ZFZJ`+N%+iqRik|YHMn5K!Vdm#@8}OcR`PR;2+8jY zVx8EVU+}S3&WWp;?H1-eQB2K~ZKl?0V<}G+x0>qpzFy}Rcxbfa@Ibpup~Z_sU&Hf? zB5r>a*SjIky>u=@y!}qt;&V)}j&8p0;jT;P7EP}3%1@nVX{~?9`%d1jDrtZIHv7G0 zDNlJHjCXrNdQUI)vuoQEJoIj+N_+7E)A>q97H%Eox6YTO7x-I#bhsyK;1yf=b`RI* zkgGMm=#*z1eqQvh^tx-!=QD%nSq{5p^S>VMk#03GI(ReHK-w$$oO?HY#4DM;mVCKVTU|jRxe&?`p{^AO9t;${qJ> ziiD(eN#xay?6&tGCCoY$JVJi^yfn@C&Y1--?w1|SoEErW%S>j!ojcc>lH13-WBPZm zJJgEh^!CWqj_n*u6&IDvh;)-|ion&cz;!8aS9D-LP|a5hPAQY&UPeRdi8q-q`J$pf zad_c+uZS#dgIyh2k#1v7%?1(8!P${+(gLPBRk{Y;8Px9`?|!RaNuE z(=|0Urk)uo9oj8!_UuNn&gw~LlRHkl`mE?WEM1oQSh6g|AYZNT+~%d?%RXEmAqjMy z>*MKM+|B${aZh2}ALXC6Ehtz$6T8zDjc4wTA{LKhHoVoAS}NUTbrR2oZoIp`*mLRJ zwsx=bWkYt2UF(w^{uGAtIk%4|G1Z?RxZm7Je@ECwM1XDy{_aC*mZOMSuz7b-y2#+W zql%$V72~r;lJ-4W=>6dH*w0uVY_;)+ujtXo9N*{}{_7UHSM#lOj!w$D^Hfpxab$AL zy$iC3cMLtypZ&L0Q%BTFw=r*svh9qcLaRVW}nY zpFER>?)&=7yu~Pt+_~cwlJbn6R{`0yAP#+ac5`G`Gi!2`HJ2`NtJl!pw6^(7ps^~&?;1NiqtAFNIMlbw){W)@} zH5K6wUxt$`ixHr0w|)GIc&-q9pOW~f>ew--1q_Cv^M(o2D`V3?$fb)YuUkg8q&jaI zG;E6M!J&|M7+CK+yXO!?GYm*0y#dl!e@S$2S3i zM|&X#^aZ3PX*iJ{wTu)17*DrGb%NxdCb_n5v-?mI+Wt7}RQ-6TB@%FzfsO-RN&yt; zmqRf_0D4O?&|GMxR`O;jGKz%t59J14yS9P}<|U!=L&;sG(_pJ$-nN3Cj8asEW0I1z z!AR=@=q8C8xFNYTv+?7L@g+teeOebV9n4?YJ~%W41&zFW*;Y`~6rcn1;@ihYOp=#@ z6cu4oy6*n@J9`v)znyeMQmPJaL2*gRGKd`B*AYW1&1GCv3_#x_ET+Q9M* zR%%FyGAnj-bo^Rj_D8*7F#YXM{+_$5ic;M_WbI^)}z9f0h`_2yEu^muBQB42iTzLmue*~*PDBrZBYxd6bg`p13&i$>(&D+MLSYb_A-7^=+F1jaLO z&YXq@Z$?@s#ACy6f1q3tD69+(fpkN*aCmG1+;ZAbP)V_Wup>>CE^q)Nqp6-|jx|%V zV9PU4w)Waj8I8zRC}THBii@*)yFyY|P?rs>AX@vb^>sTjc~Ka2Qv58xje-jn#K8V$ z^>PySn+NWXc6U_XQ(?g@n5+McbQ;1;q%t~~ zC&E{Y>`X|CIP(N}cU###IodPT{*uw-)xD6~!39}aHS;kUHpxi}Kp_s=J)O>-AWSVS zE&V!{QmhoM9LoGb21nfa4Q~^&aWdxE`h^QFA z#T1A}+C&I$3pwO#rLUclc~i3d;EU?G%cruFxO-~@K)RF@3$;%A8dcua^Hi|7H%U6S z1#~6gS0*JZ`@~JE`;n;eTMHo@l44KwT!|Q;>Nh8ge6!Nk)DO&S{V(kv0!Sr||@nlf8vI@xYHg%UxPBf`Wp zp@+o{d(kMX+k~9d=>2RQU9mut?&5%$Qbn}nLCuu+Y3^i8r z!70)~l$!)&kR#IR+R1#7kdT1417$Tmo`i!_piW%D_jM~s0!q{dd0Ft&Wuy$C;p;RB zhm!ayJ{~$4ABib-s-$)vkLx9*pQ&kK5d$GgJW`@*cs8U2&PV+i)l;~afzPe`(J2rf z;9g1@ z2*m?sC=tO_0Z*^abU*Q_4Hssyh8iJPM1Xsl&4mFuJuchb0J+A^)qmbC1e7-}m@) zFw6|bIGa6t7!14FL$P&+Gc}BBZjTZ*T~KP1Z6YcXsVSG4!#SKV4^3w_X;7P+c0=Uk&?zGxs5`Pa$fIe*=z0p&N^$IwN9&lSgra!-{1H9`F<|%i-YgNhQ|fh zTRaIW(TjZzff@FDwI%f!N7uLcpGv1b`U3TgDAszKw|76Iz_Qx? zMulncYIWs14Xz?vYTiIgR}6Hy;Sx?YO3Ts8-`MP6$gN=w47Xm73D`^SGdyeaw{Y(7 z7u&*ZPhr0uL}57WWfgy+%cl=l@lr&85!4lY!Wq9IhH~@iTNBdZ?4NIqX6hV-@6{B9 zeNtDp9zo|}TfUDWT&Ofgt6TAN<0QDnEnd7o?e3vSgJB1q;mD1v4*i<|jq&N>>17w@ zySce(qz3Kwmgj?Bz(NEiCoyOf^xbP2ccOOxj>(Cb0UDN}w+4MaKVx#c>Jz+S*?-)) zF=x*hkH6o~q4&=lV&2!EdFIll>euqt%Fb)RUvV0K3AyXK$Hc|C_|7m~ogSUqle8fg zSuH`#d}hpu$}JmF(6M93ZDwK*ki!Hlj4vTpoYKBfxbtI{nQb>8(}8cS;lis&N)!&Bk^fEfwy2X(^J_TKPi9^S{_9BCMI0qOk@jB3@pZ39gM z!@FCzZpZrO7##GLN5{YY@Q3fw*cJl`OqXRCit9;vs4K@K$Bv}{Fx;boK79?#Z`9SL z>*h;K8%GR@e%ALMqYP;%2{j4Q?;YPaO0EBJO*3Ey$nqw z7bZ0JtjSjve#2q>`E2UhTkX&NAVF%PZvGd~4@h&5?H9(qDUs9z#5nH{w!$pL7{F6JBp1Hj6V*!Qaw@oBtAgxbGwk1)$B>r@! zd%NoP=r=UtZzPu$W(R_rOWYeE4dmTbZM7-(zG}g6xyAHvs(uBgHT+-HK>zFFDs-9f zs({cFEfQk|G4&H{%5?|&1NgL~ciStzGe0_aLc87iOf?JGNxOI^ zYb~}ofc(Jv%b={p4aZyOU}Vi$fZrI)O=l1_nadpYCS-_1Nz3ZNC0UkVD|vn%SXrG~>)3R3|hOW~a`=!`3ai9?eTReN#;?<@enAROsU3@{} zb>qxXD2OdBg^cW#%W>Jp3A~mAk|t4R$$D{5ElBwV#1bo(>Ir5!q$D{g)(8kKwl>k_ zZsQIUQ)b7z%TmQ!`Vg?3A$X=@L{lK+z0EZbVh^2x`u{X zPhDnxiQACe&b03&=6LYkwS55v4129iaAxU=rb(g5EQ#+tY(-yNV@*5W4FK}eP^1d|DPtUr(qxc$wpdWI$BlIlxd4HDZIN~VM#|(;Z^o^U83hPtO3JDKL4t08k zx|3zkxN%?Q1RmKXGX(&V-|)C;q(^1t<>j-hWD<=ux)+xK)y0DBUqJfGP8}*tHfV$3 z3voK=S39fI61uGM4Rj)z{|hN%*EqbWu0{Gaz(E95IbRU0OO>-z&>D`H7A-07#G5fITk3-)F|5)$yztS4bxl+lD7?FyNG)&d`{C)#g_U_z zSo7edu<{-ce@*QHj@5g-VFcXHbt7456~-0wJww5kN|bNwVRH^IFT< zmoGNuExfV|0|1}-?j9aKEK4i+nY&o5o1==T>m(#ZMthOPX)a`LXeb@DU-P=iIDXp! z%bXDiue#Z|y?24Q;dG1*>$v;_>E||Ozbik9b<4OWz@jc7cX_KOJmeIJM7bm&yt;?M zf#@wJ>e%!BYr;WnLg-R|VUZj8L3wKPNN z_);e$o5j53nsX;H59C0|38?oKAKl3a`aitLPJFqVL=C~?@7+*lO{eqYn?sMB){b3( zyzibdv!j&{0MDFkp8j=x?Jo}|f*c)8(&c}r1Y;$zDAj+uyL=w+z?25)!>95?z_q4( znTb7j6&40cDbr~D5B&=a-fjro0e@<@_omcIcN9Qsl2 zrlYGvaYZ@@fZL%ZE_&W9fS?{Axia(Op^W$zTLPz4PH%mjTr$Z7b#lg{R3wNen=kuM zH@|)m(Mph^66>(6TA~R(FHzWg9(Mtd+|GN8f6!?n>AzSJK|yay!*uIp?@JxpwG(*& zy&l0o<*rb-19*+m)bfYn8FPkjBpsLugetl!;@JX_*5caB1076J0Dz2$qLX|K0Db{d z_c}BWl*G*~Q!7g3$CuPp);-4*@~r+x;1EeP;6{xq>CweA^Qx&I8(aKOk@jh7$;?7o zH5Jz$rts#xknS>@faj|g3DSDjf9N zLoGNOO+%8@QkZ-Mr;;2b-dnQ|JxS{_%+!owi#(E?qM*-ab`I!#^c-o{2SzdEFN|af zg``e+v?181;AJF0llYQr;*~l(@B5dkvAL2>xPAM!V>z->jp(Mb>{(@vQeg%1vWtwT zBqQQ_v2O*Xc`kz3wo6^$^fqJ2wO5~(O0?wXW~sv%y9dmD@uXBO#?lM>)==Ocz9b4z*6$%-Kb3s+_`%uUNhA+DpdD)Wt-FKy}(eY11qSMQgjwA&PcHNSiI(XZe-x;-j zRD<`*$(E3fYW(YOH%&4jSGDaDDFi7?zsfr&~DHS<0*XFXp4!o}L#?==Q21 zm@4qPrl6U?!Yd1)7ZnjP6|){uRpt27zyIDbjkAi@e1b00m=Nur9Q$lKQ0$Vmvt8ra z=1MJN@9jVNp5J}H{MeTj+qZB3*|Feziuysu{F=2r%?)V(e<(T+2tLbV_ccg{RlNM7 z6&`V=Cj43J zt7u`Hp;1VauNd}qd#hJ)Qh@t2o6RN0?!$}ssLAoI&$c)=Ikz4koY2>(#s(+3yn02C z8;Ca_T3N&@#$GE(Xo;1Q34S=fYh*t-00lMCtGv9vCR023#q%X{g`t^|vG{LgzJ(-^ zjb>fKuY%%k_3%h&O)>>2udgC2@WYFOZv?u-*FQF+nE9cRZcE}vL3K5MB>vl}?HqBV zR5w)WKWyeQoN8-<=Y1g95;kS+Y~i<*$`HPNLawXj!~%I+zkIYHWdC%fsiAzlrndvk z&kEvT#aL-7b6=ntYNoE?Qu0R8R`s<#dM!R(R_3tcQt=rcdesnnB;U>PxZ=Mq2XD%X zFAKNNkpCn5v*1eGs*BF?n(ey00|!3ZW6A8|R?r+f ziz`JqRp}xT{LC|L!AF*i_qL9R3>y+r^{Ijw1)p!uS+!*)gw`2_u&SymxQJfp`xUn~ zhZ)a{l(^L6sPny=r&ikw9l9O%X=+R%3WLXst>4Ru3TgKG5v21pc9I;Bn5*=^_;Iq7 z)lEye+ZWghIeC!L_C@4QOHl`e3g7euPUvJ4>EBk9$-B0m{O;hUueWZUTLP>3Hkg_C=i|@C@IY6MryXaY#ywx^W;h@TL`VX5LCv1zO5m_-b4?>c!4a%ChE=otV-{ zxqK=mm|;qz!6SN|r+B>Lv6#{%`jK4nB0X)r?pc&+Y*QWXG_?mh>1lQAs&X%eG@mLHz zuzuACBQQx6=nriWm#C!fjGWZ>phBSMkwK@<(V_TIm(HtM3Re$?S%EZK$f`O)r; z`eXFECRt7546-El0Xx9KNPl^6t{i7dukF{}8R!p{a->v|f%vM26kgQmw<0d?G}Jc2 zpj9_3kHC_b{jny;XYuG6bxrN94c(oLk}bz&f_~)_=t6!h{uVk}irix4$j&n1#iNNW zCs)3h7?pJYeP`!sGXB9#;FbE@Dbz@rj-1m$lA%d;|Y~tLH_poKh6FP#frf7bjQN3w(6#Q z*iA>m@Oyb9*%}VHo0y;eG}p<$uRWE#8np>YE(_^YLH>LE*mqv`Dg5E-9CgiPg$Q?a zEVI@HCet;i38wUdu(4(-KOE>{A3|I$-8$einAVwe*H)}p>@hZELt>&8D(4<1rcMI~ z{>@s)4;vEg7{Joba4X`TT?QiSpB#1V2qbH$Bj|U2?w_n^In?nVX5}whwLtp%{~V$J ekL{zoFWX*mz5M)AnCk>Rt8u*NxSX+nSo7b@N>G>p literal 56772 zcmd43byU<}7cV?^U@M|1V1P&~2uNc94k%p$1EPci64EUOD5&UA(ug30Wu+zd@1@?0!C>}dZ{3u~ zV0PGGFx&3$-U&xqd_PUVKRfSBN!)~g;j?%n%NhRJV|weZIR-=HhW^{)**mF=!JNTh zZ(dWh2^wj$wNRX0U7sZ0#-H7DX!mQ;?Rz{#8xJ4a{{2MQ%TS7E2^8*XRPo9?zNxAi zQpQlYvxGg{n;<5;m;KfE-G>kD_P)c@R3Ke<@z6HxZyx{F4!Xt4$F4?P+Ias!LAw6( z$x4UR`EpGELMdaYA=kdbL!{@zVDg`gxUg@0$H;PT&))ccPwxMYug5tZ7EJk0zmue! z9jaHbu=u`nKXn9?!k2-3mu*U#$zfrlEGmh03zOaTQ8IL55)v%u&RsV%Gh1?AA76ho zR2S2nX40`EFRe;sy|r8DrkGgF*RK=L`V*M?D}!qlWP~EEMw^-76kL|oehchH?dI=~ z`a%=Dy}d>Kwvk4nlb5IP(i>5#E#v!W1y$oz2#Ga~a-YQqpC1&K)zOJiS;evYwc8D| z-3huXw`0c+pSf`&A@n$_YFO&y7Uh`SpFeLV+)e(~oiaO2H0;cGQ3@bj=mytkM5ULntzVU2%g2l!-gI?a%8KW-hEFRX@);4I%OxaiXr~0!* z?~{!3)H{JZF*n=}sAW8fJaY7?qaDY|lP4n!a9F$kU~AUH6O{qnW&5l@fBwwvv|lSzyu3Zfo?ExndvAY5S(!pd zu49EM(Kv0G!+Fs|I_T=Bl@*7`h=_sCAJ3og2TMvx)s8eJQ&Lhg#9UQf>*a8cDReuy zJfoSr@RwpbQ@6~wZ+2yII;UCa^g}x5m2b8=mczg=*U9hOQIM6&nJ*{%sc583ec&?Y? zX;+omSIE%e6UMyT#*is3q{gor+IYdU-O z?3TpsoaK&W}FjVRgZIo!N#vylpy~RiPqUVq#)G@0e@_3x(!eA2g^v>7P*1a_lu{BVR`p zCz`J=aaz#kPxiZ4uP)Z--utn2+OFWmo}?DX_0QEY3XHmXddys03WI}#wEAym(xYka_j%8cLhz>rfOKK!Y% zQFT8UsY&*vt8_4bZ@nNqf!%n{{LHY{db5M`oq#LVlqwpZL{Lv>i^rP|P$)%gy;3{5$?4;dlL$vzP#xr^d?%WdOza1VH)Xz(p|1E1W!>y{l4 zt#p|C^^Qhh#!Y19T3ePiZ%4;h?ZPYeb0eJ2qVmU`9U(HH4<+ZllVHrQ^f&O|p7cr* zidPr9J^QX=e=W@pOU*uN{vOkmYdx;%?2Aj(4|QzNFb7XZ`?&ZW&2%&$7gz20u=8xa zig=;xexU}w^~1-H>p3iRxkdgmZqLprFr%7MF$8Do)4)*jQP|Ng!#rJsy&K#~qQwF1 zucuqKF|Ro2SA{&DtEjBx$z5AAEbKD%7U(EEC}MQNRa-}2|J1gf`=U)pBO)T?hkJW^ zK8|wfS6ckdf@lbnyuL=6sGHXE z)=$f+=^`^Tvo)==!^Ru8@1AAa@7fEGGCi;@Wi z*)So`SeQ=8?z=?R^2eR?2ReGo{OnI}G5dsEZi`7?n*;5UBjIs`T(!~Wlv*&1D5W@M zCJqi6=_rNI5}pm<4rlvC)|*B`-@gw77b1x_PVd^OtD|#~p8h6y_uR0|hD2N(xb10M zaPO}BPKKwaUkw&^RKsGirRC+`^lwk`N}~W%VdA7<5c2IovB6ktMjtrHz~R`qM0to% zoLpS9vqUWxHnuzX@7jes87^EfDD!3W8OvN7Nv^u0SAGIpQ^DI2@3L(dOq;^ea>u&y z*zaII^Dlq9yJy?&#|I&{xxap0oipDacbrY_AuR8u&gTcqy9E+6`lutLqT;SS->IAE z=i?JOoR}req8$HTF}v3OPuMkPR@S-zZbR=6AI@SWrKOc2%2{^iZ{ap-{5o|ob02u0 zp~i2Ylai9kiA!^%abs;+!{z>5l9H0hB`7K?Mu3GO=cSfzsvT2RuGMjtv>czRYz@9t zXrDXM30|Iy=W(;n%xDYoL2;+n`VvvzF>iTHz>_A9TYG-2tuG*0z?wa|3Z`J_+l^YS z12p_Slm07{p3YaEJb5CxbnMtMn|O|rThh|(=DErVYKy(e<{28|Fn$%YdgULrj~zem zJH!R$Ww4aOmvx#`mKYwJw_s41FIW=e7Ci8tU>BzMkiiwh}P9OE1b4WLNp;QCm=CkE+gU{X;djC9jj+h#)>iJ!MWxa=Ywwo62*PS!0kM#k7_CR@aBuL*gOOIW2T?ZX3rN z@dVP^k6fO%m6xyCL6i-_pX~!cm15MC^u&4}JTMc$P8g!dTq5$2-Nl|n0M2DXEe(&s zKMB`g1vjy`<#Tv=`7n%^UkitzVCyiqN!Dnp@i6bt*5|+P_AL}6Tpp1-n#V%@S>8eY*=~uZEl0Q-*MarPG7yJ3Dz+X zXp$Ra@n+fe3I4l&7438;e;(QRpC%oexGpCr=l{zr^FR-saDM+%wnCljPo(@(g{gsj;Z5I>SeNJpZsuM zA~rjf7X}~_z{{hW2gb@0u+L(_YPpl59AYWpf?$65B4`jnQI*1#FFy?$ClDMZa$xIzqs zR{PUchu_SNwGCT#fa~!mf|1YIX_QP@4%S3!uKKesUWG8{Kdt%OdN(Pgbh2&Lyv3Z` z4NVYq`0w;sTSKFd&H$Jp$-mk;ZrKP0CA-HXywiFc=~d7rMUUfb*&*vF zCKKSv_Y;bP$4glVR|xv$ALRz6bqg<};^`fiN7M8|VPz@VeNLX4nW2c!Tv|oZ^LrIwVLhjvpT*x!4L)>( zmFvF>Kz6i#@_=DOd^McUZ8!7qaYt^OLmS;DvfHtHG!3D~%O72WPdg1m&Oe#LhQ3jG*l)PSPXJcotbnpaZWw$y@WEl~0 zUUM+le+d4x9^fT&!tj0w()Dp<#61>P37C4@4{%ih*R)ktKQ=LPaU~bgFiw-Lblfo5rklhH3XDi509vEm!)>mm1fowl-vBG4gT7qs6 z%twBCZnT2uADYfRBlon#IL#0irvW4j5q~@54T*`=B2L+8NDcHKC@cH+RfQ4&fIR~9 z=o^;uV^;#iEx4qoqw}yLfV*${@OkkCMfE_Q$AXnrxUctIWV)r6ibdA6HR09eII<_6 zA#{Zh7yMevy4B2Wu^A=rxtGZ60`ed3lS)UcW$r(5Tz~f6Z22{=;cniYv=4(dNJ*#6!Y0?9P&S z$+^e@B6onWV`f1?L0yWW3ILqpiLOF^+bNxxNm#4$>ual0Icr5!S|5qHObaGUVFE9$ z-N4!D6R*I|hf5ekBc-TvAaAvUq?-XNBRKg2aSaGdLF%DkU=RyI|4V#4t9iLM zlfsOL)=EKtibHjdz4hA@m#>F9uc3@n{N3po*Zrpq7ACq7UsD+@5CueyZP1?9Zx1BE zW~&|AzuY;6u36^Cp&~Bs%AUJ$zs!M3%I0EniqqSt}) z=+Vy+5%iF(NHPoG*MZDrsfferlV*+`6ECj{7|>+;U<=^nnV&~xY|6VmH&GnpPS*36 zFIT_Uxy7lRsBt&Ju(!AOq^HPQdWNR1XBm4|`Bl?S(TwTYk*3;_Wk_z6V!k}zb9^ml{$(h>VlU>I)@nGsjD;(E&XQc`lV zRD~HJp$GX-w@|*znW>R_3t{dQyIbw=wvS7tXeOsu-L=xd9ZRS-%kV?LVu{cIa8HoTV$}yZ)CMD3k^?f+dKVAGU@&#(!n3dUJ zqR(bzWB{u2M(fa^K2~W#v?!vi0P&Pmx zj}x3auZ(kM8$|uKgt;D?*qQPD`xO)(sjobg4U^hJ`q4FZKywg-_gS387#!L{*a6I^ z7QnFm@c+^0%ckp6n{$6Zx=EHf+TR*gLv#drT3>*#-H&Hb-` zOInGfr%?3Mh>~iueVO}~$uuVH>#eBdX`gWmTOoGVpI?4`IG`o9{VB!ujR`P_9Lc^e zG+pGxhZ7TiE8s8{G_@CJXW4u9W%FainqEVBmnjZv2|re}BCkY-#o;n-acMInwy z5pPaM$#mBwQ+WI9D+D$!#ZnEe4*I^6%~HGaZX)G2CjHDti6=}ssU@Oi8TWTO-62XU z=41x7y^^8W%cH@V-Nvmt`^f|Qzh`#;>mm3*IU4q&(e;2B|Mg>sj~^M3$Arm$+N@Wd z`PgbEmc17zwwL1Dj?812=wkxp5x_`(ZK0RA_+bymFxpGN#tV<1=?gURZE26d9G5`?su-Q9RTa!XR2a0@_RR_U$@=VUoW$%qC2&uH@-F_z zuZ)^FD?kjVb)1nyJT+bsl8U_5Q4_TsyA(vn0U@YqTCp+Qrn&sKVdY(gZj`4^#R1Z8 zGD_v7YrpEWk`7p>4vJk|tv>W_g`a?^z~b9&`)N+P%CU`aI55#R<^HYhfZ!>Q9g7Bf zj7pFQn3EpM+iH3vCKXC((JBN@c#A(V3Q_Df8^k{5s#dT-coz_Y_z0+8K`?lrmgkfM zP>r$Z=g(;C@pc5ohypfHQe(#=@9aP7hqLlW=>s^J+kjlytV4jV^|c=}adOI4N!fUn zX!{|JeEX>$EVc%+nJZ9b@k|Bac5`xaGJxMQ7N~ZuK@CXG@b1>bzLAiC;uQxEv`f%A zDl#!K>81i#9aqCoy4G%c|BZt84_$M{JC@IW`JIe1-1tQ8+x}O zKJ)L!ZTvv{W4ZLoqb(Rs^z^>a``CZxvA#7jwhLWQ6!&fLcU4l;O|Z85_{tsGZJCy} zJtbZ~zz+ZZeQSF5!kvJJe}BH_cU=08C?vRejD#mG)py@CUX|hYoUHrz@0S`uU~Jz} zzwxqRbFt=IOaMC6!Mk#{03{>tNt+NAVkZf8jD#zlj~l;!0s>Z1RW%wwh5RTVA0NI{ zq~OP>jPsI0#$zZ4)j)xO`Sivr3^PvJmHG5uw=gfSkWfxd?pR=4#`D%`#7N^Us>P@l zW5^?e!7POGQ%+F3euC-t@1O8RI2yl3HKQB>%pX2tJa;*03rKvPr9tfp)3XRw)LvH9>ku_86Dd{=z>V9J$f3_L3_u?Q;Z}v$Qf@MG2WIJ1*1ajgZYm z*a2F>XrL9RQ-B7D2AWJQ#Q^H29pjgYP;iS24?l;n0~GA)*ZW9MnJ#LmAZ_?Jyltuf z*HOFPvga?dG55Auj$JTBJP@2o0M>BOSKU|+vfyL1w25GpOi+M=1zA5`C8EXby;?}O zb_Qz)aLxPu`!g|DFF64@J2O#uaM;s%<@3_~H~}(jlrX zs^aNk_QoJ)>{8*^x%(|gFxv_IR1?icJVI*=-I;v>hTn~vI7b`5-2nK4Frd?NO9wNc zFvwFhtBBxsfRMFU`~L6)s;4||{*Fa12LUfI`6PQlGdyjVE^KN6FqlI#l?ScccH3?_ zvrwP$l$Ze7S>!wI=->UJ&YH&R0OZCphuPaKiMX|kB=7u`T0t{?SR9dl0j?NcU{4^D{&fDWO#-!VwduaVCF0|P+6$w|+4DOa|@z`y>1+m7Yr>@(ww%58X zSJ+04E&Tk9oAzkgK3l)hH94NZ8IJ?sobDdP$nqE`kyffGTmQHz@$D(X7SYbb8_(~d zq(UACm(7u3Q)=rv;DvZ_)C$!^D@gA7Tci{n>XbYkgsZZNIKKG1*-KS_G5fN zohW|$_Ram(t3Qx2#v2lHl)>Np0g84T?tbuJ3x252_n2P&4t6N&_k8^*^#GYfdAc5< zPc=}Xgm#|DnI&{FJA&sPv1oS9_Agg z39g>433Y(_u6j{v0#z8~v{l*fg;449(hQ(ciacHVb1xJ z**vF2GWQ(cm`2r)0<8&yr($hAP7!{nBQgU#GCdYvRUXKrY-%W^-$Th8J_0H-a_oL_ z%?8__9o|?K*B&mv=2{{)jI%fhu8(iC8_~*o#?xwfzDG6%uT`@x&P<^w;RCG0Z>r;cK_uV zxKz$%?#IoFP(7CeG^S-}O7|LEy2wM|UovMK)GJcGy^p1sbZFvrPPqQ^q$8Z<((}%6 zZF#Zh=*&y^>c$yjP+84m z4l?X3_s@jbF$*cVrrQA;c_8lO6%=NHgt>*64iSv8AIpepHc$lt10;gVP?a016d11q z*-1Pi8AnZWW_?eNy*tSzeu~Ek=_f3DejjGj%GFT8S^7l$rO8@f9e1uUgCeQ7_K5&4 z{de>+P`c#Ycf(a1K}1c*N-c-Umw;f{U}#{47?j`{keCBj=FHmiI13MtvcJDS3Yl=(N7v0i@L3y%ZF+ z0AeMBw~Vyon6Zdr`1SUbioqzn>kx=+J}5ejys)QnuIp_7aSEgXh~e+{6j27gDTW$q zY2m=B2ufN6x64gXhG;M`J50=lMQh` zb0FNq0=Ou|R1~>WMz$kT6|tF6SBnE*k90o870v8DT#03kFa+!h{pqeQ z>_vtzvZ8NUS*1q&J-?S3@9X;o)Kn@!=y!Vx{ThKKm}Ncg+h$BeNLcU8!{nwb4}R@~ zIG`#Wm0Wk40i;U9K&dk&k3v<9htPH{GS3iAT1Ho5S#J%1Vgf1-gA_~3zkAdwD=~M; z04uMjrKN&B@N zSwouuR6Fhj^DD8br?Mt{)((O^X1FxrQ*5it4A6=Q%lfnsWI~1A-I>?Y?m>2;I~P-` zui^L2jZ9Q{JaNnZ;h?dti#_|p`}g-Wfvl^dm0;NptAS5|xJp(O{GKWWKc}c4~ zKcVZtWHZsZcNv6c`%hdF1@@H)6s0#%=^m$6B({q*kLA|!)RK-E=T&uzf*|x^4mjyST_d8GTvF`Gq6|zGj7yJyA z%oYWO1q9TgAjFhhL38yTNLpOAZDt#xGFIPl8)NvpqCyGW)fJdA%Hzj}5JpDSA(WY~ z!Tj@E4tayzB?>~);_NCGNnXH{H2RqB%GytTWx}4uQf^|UjFi7Tec8*0!$$;dRS|6< zP#LI{4eW+geru8w_C?kNh`P{A(__I8M_P?EcGWIqnD_g(G(aAXt$_ksoMz{a*cfUQ zTJam3p_eoRW;ttT(XdqFEa`^UImNx-Z?q1LBm9QaV-Dx5!X)N=A>qFU9Lk3l8-Qj6QZ zlYi&=ht6%?fJq+?W!*XIW+@A1&z;ND#m;^ca;X%X$@|!%{=p0M^bbL*)jP+#?*=Fu z<*Gu2DkgOYflB4K8o3yAb)me9!%-Ou+ek%*JPs0-ftHGD$!e?o^W~k!5HcTUIFi`G zyp@{%3>L2YKX;3XA73{ed?zsWzD#K;?IbEKKsoy^zAnRDA1aVV z`jV*k+rmmYcwYR?AE-8+$0Efh(8BefZtTjLDrG@=8We!o#yPFp z3C%S=(5-xw)-ns_k>5~zf>avu$p{?O)hU9EQw9`C4XA=JpSO;~e>d&AZqE2EuTF7) zTDx6b#NW?nXl;8AJ3>hx0H6wZMOYG_fPOLT`TarfP?lM@IG|fkK1is+fU2R4t?1OG~I0jJ(t)El8#@=w`*$#>;P^L_l#sWCz^t5dxLldRJCEhj*FJueLV_7ng zdk}$LlA3+(?v4`ldWeC{ITGH#Hi5avddoij^}O}W8|_1_B~s}gLw~@mXrKxXm3_z` zg7~e+;(=Cz(iaL=5DD>6af|8c(E+rH#Y27UGw1<)PrZZmS_@S-K_`4g=l3B%7^PjN z(cq_1Hf;g2KCYg4c5b;sl)9sZ0ksOC$iATx2#{20*+5w>!f86NXtKC7p$tf`$c(!auUseeF`~O6?g~EnwpI}#^=^R*y`1|9#XWpD$wel0MyJa9PYO-K z2}D6=jiaubvEYYzuwJf~vYOf-WXv7X`II1`9dfz$xc&l9P26Q5rR^-bq(|4k{k0># z+eW%<8uI5*U_s&a9t&H#q)hjHO^pxV!^8HlteTx^+?sIRp2?Av%(dJkKb2$ z)%IoLQWo*Sd785UjuIR~3qPzz@02koAM9esZ0FtZiIugpe=l0nbg75=Tk*(nu*=9@ zpLVsoCmU!GTfW}PtI5LB^VZ_Up|P!^@25v4+)3sd)?ntA9o$VFKmhhTKrs9$x**@i z1v?K<@n0VuYDoIf%=`GzKoSPyb7q6~2OezdU1t1CYFG2v^BC1F8=2fCZa`yV`)L59 zV>%f&E`z~*z4(9d)xgE>Q_;G|`0j5z(vM(7@9f=gL9V}a7VICcxjo7rOYp7!&}S&- zdgVd=SztPM166zmHjY#J)4%wAZ?I0M?G34?w4@FE=)B4#&fKksgXPV zf@k9Fq1mWkAGC*R`7`T=fdsV*G|93X9C=#B*s|ZWt9NdbSi;9XO) z74tM7K4sYwo5)NecH&<+$B^dasoN>LUxV(ccaF8>A0Ci@%AD~Ym@?xjGi=R`=Pf0D zgo39A`5TV3^Xxg+n+XrjZNu%9Wmwy7-PTw_!LqroL=!rzfLMA@_2XYD$ybGjbhBqC zHx?O&HGv&daqiaYEF#OSD7rBkUjv!E{qQso4-6ntS< z^jDLI4~r%{fY_gfD9j=t&=SfJzH`I0G5MU&&bC@o==^5Ef^tZ~$jHd2xWBjeQK>hR zQ~Yk1{KFdspsz3P!9;9z)Obz+7T6o;0g(5gKmfAneHPes(aj>8=pTw-rbMOj8?^LDR9Morcp8{N3z&=|jOd9}Ao!2^to(4K|>NR$3eY;uMyB78P(iOuB zIVs@rDAF9FwC0UJrHgmfBZ-qevynAu<}!t!Jr{x+G5OP<++q|UoaxrgYj|it-a)?O za5%5Y_}$U2M0$i^IQM;Sm4FdSAwJFD$O15;vIeJ5erbBZo_zcF@B!=FF?R3_S^hrc|c?IfY{Gy`L$S%ZBg9JPo6YKg-d@{+}oJJ!FIqJlphD7}oQu z*C7CHr`Q}uRmrd$=)lo`2c*NUx8K`sU0YKFgvb2{4>%suX0@>wUh)nO9*rtJwEMqS z+X36>XIpnvN^F*S%VJ~D1O50{q4QO4Bi;W$%b1W!y1&5Y?dtZf9e@C+y<_vT(cCMP zQ%A-Mpht%6`efrY9{!d}r(ij|;fF;N6zb7!ly7X@_o-S5k#ykSK&X|qkPd7Xpr5KG zB#{n?|2u_{O**jo>`(c-R?vZze?v92&-!=EH2xPPt(4cd;WnmL){9!g^--mXeaZ2G z>ll%HyEZEPL#GRHb(_o}2J`<{<6E@Cn-z^<+iqIQHPcIfA~94OL^%dy>G~lwE;On= zqP3?;GSp%JSq@gu%>{1xOrVvmF|>;2W5^En)#e-fD%5r*s$Y7M z4Y1y?uj|_+tx7=KKPb0T8gO9WLtu8Bj1_(At-k5}i z+qzQq>#n;H@O_pj<+hTs?=JI1q1;Goq%vt#Y(0 z|3>E;n`$90?cP3Hsj+4@X6C7f0Lz!ZTaBtE;IfpVg@qeOy~2tlG2~D0o;g!u1q7Mf zYiZXxjOhlR%s>@T1rOy45bg9<_vM}qRODZIIs0`}eRHh@f~oqYksiwo4JafAqxKnW z4Y1bwP@sNV|9q%;BXDB2(|x{mlB3PQpL~bhui|Gfv&C8_NU>)`)EPn-S9b1DY}|}r z-b$pJ;lIKR=FCFlh*NiXx2cI-pvgSc+gie0JK*F zxO|dQ5dE*&=tF+SMNz-1^Nx%R5zionsB=_kxP19C z;y@8w1OM3y$;iv&+a0DWp0or4#R!W2h0i*e_0XKxpTJ`` z|uN*2_L1Xe_7G^7!-Q&f&i`9lZ_3gTRmCNGX`4*{VPsn(YQ6Pb)Q z3P3tTv8d$IKD2gG>Q4^>Q(etR-VSwIdKB^iTDDO4@Y-UPGxOD}>Ax+N<5fR_1EaDTfxZfrAhL`j zKhQ@4X0ZTgi|b^&4eYXBRY(GeCu4z(GN_3tp(OA@YE92{>5?oVd&-@f+koDy1PU?q zY^q;HMb;KRhuHR=%mKPUOt@qjN|T7k*g*>?;|6ojlE;8U-uHuFI)!!LtP9Z~#QJMQ^V1;x7=*EC0JaWE8%Nu7)FFRoi!&il zHHJCxH=60`q5Ldpo2URaIe4B-U}aFV0BU0>%FTry2hT$nmy-Sy};rI4ttIs_N`N5GRXWR3xcgSwPq zz!_G*6(@GT?u?I@pKJ%;MBW!5zSSHaHFtf@9_czcIg@TKFOlCS-*T&ct0Q0I@dt*| zf7t~;s0jTqOm0H+fkll}3OyO9-*GgpBV>6RsZU6}FVdRgBerbY`4AM&OQ0X+2Bt8@ zxJ_-#mMy6H90(M}WW75TA1@d7+AouD6t>_#P0wLQ6;c|v)kIuee9SXJ+3-Vuvr#Hb zBJizi(Aqc9pl(tReTPt61d)dY7IoU9=0%83rAB=R$3mR$0OuWsl5zx$d$Jd$^aF>8cUXlLh@ ze@|X&y+@sUXjp%Ch(LG5wrg_t#(oPE)Ex{)^;{ykOo44*B6l_XPk-C%{4VRjO-&pA z&C4+7Jo}rt?E_WFn@vzGnGl^mEZXxjYV!@lYM7;4Eze999NiopStcL)G5$lgU5_?z z8f_tY)SBj1_5}TQGEa?BWUl;)+jWjZ@TH8{L5$)t^-|m3AmMZNOJXIL%8ses5w;90 znK&3bupt~_$~ZU1&nom)89#Ho_#3Cr)f`&cP=OE-Fnv3L0t1nn&EFK_C{e?OT?J13n~dL&KCHyt-+LR7iN z>-ph!-_)rir1|ugyi0n%)|2)V1uTu6^4_Tvi{ag4S~{buQQs+(=>t>tF_N8UC39K& zaDGU(smgXuMJJxP8kJn8;g<>wxphx;qBwcjS)YF*yA>913DQ8(9JY}g)Gb~M3+lF) za&&B%Bj^g98ZUUg`73?WuiC!u;$U`dV=t?2OFF%##20m-B*aRNGf;QCTUnZ>)FMyL zHQ^N81fDAk=f}fgZTGgEt&CEz2ixCIb_MKmhs}te!smM)*F?Pj+fCtgf(_g^qNq{9 z4)u8Gag8639oe0I(YnEFm(RDg^Swdu%A7CtX2-vF^T}XS%iT{<=wzEOJ?&&UIBq%j z(WqqI@_ut!lIMt`sdQ>jcmIqU>5=pKC{J3`Fmq1n>Fbx>{}v7XFnf3J{%y_*x+LJ5 z>!3_J3$jQ9sFzL6&sU}Wg2o$kfSI3P4Tx+N;O{M=C^`%*w>*T+vSD=>imzhZN|hQ+ zI+%KssVLrMIcvXeiLCPsWvlk6o=PxtaE>8VoM%*T;40QgK2Cawi`>?)vJOz@;BG)0 z4PZ9!e$*BX75i!>6bzD#Z3zz|9J$Yyx?nW+mgios_n^O>pwN4gPN&?x(4>=+CH z|J3maz&!5n-ucp_j?bi)^^c>_s)8f}x+h$bejUo+1JGIC03aOb-Z^O?hm zUi7G^oQ;ibej2((OZ1Wl6Vlq{p|WEx0#zPpp#OtP^w4q0b~h=aRbPDYkc}KW`|9_2 zZ@S|N+4g)Yw+#d%WEeupOS zy?p59g9N3_lt2B53l;QZ`FtA55#h^`Zb+QP=jb@!TB>_AG~>una%s6#BQ95}f$ZXo z`uCU-e*~W+od2`5xX8rH$~r%dR2tCU?FZAM(rF1r4lnw80NW#OFQgU}XE4z#tdn_u z4?Efl8u8L)0p1tQQ<{r%e>o_f_rD%j($}+=A-uo&_r(76DY60O>k2acx35rKTNYAF zP=4H$BnF7amtJUjB$;#V`*;sTM2egS7%&L2e)Mf-#WcDC7d2cNZRGllu&>!QhHsa! zU)s0Bf_dd&;@`ak7Fo51WDEV9+%&58-TAFV5zft0!nwwOW?I)N6qWNJt+UN_aB!%D z<{MnLjT{nrLQ|4QiZZBijq_Hm0KMFSZY~vw>}57~>3c~-_hBeAh23Xm|GTxvCcahm zZzUaN)`yLKWk!ER=F*aG=^a#ZX-2wAzn(c9E9NPGPHE-(m9+Wwf!NMhoOuYH9y@u` zzdsJ@(5P>71`yao0LxRevusb^1_hl)C=E*1b+Jlu7O+c&L3Oy8uCRcH8ymH3-<$kH z!~{xN_mtauI}SRk#e@nosvDH7&6W2D9N(MWn~U!tgQBZ!KY4GBx2*)xu8mQyI*rMS zd76v8OK)M#cFJhw0Cb*WP|rL&3vFDe$I}Ojr?X{2l|q zHc6EgZ7Ty^v!boDvS2NI9ZQet3l}>KzI@&7A4g=GofS7#dil=o?zL4qJm1RD^{VNZ zTE$Q2zcAb6f5v-i#f+20xEPJXw(|tWA{?X!Nb0e+vS`=ovdiM{&pjx=zi`z5kHR-_ zKtYEOvF7O!S?t%9qZ%d++iq|MIV?wLvIZi2%*Tk0|XIZZVDs+|^Bx0cyWOMh(_juCXF{ihq z-9qJc;$?@GW1J74ISk{}#TCerLq?(c1Mz5gB0Z>(de$26e>=A5DE5%<+o;q1JUw)fA8t^L1 zhVIfytPczNLXMgt;o+%cZ*PZQHe{}7za`id0f|2b zGQhM@;tLtl7tnCULh_`0`AF+4lg}5G9{mw-T6R{R`=P~=H^9m^IOS1!y`b0pj?^M| z)-?!X=4+7#q_F|0G7ikC8Px)d-_CaM1_pB@O-rEU(oN}e_VSwe2~-+@<6*l znidHj9ZTA~14O=eKpvKS`-0W`=#dV%65Gk-pX}CNN0T&xXWPAZn`#h}-Bwx}dB?-Ttg(+G*F!=MTbsDJpV($xdDvPP7$2h;s#jz<9o8sGjWWHPy|gwW zO9SU&hokF|T@yi5G7C8^%7Q@fBxmcnm3NMaa5MQ%405fcJ24aU?SbM$Dgan!^^o`a zz#0IRiWt}uWZB-3m6n>HPLC-dp>Wa|c>nY{hh8OKW7{|sS{SfkCW;U>p#dWT>E=MH zf{%daQNRAHrZ-gF5uPWVCwt_j7#ez9#?E%wMoJP7TN&W{ry)JY;&Y*yed_cs<1guE zM3;@u63M>=7;2Bw{K0(tk;ZTLLk+({N0Y1eF&jZf#^NTk&QFrm2-A};9!7uqLz-c* z)lZz_Ug=%XN*Xu>f-yM*gCWYQ90*DDSWp3%PA|f4D!%k-#)m= zYDVSrtkz{7f>#}M6rgREP^Ug3i_D?b_8gWPdeC4zKwUveMHO}ShU+an>VwrUc5yS~ zLHP!Gg>}9SI*<+2s2przfwpjSqqVyQl8HKaroDn`FrfjkLjl?{42+^ghcgB$IcRGJ z7|MF+fQ75=GE+hTd?Wd7N$+7WM8Ok0(RcHH>6fmqu@H(7SaDgN76ve}1TC3$u(gJN zg&uSV-05&$&jCr_h`U_pSq++hBZQf_z`iH@0I82)q{-`){V7n(f^?7>pj(wK0tyF3 zR>B}yuYx~9F_WeEX&_77f7Z;?G}A|&KJ?JRZq#@QQGuxOa&4C2jI0~&eehv8xh-XaCa`NG zt=+I~MRT&gCsGTc75(AE2fL{fMp)ouv4=aqFf;#W%4F|m&`;2UG8NXYLY~v=6=;&p z0Tu@o8t>6YL?9-)G%pBm4!U62y+|Bd6T^Y@yaTRPfzEN}11NP^#9abo2L3ZzqPjg6 zop)ekB4ErB7}-T@BZ{OfK#b2cKJY{V3~GxtAhDU&IC|(%*!p7VI@*i@X)lpEB4Po| zF_>nT@lV`;j1S}U7M3V5Kq^4mXgW-aAq+IsaO8f;#dO{orfHkl)rLU^XA<9bt0B6036^?MIuEB|vau zWpz4zi}l-o#*9%s4rT^TVv_i0&z?=uOwZ5z(Fcn-ua!RkcpFJ1_Z6C2(JP*@_WXBB zwn`s^hj2jFo!5*C%y!4}AHfAcsdozxkL)$x2tjo!=y_>{!hc?N+{?Bkd~y77eQrn9 zz-n3=Wb~6@TS!(<{|NSg;)fml#`;0NR|7i$(PP2p%;tDZ%^S=aEhbm@&_c!!j?!YX z%?#hBT>Y7}!k%*Wy~^4n;YE)1=tCN{kka0Db|H{H zf=)G2^EmC#HWYM7KN**8MU(!LamsA=8BgFHcr_(RRMFNlplpJD>`IG^C4f>y;v?X< zzJOdG8WS>>=1h-n2{u+qkBCSc_cLm6r)8x2cf}e=0$*hxlpcwX8~&5nxdyhFpd7b0 z@4T)8ns!8*x?5I2HWZgT_i(e)=x&yO9qrSQm_i{Gb9*Z3tUJvb>ugsCM`(SPf8 zome%6-2I<>h$G@Be<(3OBx5F7`AE{TvpM2tRQ(=C0Mg_^mtC|MuZ%$k7lU?f@n1{t zg?)Js~I@KeJymeFM6Otz{Xye1Rpe7b< z4a(y$+}Z17rUVJ!OqKJR0uUH>-EVoPPM-p(0DT7>ShRav5b{~RcGpgJu>L8sE@tU< zW@K6ZLzs%|5a)dJB*R(TeoSw4Nx5k`&DWqJNWsnWQLTRB2{Kide(Nr2*|+-Fx>y58 zkB@*jd(2i7oH9KYS`ACBM?SgH;_2CNnRNgGE+knwMtL8+z--vho1`UKvD$jfDP@KF zJKOYc^#O|dBo3zOC|&7<;FRf8cR51L49EhHPHJ6J3^7%KA%<)Mi+}d~xrZPJ(hMJ? zqVgM8g~iH%-F4u!DY!kCH+MX|X;*#YOV)kZ&Wp{BNa05^ipzj(ft-kGxsxM_FUvEr zB6dWmLm-XRg@rLyBL}tC54A2R;^QM48ynA6c|b9T9weg#81Q}M@s>)K)Bxq1ds;XpQ)#zS5>0UONF96{hTLZ10x+!WDLMFf7 zoFwt$-UBCEL)#4Gel^egOjXnCjxLBNHBE);RD59T4SI6K$&YRDJ3UdNouvqeO=8IC z6LV^y$Ua2c(Cn$Zyc|$_oMM`R6&E~;&Z%D$iaG>FaNI-8Dr>crQRP0`k`yG>VxC-VFy+G72VQfsK!(I?)j8X z8cTOvMk$}I?YNHm(98Q;22y;Cg+#3{6LIVkn%E`@XD`V~UXh}=S$Li8+ofXqr5rpR z99DEbItFWzDS=~wSwQ$o^f;Q{*T>-)@b&=immo(h3&{JXt;SN3*?-XZc1)MFHKohb%uHQR{bC5 zto9piW%mlcto~>YR zqM>?hk=T_RSIfpSYpup;EV~VfChO4*JX+`z26Gcaxv*N)34?+jmYl0d4jc?C7&8B$ z6AkGk^?#ALt*CK0fL_>H3GMg~ZN!}>A^e!AP!;87L85%bR&f0B(W^KP#XGLe2^7`{ z556^K%!Mg+QmO-PAJtHNS%Z_@8LU%Qi1GT11-!IdwrmLUX2sL z)V?qkMYe%m9WQy|ojrTj_`{PZN+1E9&KfW=j@{q$a=t0~$ni~^RtBTqP%x4kD@?y* zkEkdpxH6j|Z@cC1?+<%MtuOsrWjJXC0bcHgSU?LGOlEpe5K+o%ToGq6NOCAP!@*A#gE#3?*s~8TB>y*3i7{PG!BpyQ4R0s z)Ws@|($#`$pLgWm>6#3E2xdx=vEwh-RfFt6*3+~$ybK&x^$$^#krP!B&4_eCHc3}U zUG85^UfcQ1asQ0I#^HdQ!^hjSy^a*c&a(U3H7T$Eko5CS`$xoNXV0@&nvbRa`xHXo zl$@&l2lPMaH~y2dH)?FnN54iwyw!eVuAKR&Z3VC_MxtK~y}wn@7nR;GZ?}f*^Djdz zOK=+KsseViPz{y1hr4?)>VgC2ZP^%gFwBtn2{h*%Q5ACI9# zhZ_O4R^eS#3R5SRDzc#zo3`-U+JjU@kSQCUcN95GV3ER#RTZiGk=XhU4ODJ7$k-4Y z8SX~*$#DSjyXuyj zyt1-usO0zGJ^%dUe%AbnO;^*<-@D{Ge`5a1IE}DqDXo~G0Nr+x-gM4mRrvP4&Bl4X zt@kTV%uT;z6}G!$4Fq9R=SnjBn~-3^qS2~7_UZYFO^enb`+^_XQkJY^-^p98q=oM- zQDX;FnuXYsCoce91K^W})BBWff`z0D9cRF`Q5V}=@UdQR762}T*wyU&H#Ytd>aT*X ziOM?&i~^B#bVq*v{*muPC0SAY0Lh2Elm>o`ybUIs3)qCg2UNqjwB^Rg;W-xxc_c?L z2rNKH($A1Of9@RoluzE>?ZPa^KN`bI4u}<$EFwLF(YsFnX}1Z&u__6>iNQ(Z#IAE@SMtN{m&MoYEYZlR zS&`p4-Ku?r69#IpOnI)HxM-@8r2R*w!Vfl~QNkMePZm#EaA)*@(4`9(_#GmROY^H= zp1I)lVKLA=7+T=w5Bepw{(&$6b<1prVdzo$hK2yvc?545mJk+JoGc)!3{g|Jk4d7S z*^`QKF2IKb>sC!xUcB`Se*(eIo*i(x-c;l-5nmAr#CMimHF!6IEZm-D#$hb_0#tg~ zcz5NzK& zXY~826L*~XH=3VS-DtnJ)bBupQ&mds01n%!$4a_pnMHA*X%Dt6># z`4D)uf^cGR_7$0c)HdP8-e$r_VR=y#GAG*9=w>AV-^qUYQdnAAy2vku_XPerqbO1{ zV#W;d%r)VULar@*`W?spfE)RV<~XK^B%%eqVWXDR>;AiStrBYAHRAMlxkt)mA9x)* z_56(+yGx@BErkXP_o{39lw{neQoF}CcT@O{xWg_t8#-+&*fWe$-B&!{ zw5u^(s-bwb;u*2jxTZ0Tm;c4>Wv2Go)p6=?W=1}cX#z*-X6_Mo>5o^bcgO<~=p7V# zdyy}5+_fN-BkywnyP}TUSp6uV9!)objmvfoi3HN{+uZCoBL#!A*@&N_mpe_@f* zu3gGF9J-zTe0)R^+VHHK&e-%<+mgNs2bUV8`CUGvO@HX=ZQQt#Z~AmCI>2||sf~U5 zB)IDSAz0VA_wE8Z;*|00mv^ibL;kTx28vPXYdH#~;ue2Iv3y{{$w!0#>JRz$n ze+sumPArxUf6|^2ldjvItE-J8mQED{T7lkKqv_-HY7HE;QKVsSAg1#TIiWMg4yNAt zyM~ZcSST^IwY5&TA5}G_^7DkE1J6b<4axdUa|5E&`*h&)n6BQMx?E8}u^`jgiwP)QZuE!FiWvr*Xjy<}euvQtD#OzC@bS^BU6k?Q*4?|!Y-^v* zwcEqyW{mJ9e_kv()cr~u8MEX-&hNk9`g4}>^G(VZOVr{bL>y)J1l+zmPf&K${kl{F3-%`$*FYESrpna6D^% zNkDg^7~NeoEW^-xivaqXGSKL41VRx=mm5B;OM?KK9ZXO{&zH9jeHF)u{X|ta=sqgj zw*3v&-RwPn8?;exi@5ekiE3c;b~*MW(Ewvq5cO1gQrxZWFNU?}pW0GtAz+JdMp-WyZk?+kN( z@b@ln{9gMjDar*+JTDsBrWr)L4-E|+iQP}e86;dhd)BC5Qq**!97U#;^)H!SNyDeP1_dER`^bcx|4z8VqD$DSW>ReLtX616LWHG`m=FgS1d2`R?6T z9}AL?-5RY2&Y=$I0hfLNO{F}I{AX(4CkO@PuO6sbzhCB?BYLh(|K)P-3CC_viI2IK zr9AhS&Fm|qEBz02&%d0?i9-R(Q9;J7r^ED?$E*YI6Ip%qmp_$%_iB6k0T@5r!8K7l z6vO*R>(kVmDl&799vF~58R07ae3q<3%DK~vmLrr)@|@FPCz*unD4lhF=}{dp_Q9$` zMQ!uaq}rdQCyREXi=cw^7U|T3hx`1a;p0TojcA=kemSdWl?C+CM6j(0|(V=Ejqk^nq%JnSCFLLeiHvwI9#sC0@htC-EQdJzki&`EDV<@Vf zAf)oG8H4Tl)n3cdPK5=Rc#-+o*C}7-vMuwZIvYQh9HCT$3_67olK}vcZk5_bSAKqj zI*Ze~3*Exg;Scg>IP9aywi89W?%U5}pBcbjwU@|?Y8rN2Eej)0M}^b$Z2bI{humL5 z&!>qWTCc}oD2DsxGL;1D#Nh3VPk9v__1ac-p~+IVGXvFV^d0Vx2wA$grLD8NP9#Q| zg0sQ+~aX&(Jy9`ym&uS+ZuHwu`?tkC9U$s63L8Q3)@(bMMh&lCc5-zBN0XG zW(!`PW$74Ofx)Qd*PCJI^1W^%d|TC|y~X0e3YK#&ffc#J_QD5Q0 zT8{XMH@8IV8u#uP22bn1@{pqzIOb>uZP~h23J$wONG5`psK8ZnMk8|zHaQJEc=%9Q zP;k4pwl=;)4JU#i3qo{d40eeB%)L3+acv^?d^A z13Q>J^&A>Jv@BxQOxX%cf;TvQLI}D-f~*sF5ZzmmNc^(WlPE#+oDUTpTKuj{$@RV(H5@q8kz zd#+r+uA!&rL#Iv0cQDe#y$duCGHhT^`uX^zH6Zi zI(ackFFCw(Qj7olgLAlgk%Z%HavegMDl8|Lx~)7$JAMaQ#4wv-WMyu%fO|ci^8f(@ zOZY-X36nf2aP>%E-K$Sa^q}l5{6Z81Qjnv{-^E6Gi)Mg>jNCNt@7qlcNj!ct7dymB#JgcPOP$UF<{5R@@FrKU{HRqyA zy%eG*bsXv72AV_dmqW9DUZ=SIx$;2pC#a&t;F^kTLG%RN!w}UDmRqyA&`8^BE(nUv#?A^uVzZ=8O06QiEXv>uw zHzaO5a=+L$#6q~U5W02R_*nN3(P+^?n6b=N26u#f62LDAL?15{Z7r(OmCD946NYOZ zzCjLXC2V6_U|IJT5VS_nj;WkMLufd{(`Qv`wZYc}P_cU;i8z7AFyEv}Z{eFj6c}*v zTVQeI4pPjTps`*!L*c<^gdlWX%3%aRrw1isWY&w;^%531pUPMqCDHnFm~OBO|E~<} z48h8(?inwn3W{*jqAom=wL7Ut5gMdWJ#+Y0Y8TQbj=#|=zv8pyf%F*M+{yrkkb5R= z7d(}6a7z;Knnes2qn%3G6T(g@4z-ofSL;d5<32HUMRD}7$#nU5&UEcUM4oFIq>|C*OC6QtXb3qDA=_$E+f}}~N z_={YIz8$)xtrb1KYy|5(&e{U+p=mj&l%uiYS!|#>u%KE?)`38A(gD|~wwrL*vjWSm zTDJflO45sw%hS3XMK%shQf08-!5(4>UUc-oei|wd@}Xj$0Aw-XMm>JS6Z$q6cpX{j zb2Tsw#k^LY4%m4JvhWy0I_==f#v~h?hLkbNEra3iUf%Z95hG(*UjC27b^!!thV9>1 zonjod($8)Sa$B*^_fj}(vt`Ej>q^L008Ox&i~Y}K_M*Dl(B$z-2c)>S;6m_i(8OUO zQaHX%<#3_tGqf`Ph)OcKyL-jm-Mk&1hI20FH*$YKITO7(-RBoV!?D*}`@QTxS4(b3pct2?_dyQ0Y85 zd6zmHu;+`wM#bna`&;E5Fh?f|je&gwzt%OiV8p&%s)3FlU%q^)$R=pw-(C|)5gP%` zQ5qpGaag5D8YW#63+5atO~}OpFC))-jGxS4 z2(3b+9q}HMIhL|gFmuQQzHKN)z7PTn5`+{v=yA;CpyiNtlnar984a;!5IG;i0j3JJ z3#ll|R-$;vB&tTo5ko zG-xP5WXVpF!0Y%#t1GaYLH^SN6LOR(EMyS3$vlc~0Y10tz$Z~d7CDuV0e+Zvvj@qT zt?~F>nem4F+QI2zAw$do3blL1ZE}IZ$TYN__G}vNxeWlcw(N4O*@-(z<+%@X{Hz*$1%IshWMxMN}4A+bbM<6oks?Q~8xffF+wCui5 z;o~E_Hgq=b9P(YfaA8~A_>Rxw#~Hg0$tN3eRKMPyEb8F_M6-;r+zKl`jIWwP_k}#$LM5>5R6?)?qPuH!vi&I$)B>|;2hhJV(p`>Ry_ZMBYEMz+` zVj2zd0Z;Np567Di*GUK;8Xlg!VG|O&{vlL#>V%*GO7vMc9uU*qiqC4Xsr8MGM7dkC zKYzmT7LXr%QOt#+u#eM;l0|AE@{;>ijF?ZK!!H0wjY@ayrx}$%A=MC|Z#CI|eXl}H zL|S+lgLmp+zj%( z=y}|*!$`ZL#A6Bv8K7KIjveV*h#1)^FR?3;I)FFnMn=Y3*T#R^AR7!i%toX4#fcpl zlcb7(E7mhahFkEtBf1xJ6^aW=rEq<1Uw>xD8a{k!Xqm#X@D`X5$B&0fn|_Q0e-yw+ z)Eg6O-Jl|B#gZ%szY`;DnAo65@A#8#xs)!(5{VF=4qEd-3s~JX1gd31-!g!8gHxsu6`y(cca3!^^qOcicmtaap z2)9!S``AzFwZ#4qWPv?ZhBQ<$fn+BMhqC!t?=T6`XD+wu!^>1Vn+RD5y*MVBP=aMH zn6eRLPf%*W9u#~(fO3WZsx`91vP`7CEfcl=!Kf%u!D7$_oZVUpJs)`9d!abF#U!)_ ziR^#=k_ee%pWis#qsDp%bV@zOK%Pobyh!pDbocNO1k)Y5RI>R)i9{?enhl8!qR7S; z@)%@}ztR9ZC%xDlplH-(BUev=VI?Sskt@9uF=%RP3PDIW!CVDUak$Sr?Mm^!PFXA9 zGU#8B1tIvAD)q@odC3?XP_k0h`1z=6kvlVO8gzOz8jhxX5jmJ_XK&olLQ9F~*I#Ma z8ubOqe(CkmcoEYv9FV~Cd!_|hdO`x3n0>0kJP`CS`lS0I1Bvh@a z1XPeP9+|TvqZ`8@5M=~e&yOvvS6IHV;SDkX~b+yF;uZP=19zA?2k}2aM-5g`|a?;Ajj|-$` z>ParGGH0#bqc-U;^Q}8)y$QeG)M2=6J$%P5H4G$)M=NdYch20@Q4|~fHM?y% zcE37^V>4nVo{8E$?mv(<7kd$FHOC$qB$ zC(3`#{AoAA*8qj2rn0hfMk^9`LU$-P0B?!3vQ)RCL8@H4*C0UFjFmSv&LMhwng99?=2 z-CbS8XJ_UX7suM-BkyqQNaH_lD4!0aY`oAg928U&WBDmLii|BC1p@$xOO)>(+kuX4|sLPFWZerdJau8zxbPqbXNAmYg zeU`SUZG8;9!TO?N5264)#D1AYp0tRm4g6R1DqL}2u_VV(Al68=$$q6g{ z2Q0Y*5FPVAe9)D5=y?M+O3aqQ4H%zvx*9w=fyzNpSK+510sU~Q-Sn%%QR=^R;8}~Z z2s$MjI`B9f+=w~=Yf}=6Gcm~d{@O(DIc}k!?x2Cp4H_bp|9hkK0fJCjf$lU5+*uEh z+Cdg2Kki{DSZP9450-+go~g9A5&kc}qDwE+vdIk*F9fYxBxSp?0p8(uC}SYC5)C&2 zh{YG#+}av})=B+l7Lj629XDNU1ttXh&)q&yrZ#xT(iQUX}~dYu6j2UY&e z7q4DEXR_!);+et@nbU_w{-um0oJJR2YQ+bvViD~2`Jp>UDX)vl2Q5sk-@{)*SEs~>y^whkxr}vTEpgy z;3J*5W;OZ?CYXW44o0zMjQAO@@;UR{e(ct@5E=7Mn9u^QfCDJBy?7xFi+EM;Ad)v- zOhwL=we@n(Q&IlH~V$sG^_oG$t@118dkk68srHuz@vvij900}?g1NWcI#c0 zUJv2ggi&T-Ky|7O@+sj0ZU(AcumOpF_Puhsz3cB( z8*GPSY#U-@U||c)c`R@QO?GxL-lR$0vkSZzpOH!rGBMcIX&=0f#kLB`BjrH&fFAf4 z*U#OAGQK@_7FaK$aVyoQKajo8O)iA?`T6;^fSpY(1N<|&GG`l*1b-Ks%;r&U%lcq6 zU@(pIWs}A|5~&X5fUJ8Mqr-`;DuZyo6;< zmFIDQv10z630EX>IfvO0~KsJD8FX|$^2uc_FRY$jR8BGzp$Q|MI*_lm3l$?Sby zvLFI*a^?t7-77;BMQrn@f{n%jYr@;&bPa%?? z5CxiPO`vGtB9zDuvuRoDkMG}ej<3x#PG~{cC!@v%g~M<-xDvSzZ90}J_7D+8hzv(w zrA*R%ZI9mB`-$yZKB9KvKFGphIWn0WHvsJjSbgHe3jOp$7OW^aTT$^a9QCeOXyT(U zAy_e)BRU95Mb&QyO=_I`_1lwEunQ#OqTe1b>2Mi!#IX1sq*MViyWq6N5O||kBFiyw z367oHHM8zzj&lK^Vk*PxEqQWEm$hl}e8Wu{zdZW<4;N!npG;y#U^`5r47z8tM<)(} zyn(30W?F-hvVXpSU^5mYrYs2xo&cE6TUY_pjE~O!)rU$4!7dVIamG!db=mmw`N7q* zOyt9FsJ7KsV~jca?hy{$WuCVi-$8sAEK5bS^i;tae~fA1_zo4@_Nupt19bF}BfyRz z6&zw>HUX6&3z6Lpj@S~oUIyasTgj#wRTe6l$Dm53_f?u?w*xN;WCsJ5Mb@jt4n}n= zJNhQHOOd}5nRvCvSi6J4FltAAP!7UVC_ESl-v$3yAwvdWwHA2X2p@|=j0qJbjUwh+ zz!VGPRJ={`Hl5LEvncv*9Sqo*GJW`5O0cMsL>+7^Q#w6-q8qnVQAp^baorUD>56e0 z*gH6cBT*;i8_Y-XZUiBflG9H_E1FVYniK-0W!Zrxa$q}Cdl4vdcKA9}c2x&5G5l(8 z|M`}uqy3x0N`Xcd-d~15}q9C#JrX>luulfz^6~ z%6?`uD6-a;>q2wJ_o^#jmT`h2AzYSQt8wIn;sv&!oXo#q=i0H$X7DQjy8!BXr%4C+ z*|i;g$DjQ*(#-uw;Ww%5$WFRgT16VpDc^3+dB}h_i6aQ9p z9S=64jB7iBczAfKswW7~9e)W7SH+*+WDMa|`FoZZM^G+dysQaA3M|3@BW3!xeG8KF!1I%FbxS`+nEBX)L3hihd% zR5DI})~0*3G}O>N#OqS3F0Ff4Vft-XzE3SKyMGilc#DU5+_v1Qn*F<-X^mv-d6$dITJ3olv5WZ{lR(7MlTn&8?5&VEWWJOTlZ;LvMH%CO^@@W$W}{edFB+`Hq86L z-()4w#kl74&uXvylOuO>ZRMC~c?pYFB`hD4s+BLHI~7;+F)Mew$&oTBaxB4;{$5iT zy>RTC-8o|{H2x`Ak-MTI@`#c6ZneCMoTR-ORv-S${+IhK^E>^+%Ik`J2ABz6nwhcyz^mm0E_b$Otc|R}3 zhvV+%qbcz7+h%cm`^*%zFQ(f3&5@=lZ=fSA;Ck9E-Or z^={*TBWM_3VbxkDhTv_R$m1S1ul+QxK>cJpp5ES-2Bj0P_O;s}khA zoiKRgSX%q(YUK$*f$9kpHoP;)upLYaU4t)8`haf!WB3VUH;UA}hs%#u-&bvFi_!@} zPR7G^(_L;N<()4pmO;1<+OMikPH7MZF5WG6?4n2LJvIBfB=`D|SP z8?#^`QH;>Ibl<)r$(F)iY7D{k0Qpi@byR)$Kk^#u(rAoWy#sp1Bs$0I(_IKE6IaXKswoC zX95O*N#jC25)%^%ZX>)tFE@9U<~~7tY4-)R!*4S6Q;oyb>!N*|kGj1pHcd^X;@mwR zefs3!y`T^)wXDxS8c*Gxc^D*(a|$gBM*;~+GKCr(B)CE+6F!H)3MBf(>BjO4N23MP z%BdhnGZlXO^}raA(9ced!6U^9x*6)eu5aH|(4DjT`u;D%YXOewXDlq@?Nw(V+nUSq z;$x}aK5E@i{HRC5LB#aBw_SdS;X>O)yct&u8;o`4(|DzgbGQ`EC4$|6U83*23oKwL z>Xd<;(a4yP7Gm*$Q%mO)4ql9?Ai69Pc0#>On!W;Ur#=bFpWSHf!Poo_t$olwsfh%m zjkf@Q@`fvv*Hd6$!jha5ED$wMJ^W^(`Ak!()Cj*R6Krh}s$IKqY6FvLVC$?i{b? z;Fs=XlX>~T;9!%%x_Q@$;|AUjsWR|dJzL`g%{aSZsezP9PH}$FivtEy@>aIqJB;5a zed_oJZqIajY}l|tJ;cpq#;82=)^x`274tVp}ViI3?e$;a2cHcJTdz) zj_h60PMKMROyVFUfC~(*vph{{ozEt-3AB)jR1+w=_^i~-7O^YKddHrm8bRwwP46JP7-*Yo}RU}?hOXi}<&6Gkr43&9q#WcecX z@hUOD_;$Y)Q_Dvt+i>-qBWvdw#qPf%mHB9}@>P44`H)3pmy`6+wS90&m=(J0A_hlb zoj+iP@|n#+U*>%T69(E3OY&rLdJV4A_}0 zAPOD@M@7u`0^(wZp*Ee?>YmMgD_Mb8W_3OJX1bf6g{vOXXOI9YX&lBTI&EL)1xNtO zkjIA4Ct!?H!~7z22BDwz4WA2)t+tm2qq3<_u%&$d^&Ld&TX8$L&U_kaML2#c|MpD* z%KS^~+p3EWER>ao=QcviBGMQfJb3VOSzmMUPIwmBnD5L!yn0R#oUo`7gk%go4xRS> zU`!$_6ug~VuU?RolT)?2TpZ*|BHUorKvCO+Rp=|H#hx{9UO2=)^#+NsHUm78V3aR_ zq;hu3{3KDosTVkh>~@P|IUiE}GcUS**~YnNCwvCQg24{kcBAJsyc$(wYp2nn21B^_ z(g}m}t_0;nZ`%iAeW>C86Yx9`8lHwZ;LTIRfJiHpzylejgcb=tx?jP-J!WfvhMPb+ zp!5(#!2I%ZEfkJ40hTgk(ph9=5Su0D%21Ww@JS&~oD&kT{d?@43td4p98*26*uzdt zv<4wl8UT1o1R)l!>PP650+Coj)8rw39kBT#zsL6R?b~w$tJAn=r$rCcZf0|s43I+(rExQDeb^``MJI5Lq*Ttd?eZ^uU#mVWPJ ziGhQosWf2odC9NQR*GFGh5W{nm!yk05c=9ias?Aw)`do$o-UB4R-SQNOZD!BG~TwV z-V^G&6&1bus+mW{Mt+9|QJLS~(J=x9Qh?C@sk*Cf-M3kybyQ=ZqU!o+>Mx9dD>=Ez zL6*mgk;JmpECW9q&Fzwv^$b)}7V-MX!Pdih3MqFKR24YZWzi^(-N{(b@tt?SBSL<{ z`0p%x)c+(oBW*4ct#x%&St<)hua7=!M%kv&-GG240Be#{rzZVLUik`P9!FQgu9!Y; z?7%a-%;qixhO#Wh&@3aLN#vK0p9tvTWLZl5E6FdPeutaSYV9YxVET(_wdd71Azj0B z7j-GBJ{z%Q3m;8#9Q4!{xLPWhkd~f)WVL3%C90p48#sBRWOx3}@(&*(o?S>~&+6~J z@uSECsd?}F&;8+sL9*guoUh5=Onzy3?r)F337yohB&nXnxgCZu$JAK4aSD?|R8(GJ zm-~~qph_3d`J>Dlx2|O<2>x`aWqAB+RMWsF}zBEdz!Hp((fx& zPz{?pI0odpQG{q!$Fmg8R;Y5_)jAO?d0TTD&m57<3^0Redf zz=yr3hzmBkB4Z-CW~-8ZHZ?sdEC&EwujF!9eU;mfj;0vN z22Hk3?R%7XH1y7*Jtr1retv$w5?CoVwju*Bva@sXU&w+VgwI5t0F)O~Cu9=Z$s8Ad zFd%Y&_@LJ8v8U-OR~psyV1eZ+uM)|5Q^#t!CjHDa`Z)H4tqMUP3&z2OIyl}Z#p1Pb z0)SWeozda-HNB$fFYyjpNHCAa-(6Uq&B6V{6E01BY;8;H%Fu|PSyP?+q{8xHI* z1W1FYnpUYUWi|l0cz^p1pCo*JId?%QhY=WwFd|k~MXWi@TN3;1wuA*9@7py+8V>S=Z7zr4l_{6C7;BYNZAzFosq*WRdK;tKd3FIiS-B4iDW=201SRNf-T` zA3B~q<+E16@C`zP+c*!gaY}=BPA7JgCZM*AWDwA8zO%_t7cG1f_^A+nPYqz2Mz>~7 zao8D!pB96{A|eqlQq4iP6nUYP271mzB9!?%bzP=0_SEpi*?>7I_rap@aO#F2@B~0s zl8+MW1yM2tG<{5=RVG`8SS~&! z_0uw3@dOeY(geM&#I&VW48}1x-wB3hdnsDNBFKn>uya(Qd189S<4P&GBlP303dZSFauBcaS>dMcd;=BO2Wlu zw5k=@5(EU)A;Vc6gg)Yy*8e3H7k)gUYaEG?>Z3lcUb2(a}SHl*4G!CMK-euxJV+6tiyy6BM5n6%~aIAYP!p zp)^bi`oiJ9#7q+RV{Tu}jOq|*BiO;H+hp_{Kfj!c*NWDLz?>aQs%Y;CvOtazems5f zST(lUB})|heE1%RclLkN-=YL!rg2I|B76u4v6tr^Xo=WD0f(CT~5& zrf)^gDwvV^_PBfYp;Z>qZ@;Wpe0-xC3;KnW&)xH*;dSlf%)(Dp3nEWeGFi0VOo4o^ zsAa2DUP`kMG1!M@@q$UI>=%2VrxKz?nkZV+d+pk_s_JAn+}u7k$tPjs&9n8yU1#ylwL|WXQ*-)^A@h*6w#ztiy`>0b+fAa38J4gsY|cAo-$lZD?!rm8kMK zvvEh@>OcSdlhQuYfqwf4sxY zJt;jqX(KS@b*~eyg0u`-!OH2=r-NLY{${Y~e@VF`kQZ;?_)6C_ojU*M*S6v#lMmyN zAnT{yE7Ss|Zq6RZKm(qoo*7P|ESsi1r@q44gW3nPq_yK;x2w#fVXdIdJalzsP>M|n zGhzoWT_7DWFr}>|z$N`6=?qYWJ&$^-+xyf=0~xtTKjEkCa2qm zrgJeW*9Np5!9ffI(ozXNGMYHc@DNE`k}a!dhy6sbZdtT`1j0Z#+R0t0Ly2bsG8%$O zV2)QpUFOftP)7n~8aY{2eNmT!DAxav4>cnX!DykQ8g2ytke-?%KB^rOEs+(}F@I<2 zeOal%{Hcjrg1NHc*h|Ri$p!x{`h6I8suej{bmyJV_TzW3hvA2$`S_$j8TL@uNE|dWy7nL1X)h+V`OSfN`n=?lW?q zvEBTX>i~u9+cQ;nGw)xRn;NB;tO{)ljW138V4ee`@aNCB5-?yZ;xTP}Ry-q#V4GCk z(8uAYvZ#@b8-QiF0uFW!sG@q&f-%N5>>XaaTw40co6JQR6~CN}Hu%N3@V&yK9k%Og zr-2Ydei9UspiylFXN>gjlv24!r_`H*M2U=Xoa0#^iOgg`F0gT3*XcaHAsd%L5=}rhk6y zml?{tOWSv!MaP2k2#|P8UQqP<$h*(i1F-B$feFtdxaRoA?uJO-IYk|hCF^w%drQo_WHTxBTLx} zo%V4U{j718%g400AgxM&7>AaJ4gN<(kN$|}(i zrF@Qjce__S0}yZmO~4dnn&fl_G%*~g-n7=9_UaFHG8u?4Ag|c82XZe`eX@pltuvZe zmPKz9CWAW)W^#AIFlzDyXb~v^hDeM&t=H00R&XRd7l z!Yjx^t4KVGQ=Z`iRQada0iDtRl2mZCxMp<3whbIwfTQn_Kp;$-Ho%^1yWbkSwkM`F;+)By zVeQ<##^C)cCG~9A6Vz9%cf@wo=?53P1-y{g@*_{ryo`3|k{1?!QS!leDDcOn+)s$8#DANrDKppO`EhM#aQV13mpZ zTr;pG(faqKR|i@QL78|emID{9s*m-C=(E=^$M$v^`n(u;0uCFpHqlp|Y&Ow`Yos2a z8e4G^K(JYbmc}1HD>;700*KqhQP#mD?$H#vt=i)wUKqkM5v9WM6`~QPI$xzYb(yxb zchnTQi0??Xt-pQRZkwobX#5Hl1X14{BPk?!Z|$casK)96&) z0h0iK6!7|ru@~fE4|;&a)Zi7;i8kE0E|cg-Gzl90T5`fm0h9+SwQq>QW;n-GoTQZ(;PE-sj+4cQaTyg*VzPGBhDgyBsLQU?0+H0A^KA@;hTX*E4B ztg{oiW>ksfI_Q4uRv@u{VB7-t(rtbN;P?Ti2e&7r1j8eTKQA7A0}#ah_U+qpO|a_F zASM^dwogh&fP9={_w7EF1<>^o|A_a@Loi1u+7r)@(kBq*i1kKNG-Q>Hg^Q6q5~ZF+ z-U$Mt`vbt#n?1TN_8h0>N_(Q}2qt)vjtrE67?9e@`w-YG`KOTm2~dG$wqH@T(+OoY z{KJ}*={c4EcP*4lCR?{|r2(Y?t5@OSU<3wPmLnnqH0=7y*!%ye^gISSJP;Z3c?IS` z{+BFOR9OyvUsusT!*MK2K$V~z2X$Uk!~n*M!wq@SJJh?}DV>xdfP;{1 z7|Wz$ULvjY9Fv^1uudc0VLL)tBIlvhLjn&b^zrt7l!jmy=Ph)^w0VnH06}{`U6oKI zmXYdleWcW||6!@3Ndz{YpPVL`4BNMFZ&(DE5HyL%4qkH36gCrS(9N5F(CLh|jWbH6 zT@SNO5RF?&{scJLPqy!vrPbr-s1kZ1fTKNvbS1fb6p5%1f);!(X==A+%={@6t}l>L z#qnPQBCa4+K?BCHdf$nY-u>u5n0;Z1*e*npZhf#a(RsVYyp(#a?d&&52;5C0(Gt4wF+O}83}l4gIcM|8^GIRL z+$j_0Uf-cD>RDx?6|MIcMhBrNDN#sl&cq0LDX7ain_f3j+-zcOwZsjhNAVqxqF@|p z057mDgEU(Fti0yRpOKxv7)?}Gp8T@FC8$(w)_WrMqUX?*>UZnbQY@0JtgI>%YO_`zHAv^+6dAz78|xipuJW<0ec!nQQ_=%#dnAxitjRrB7+pN899)I8N7oUNcw`} zPEkEm_+O7?4%Q|{7Av7sMWqm4uf?mlxHytUgJ6hnTE5)!xn62g(t0vq?dt4&!@*Q6 zVXT2+Ma?MP>>CfH+U!Akahr+ud&mzLXo;9Ckcd^F`tyq={Q>qdj#Z(~DK+ezygUom zLffD5Cp-XLr{g#vV34bfq=L**$=`u13?iG(OD4b}!lAMYMg2x)D>}&J*nkxdpmJ5w zx2aT_GKtYh$q#(~wd9e65p$d%2&ohAw!!C*GozrVr{_>_J8De=NxC<%xQGTpgV|LK23X_qmYFO*!15eH=w(sBcDgio;1023_PajatwI z_kdZ)?+~85+ujU6AbTbxMl?JcuA>zHiQ9$8HgAKSnO`!X7Y*ivO);p~J-^2fJirMbf%Kk? z8c8GXRU*1?g7iAZ zf7Ahe^1K4AIs)h%sn2NkBcR9==Re=s#uIRwv)~N8YefY%evVF z@RUwHHa@lH-`WleY{=pslB)nJLa-r(R{Ug2LG#JSN4yp!Lo!JR-B0cZ* zU#t46HX0qNF|(CpFxGLmN5BllRNv@RO&K1{hW)QAZ>BvjSojNnK9J1EK=U7jg#3FS zMS0S8LDSpWM{|cqY8yWPSoQhbd^sLrPXMgMU&i(_vlUUe%gvPn*sQcOnmb2t-|6^~ z5^Q?pcEMD9@{NMN?##)W5v2vb45O=K6gF4I7sl}|`N5`q3zU-0SrgT6cv(N6pt~EVTz8Pp0AhpNuSDE*KNa+}-%0a;P|ZOVg3YJF_fpOl7QpW0;N4 zO%}c!Q}nXcbHL_S_Y>bi%@c{m`GLzB4a8FcO%^f%5$h;~9^`tfWMxyT97!b5(9rMz zp~|!6ljO>z?1lPbZSWfGlzR7Jh(iDdil3MT|tu53k>xHk%UHXK33?d^Rcj6H(g zvJc&=I9cdCcab7@&aEq7A=*gQH)7*t|NMKw@V@(Jc5l+XsQ-)5RAl$a_@JP97G_OA zH4Qlb;}7K>zA`b(`qX{LXJtQKxKA!ht=z@Jp*m%8=B-lAANpq)!fvEFhr8b`v?@|{ zb2a{S4BtEcRI=Lli|M$e965H%KyrAeqr^fW_UO+3&3)v2Cz~$(rl0Pd{-SlAZ-t=R zUk0xy1Pl!|NVupV6J?TZDUq>2vSQ2m;jBT1(+bd)wk{%z2F`c1ytbhOAl`Z5C>m3+ z?#^H~qez?wF(Ob?k}9-tho1Sgpi}W*TPki2NWdx)dx%zshHyBd6jjn-g!s1bj&<_U z13i~=>+rksO>L_*uIn~_`0?Xp+ErPeT0W{d!DC^v$UKT>!6UP*`i7$xjL=pT`qcL2 zjNHOu367EZ_bu@ld@BS`8q(+>*6`1q8H9Ei7;f-X%|WJyCZB|+3p#bAQbnTB@cDBP z5?|^&IJAU?kT4wEqUr7d<$VB)$Os53OR!`kkgsr*cbEj%(9sctx9Qng{5)oimV!ta zaL~K(tNIhc(bF==+A?kiT+;a%(`Y>}H9#a_2(fezh(3FxWRPy6wL!2IYNCMmty3nP zN0~x0t79KTpU{O+!U-%(Xw#-mFp7-NvPW-16K4Y1h=7=rUtFw)dlP+Z1Dzd3W3nYY zxH<<55Enadqf-+3$>T^N$YNSKxvb%r)sTYD!q{LeM%JcFNyMU}>3Oi|JOOKo3w^QB zml8gRqMl%L4!!|OkvhHu3S`wU4r81}+$R5< z+4mIeIT$J4PDq&^>Pxcx0VMhm6})UhAMBW^;88Qldxj*{8Yf~YPN4TDfaCp-t$PGo z{;pmBP#K~ff3z7r7K=GTO78&LFj=kTF-241e|UT?nGGRLA!|i)p#h_s$AsHwQS~#^ zVv}eK2QwYmfRD1zh_C0)$yMMz47HN@DotRfMpF9>7CDKnhsmw?)yGz6H`QXQZD+6H)0axUj{@j)31pZ%mOLT!a zOB+|$%Ksbr>1X4GG!(Bxwiu3Y=7Sl7MJ(Ukq}r~O11p?^Tz8!5T5XqbTc3kWIyJ}|&f^ zj~ri|3Z(XOncSL*+0R#U@LC1l8Mdc0-^H7{YY#^q`)s}ZmHN@%Uy`&S)IVFkMp6B(E?wyMREA5$R^WY?ws+?B z$##!-cNj|6Xv#};NTyF@^#22o6J$^~JAPnUtzgYtbM)Ht1k_i=??(cKwrDVxRHJt{ z&}J4J(>7Wkx%~(2i7ZL&xk+%>A^GW7elCx9543TrGL+qry6Wjjpu0*O99o->V*kld z+EPyK62wHlsZ(hMLI5KI#`(}Un1;T^EkQz~_hs)vZdQ!FS4=KOhL<~b=Dp#g%bQC zHK9p@jH~{E`qm2By$O8kunh95uj^8c@L#D-$vbxh^sFBj3z?nAm_%WmC^fwhOs{v! ztpFEtfm;RHm!qAdajSnZJk6i$01A9ZW;sW$KXX8djE$j!_`$@m3~pP49lXr{*X(ho z2P5FMy<;~jlb-|J|4Xi?Zt)*%pK}&3$E&GO3(Ter0BW6EQ&UqN<$m>Fte>B=w!?j} z06{h|YCrv}kmdMtUK%NF68L#V_bKg@o)#?=7_Q@OSF_r#sI}KCdhYib$bK>_yjb5> zX+NSYW5dhHa^W`mlwI=^->sEubn$TayWf;Jnx1vDf9QHXMc|B$sXNydBv!o=&MEodyZ>AV$ywAzukB?L-{)QvpXkePP1)0v#{$- zzyEE;!u9@g8U646)K9u=dtK!HNolY0-x%r(x#{lE;+>%D%GXz0FWsyXlGreJ(0*sf zI`Qd8Z1vWM#;+4ke!PMa(85iq6t-VVwUH5se`X{4=I-ms126Z6_!rxb$~46JoxW#! zB7dLbWAVRsNXOou&A7=OVjoZ`ayrSx_LcG5ZxO5%Ki|8iqO$hhugm1bn@!ZZ_8L{^ zmQ~F6ayJ{8=v9Kt5*xcLSL1>Tv+_dYc!4=x21R)#Pb?=YR+r=c6C`?pz0BWhs^ylg z*OCJ26m$xsndx#j+)^_7H;vpo`S;( z%?|fEJiUx}v#v@q&;4^zCoeqGc4Yl-a_hIvGYsaZT=r08=u z^7iZ9T~0o0nwT|3O@kvD6W4$9_VOR#3=|5e2scU6eX5a@`uXcG4LW=+RbGa3DtqFG zow^mHg&M08t)nL~j^E>+1_i3l&#UirQ>DZ6WMzfnr zlf@YU&D;Wftz0{wt;qVx_L-?e=l3?rZ2Tum_JMSSw0~u@)oWvs;xe_=mP)*tN!)CE ztw{Sc&d;xV_%i3FO18G!r^4)fy|3RppYYWjTcl;&o-EsstI-+1njKp&r1GCx)b((- zp6as)hov@dDrd*s>1pY&sJ4^bAsuA%^e;xhiSbXLJau8a=6Cy?RH;*mSE4-U`KF4U zx}lh-7~$KmX8158-R`l0GY{k5gt3}V;dc4{y3-d-wthUv-qN<-HlWh7u>QcC!2DdP zjF)}Ij#dd5>C>CXKmEjYe0q{}eYMA#UD{d&;!X1;d-`wxl@NYlzk|l;hWN~kQ#=eO z4)YRGHMdJWNjGp=eSxsF$Paa&eEUn{f+Fd)s!^>S$(_F9vyI9_wliFBa5v6cmLDFB z`rm1e5>6pA8{?;a_KcfxYR?CarpmWra;+6h8ChQ3ZF6sd=_JmNE?yaZtKgBwybtDm zu3buet$K2TEB9?h8JFY zIwh8hipPIxUE^4-Ih|2EpZlse795@9aHd>t<4pW4lqI6A!J3Ga*B z)K4@9TBh%mIeCY&+-Rz%_Y4XyJuTRx_kJqsLPXEeyvkk*I=_3MI-x}NI z5l_3Fd$=E8?R7Oy-lF=-&2?{z95*H@f>U|?cW(TcV3^=>Li^K%;hWBR%gd+tnFeOG zncmFI?aur$qn(E_?@H6C2!|+ooZY9lKKSb=z3u*$VUj_SDlz)1n&BR~-n0HJQ5=@* z={wFLYaZXljhBh}601tq9qUtKOJ1>f-2bd@NBT%taIfO)4NJWZySYDneEf$$oN=IS z(pKYQ>5v)iE+CbcATj%>$zZdy@R~e#`%+QXqA|MY^|NCYUae*mpLk1c_6x;VSMo(G z{hoxVM30WtX$U8HT*}whvTWOId6+{tcYVnP5X|O3U;X&ok;vj$QwhNqr>6}Q(nsp9 zE$-3Zk(aQrSyjbzIQ8Z497^i-%iQmf-YI#bb@vEw$l;5I$JLA@r#wG?(*z8p;fBr{ zrbhGuW!2DU?;`p-=1X#zt81mlUXH8o{yfEmhLULECZ9Z|a)hs`7Q=f&4)v-9cJn`* zJ$a3h-pnECZJg)T`P=yKeBHe%R8Q$lLiZD&D{5f{EoCONJq=1*+)s(W5;GE%oUPSf z;JcJawOMN11>5VX<`d%EG_B0;bXBrlqJhhaPdfab0va+agM@UAp2R7>s`|5w-r@%C z4Jn&aKsDAlz57R^lun!OOgzI?jb9T>3q{tP%uBlW*(`12*jE&fe}#qcI{lrJZsjdL z>^Rj^N*_LZwr2KM3wz8pD&40(&|;{hefjyflre6vDR;YtuJJZJe%Sb=Z=t-EjP|iE ziIUbIgW?M`E&6hGd@W;F=Qn?=$!F(Nm-6LXUVhc?@{d4QBHb_R^&X7s3F+5-hX0vM|H;|O%j`|LGMZ3=` zO)V^YtUvF4V4}|ViKX9tK1p7kX0TiJMrX8j#_1Xxd8z0RQR1&UQVq`?eL2F~UUrB@ zdWMb{0;Jwyxa#B!<-LvWzEq_uk{PTlSGXv&RA$t+@j!~IPNvy__nJYEjzbX>So2B( zZ){vJ8oq_+91)-mxG<5jiTA!X_ku^sQ3iSr=i;tfnyg*d9bO?;XTj1AdlJ$XZBd9g zGE08oSGx9c?wL@M_syqRv2bHU**&8jckip&mK~3ld*1Lp|CPIeSy-M-o9+|ye3%~n z-0<__=SrVayngCtB};py^)sg@c`~bHPRM$Cv^+7HcQG*2{~8?GPe)8*C>$RDiuW0l zFIguGr9N#jRlIJUEL(o`{o?_3pARwiD@M<`9a&`SsLx=`+d3Y^zE60*+Fi?H`|^}+ zQeUja`Hfm<2QFOT){$zq--|DPUj04Yy=|(QHtRw!xEwrRGLaDw$j!ZtUjPsP=y!O7 zMH{x&k5_k{r)tt^o77`hU3ysky#B8Y*NfvJ-9bz7>bwnl)4Ha+8_oeqV5$RX)m7s= zw^#PUW3`Z*HWV5eG0(S_(F?+#texDTjMsI8dw=-r@v{p5bK}2srB44sJ--W$ZBzU} zrwTV{;UEa&Zj=Ah2lI7W{p$AzkQca<<}}!W3D`?mQ4-Po(5)p*23!;P)#;*4@COLB z41y3hPj1&gYjgY*JM=1};^HK|KEo2}Wddm9Yhg`{?f`-8&|PSvO$%AWTF{!HQ}e#b z5q*MGe*U=UFQ(``GMgbEPvzlh>EHPXbS(TL$=Lvq+-73%!Ep#F$hi~x7#IMCI`ogb zSZyj7?XQ&w4~;w=!B#;7BP8bDdQixT<^X<1<#QPI!c>ccNx`SvZK-=1=#M(2@G`DPYV)S?JAM_17ga}Ew;LJ!(KJxiftHWdW+Q8Fi2t`9 zbnL2UvB`9d(Du}_g=7&MYz0L)&{rJ%f|k>==K@3pNmzl1#} zU%iMi9esWJ0g@g-?hHVee6ovSAPc{R4fp|xXYwFzc-)=xeD#Lv-<)n3&LJ`jew@Z( zg0iEHp(0)tCpGbGiS>w{j9tnehQXnRJP%@|Fv$`cyl!v@V6z?z5_2$|h=}dfW9G%! zASm&F)OPM+HRt;t&$cl}G{+p#pl0t0U2K^lTj_?uSE_ZxNkxO%l1o<)MJcL9ET)TeJFm~O_kPYlXFunUbDqcZ3`Vuq`hCBj>-%Em z%>%8<=P37hqajSJQ*&&kypBF1L{UGz6RcHZ~V3Jm6=%uv!{Hz1PINP`EH#J9vH0KSPx?L*zc4j9-s@8N=3?jq;1es&fx;jrF!?O4LiQ4x%7BhCOD zm$~HjB_|US63#5>UEK#}l$k>OTnpy2TxJ@%m`o29Wm2%eUXFen!pM_v7!EwC)~N~t z9E#DQbs6vb-#VZdaz;eDQd7SIcs0nEmjDh}A`z?Ne%ZaN{r<<4``xW_y%3|9<`AY> z0IGvUTGkbQ!2amyB%-L9wY3;1xWm8Kf!+1G{d$=VH8gw{Nb)zgvbxiK<~fh=SG`e3 z56*UWj&{%WsyGPFT`|})q*tIbY8L|%0#B;NK}^NYCIhaf=Yv`eX;TTkCKIr0ht*QO zz%=3fL|geBaL-LEH0jp%lPzPxqF!2T6C@iuMu4EQEb6`aLpfjb z0C^+7rhZXfiDm&MS2sujVKa|<_>~d+I4)i9~sPH zIVYd*{?DqnZ6)5=q^g()@8;y5pM4`XyGLIuR*le95RQ0Ar4CM7 zOKKaP95%#c^Rs$L)lp&#RIub07KyBb007q4r2XUD{+srAd0zwLR7r-SIVTT#mr$#C zwr+Aw(CIP=`XGM+yCXkm6LErZ2FxnXeNDk|0u!L5AvI_X7J`Qi_m@*fFSI= zZyIy2j@SPKwF8kxq`nKC2lZNMd@+gg-+JGb_`kaJqxzJvgKM#*SP6{)_p-y<&x!yz z_%mdegMO6&=H%y>46ZN<{RBQMfgP^8cYND!6UTArzOt~z1NWymBc}-m_U()3U}=a) zqBSX8D5|Fh*7EX4?@jH?NNBnM`kP)>n$**$=dqc2aCyT8s4mSv`gBf{4KAN-8k?EW zYZD%ue3)1nmiR$;!U_Z7mHB-HCPj zn)fn|BDV(!Py!rFU0KE(O;~P5um*2D_p*sy$UGposUD8jXHY+8yPk6NXntCdi_j3< zKyD&5VOJ&cchyR1|Bl`>+J3CKxY)vngGCix0>C+)<(eOCrfgKJ)as8R0ZBGS+-lB& zu>zLmP!JOd-KIpxuY}aY>bXTuX!a|qR>gSx`G}9E09}n|XQ{#Ba2{s01#elvrwsfV zC$r}K-Ug+bY^pZF5=oVEApe~#?vZCM1daXWL@QPdjl3AQT$M}5R;X!WUZ+U9$ipX=*;g|ogy{rkR<5h)n*)wQu*VB;|AEd{l{Q4v-RB*O}a7=Z%8gifDly`q~!o34-%gnbYS+*zq*a)eAAb7xj;M7^vT3)A~~8P53~@1AEo zj|}gOH*JJMP>z|W+~O443(Dov0aiJS4I16t+^DauI{DadGk&dq%#{3`9F_gA27 zG{!gpnS}?WN`UmyhKx$2#jXWo4aHlC&sgl2sWzu1{iRwh%J+Cq&Q^&EA{?mVCAVR^ zC4)Q^)~u_SmsjHF-}lLprh*z%_kHQn2i1bs6JDul^2Lkymuy?Jh)^{ho7WYIzCi;+ z0J&18aSAubg3u|5$;q*kbmr*jBO6*MJWalITYU3F)M@cd0z7SBiKlK)_p6>&6r}Kz zzfC;zzU^+5t0+2)wVPHH9ZDQE=YX(p0o)`PEf839&R|`f%McPmhebIt$7W~vyT&9y zL)0L@&&;OE+iqYI@c2*-0XJwE(j6k(3r6L|N9?4RFFzsgi%Vb&m_u-%DiM~yII6Pf z)~!+=kZDxL`Lqm(aS!ui87-99P*scMrA{BJwU+!$pm8I1kG#4l*^ZB%TFc!wVAytP zd1UR%@l|WuL|f3*56w!ot${o&Wv|!({(E$^g)-W3=ul7j3d-M46(VdH(|23?Sn2_Y zuks#%%{{&_lPijhaK^-NxzLa@HKlnIIG6iOVM|s$je#qwIGZskJ(9fqHReii^-%yw zrfLy}c4%4Z{elbJI*-108R0~^=RV!88_>1(yOibCzp36c*YH?oW@hngs$A&;Dfqui z%sY3e0ksj_ewtAtYydu~3=9lRyDh7S9Nk6KhH`H}p{eS$PMKh}8$<}O`?Br16GAuV zQ_UU$R)2otD@$cbc41sk=L$tJxR!;tZAj_~Z#HgAeB;FEUhW8=tNKGT+L{cWp&wXn z2^|1h+#+8V7J+S8`|MV7@FQwhQw553m+VswNE+BsFmMyD2y|)>+ZD7ws-@wlkGSWK zyz#NK-7&&gMMz$aKL+U1_zKQW%s0f%S)DFph>(wUV&~pPu#ISV&xJcKySaaM?GVd_ zqi$#`4nM7{lfqddg~Q~uZ|A^+_&{jqVoS<7PU4P=@5m=On?V0Ot}#wI&9}cy%>_H{ z2*l0>_5IKk`r=?rIj!P7$P3N4CfqTDIsm3g7*vTiLoAPz1kxab(W^2s=>iUSPY7PL zxz8)|y44%IiIm9Qw&e>5iC$ zdQI1!g9np)+T(geZy_G+M0r-8Sj)S%8yY!=FP4E`wf}sPJh#&U_Go-Zcq2k6T%6Sg z-*Ns5lfCx27lie8-tk*K0Q`cccxCf$6%hX!$-<7~QLQ+^y0hNlgmc-ApHm z`Hf%V+CEUrHoVN5MK%>n-4`{>r=MzQ_sYu38fT(xLkd@{A4&Fmm>$Sfm5#Cj;;Tgd zjgJTdVgMkg%)6`W$J7ti5LEt-?5EG1B?oKzbNv%u^Z0c5% zEq0X!UlxLiN-*ouYehGXsj-lMJOUJ_rSFToBiQtg*YvYGBISSqB~%1;^%avZY@&;m zyCN7Bao&b}TujS2P7%td7KAE+R~hzC^0A;-RImN?GC|+IQ(FK>GD>WF>ERmT4W^!r zg?&UEGHox6fA#9Lr_Y`Vfm2Qj;}7p;MLRrlNCIk&B%}8^I6p~RjAO^pMkO|s zX)43Jp8F6a`6V_b(=+P@_$^)}*@@oQ3JR%-M=3a|5=RrHFETUxrKZKFr^ToB*9Dm? zmpFQt#OfE^rHsj3{csYMOY+SuhEAewop96OdJ53rdr~g(_U=#rF1hp7OQN+qWR4+V zD>)Fw#je8E7WETI4pQ4*OkLpRW%0KQt*eE$7^B;`ITRtQkZZdRY}h!Hx~I2@qP#S`M5lsACTRMdNjDe zdkq;fWZC0YSE49DL=Q@}j=VWrB?k-jZ3`cnWnZ32@awvm(zW|Ya>HuY6CSsxFdN?( z^qKK*Z(ZCX^CJT3!wtye9KfEJmSukO6cC0R z_SoV>C;cIFkF#wT5gkJyt)kn3bG;zGtXNQqynmgr;R4&S^G`d8P~0$-r{^;V;1^)> z(-{`sDA-qL244#{WcoTQ?do^(e1^Yvr=PmJ)Q)MUV6~0Iv{Mm5@MpRwnDCM;fY|aI z;H{;L1PXhKaG^EG80GD9QgXpCA`Vi&A3|l<1jR^>U?jo z(o|u7oo`=@0~h)mnW!*Etmi3+%rP}&>?&FA3ek+D*&3DSDC{y3-w`^p(6u67izq4e zTTtjr-J*s1Ir+Tqj6FOf&uXGMMRyXrJCULj(>6&abpXL>9K=5s!dNDYBYaPvoeA`` z2zUDCT5I3*)*Vp^j4fqm!XPBH{b{r{6Co0+1+y(#rQ~+LnInFj?;?BNMqXc4HI>Fz zl=mUnD8<`R5bDTSYPEq?>+6qT&y+=PvX1t(?4;O_h>JTp!XwK>OA{o2nq|EHOA@H0 z0zA9^bi{7GD{*G+dhcr%b*!{fg4c*$oOasig7Ny!f8@sB9f7u^XhcTZxBleN@nVAW zg<5Ni0O#S~cKjfFNJ?4RLjta?YkkL;I{EtcfoQxrLZ5ey_ewmPHF(uLX$;Ppd2LhP zK#~tmPx3#eYGk3cYu6B=qZwyn*DaeAWbf|wHn6L13_diG-qy&-oWRM&_sr^&e_m~= z+bP=tXm31mI6x&zqsOl()2BT^lUu5Q8M9`I%Ta8A)W(4Wbo&egyqoWGJH#8C7PGvh zX`%wi3Uq(*dkYJ*n`+BHKBTYv$5!Lfz!alEmW6^?xz^;g!k= i>YwcQ|HY=h%P}qN=HRPO{#q+vtC%tO%k*iBxBM4&?jUsage

@@ -81,6 +82,12 @@

Arguments, this must be a vector of length 5. If NULL, a default color palette will be used.

+ +
labels
+

A character vector of length 3 indicating the labels to be +given for parent 1, offspring, and parent 2. +Default: c("P1", "F1", "P2").

+

Value

diff --git a/reference/plot_partition_frequencies.html b/reference/plot_partition_frequencies.html index 6b8640b..5e44bf5 100644 --- a/reference/plot_partition_frequencies.html +++ b/reference/plot_partition_frequencies.html @@ -57,7 +57,8 @@

Usage

@@ -81,6 +82,12 @@

Arguments, this must be a vector of length 5. If NULL, a default color palette will be used.

+ +
labels
+

A character vector of length 3 indicating the labels to be +given for parent 1, offspring, and parent 2. +Default: c("P1", "F1", "P2").

+

Value

diff --git a/reference/plot_samplecor-1.png b/reference/plot_samplecor-1.png index 7837a5d49ca09efb4410094d3904d56e18326af9..8d1c8300f481ba33d2016247600cf7f4556e0509 100644 GIT binary patch literal 108584 zcmd?R1yGg$`z^X{1%aJ{1%iS|h$0~(Al+RSU?EC3Dj*F4(y6GZfGFLd zl(ckg;;dKw{(p03&bjy8nS1A)nY(8k5%+%g`+nki*0a`nKKGRrWvM83QIJR^D!DVK zlu4uwjwI5$YnwOXH*G=Bf8no<*UrkG!ryo;oGkRfUt28CT(%*Rn7xTVYkd1A^hu;W zB)L<^RUIQnIviYg&djb(IM~-Q-I8YCvi5lFezl#wocl&On~msSX~zD1Z<2qn>*2MN zrx%ho+ow5aTsyt8glO){ehFljgnG^8Wq#(#{Rqe}8<%PEqvlyD#i? zT=VDWvKQ>X*8chN=IIOF8~(oI;fpfLzdzEQzD57{NA3szuUz<<%;gf-{I})hTmq+0 zok}=MswO!H8nLyo#^Q4UHbG+XX{HT z*;pz@x>X(P7ZDLLZb%BOnEoO*ULUfA%iX+6At<(nv^h3d+ga{Pj_EhyF4z6xKI5-Q z&xEW+BU?+{3M(>uDtyBOsPOKqJV~r1BZhQB0VS@!1uZlER&C zw7fVICSvmvk64_OKVCvkvU~LYa+ZNp-;V9umCYuS&YHE*kl3l3L~zA=`>o$d&pw#6 zzD^7iH0jSS!W%_bm!<@-fBYxgqN`J{K7u|%1Xnl;SsWfRyi(FY6kQ%P!EuFqpqF3?QnCn-XX1;P;j@i^DA%m(A280QjC1EB92jim~zeI{vJ`%R* z6!&2kYt)+*Jn-&4y-v!nUzT(AacAl03NS_;&cmt3U!UFTuMUqd94~2$F>`dxqh^&H zX&6W^T^VW^yS0hsm$4y(*HB~X@V7KPnEPnOpqs(<>oQ@Hs z5;6_xbe*bJ?sCw1yj$djh)w^EU)^t#uH>e@c=4jX#LYz^O8m0a(yxpOaKQh^2RuMk4ks zPyQ*pq52Ew&OK6AQ4zEsxm3KmLKbzJyzaS}ST*y4vn_%nq~cjpG*f&Xhj;m2@AB{2 zU;3=`n>&+ib`^+r`0!S=mq-uy+}x4k96pC3KMtAbYJKTwk8Lz^^ibx zyXnbDQo0ixAJ60`{xVS|KB%yxD)eY^4!PI=d{JwvW`1n~22lNqPTfqCjzxs1-Dkt1 zE9Uv{lZz|+CXF55Y@m01ZG;7<%iuNfO_tS(+hb*6z-^3-{nOJh5N=U2*pP-5s6CpQ zl~vp-u{>SpKI*N@@S(HV#YZtxRPARmCZ7E0$B%2#%LrvV>FJr~x;#AcmtPw{L-Dzj&brrzl~gV(klJ9@skSB3C>I27%wY!F@UMRhbnG5)E)zn<+_dw#vWuCA_( zvvYy^x!}sa2KyiH?tjS8t9W!VRU@!fr{XcQj~jV5a6wXiI)cAv_mQpTmolz-J`D-E zWZsUq?b@(mgZ}IcdAyW~Ud#4EzFUi_klyS_i&xzscUI|VP2QwTh5ORXcOI}zNxPc6 zYOT5|w6wGYen~&I$2U2>M@3W9^wDmS%&L;{yq?GWHd}jVwqoZr%HE=v_W5CPYc44{ zZL*c;=+U|u1sNF`&lLtqx1qM&^ctzmWaaMVzF?iA95;-ekN=_bi%aE8=VD}iXG4cW z-zTu04RXwG$<%+SL(cG6b>A;4TA)1MadXW&S31cD4pEuLd(W!(<2K(>PL*z|X)B4T`Pb$htqfxJrk;y# zgK@#Gvy2~y88J4-o4jt2t~!Z1jM=UhE!iHvl4DzHpRZZ4IFwx6+H5M6ZPKLJQRtxV z>RQyah+wOK{rY_>iu=;WA& zs;{PMWG9`%Ae`I5yr3oK-6JuBm-N@sJrYI?XIzB1yeL1oNTeAD6+#PTykz+mM*r3jnQp!dg7O0f(!Dq@u%JuzjVe^P4W)tiW8Drxl*}{N;oxVba4&$>!!&r>d1zFtt_m>Y-XH)Xz zm2s^;AfmCP@78iMb*G5M{nPr&_no@(bSBn>5;tlZnNHaXR%lL_al#4 zrOeNT3som83^%4qTw5%-lY4#FQG-Y1$6YU8?CVKRFPUT{Pt{1x>{|#-c-*7WIuR;p67)1O(hOtQ)BDN)LwvM5 zcHH-)9{0EZUF9@@T*f2r)?TwKXjQon)^U+K?Cvm0(4Yl@NavCidUXa6;1h?R;En*O8e$NPtF{i_QD z(M;G6lOc+%vQt$*^pusA6Q#_wUtPVW-aguvOE$d{gm~~1@xYbd@jNek;4i@<>0I*; z*C+?G*4GoCr)=YB9c3Ty9z0rs4CtIa+Mb_Plk;cXh}|?akXAT0*Rkb&(l(%I5t>N)6!JoBxmpTr9t$0?Xr_CH4E=}*4Je;>ED*2G^ z@MKGTI`2Fk_oeP{2cI+@B>)c#0eBiivD2`6`!h_J<|oGDlf`yZ)6&s#3JBE4_~9std(^slmLKw# z{QOpvXVr5(x6SQC@zP{vagZB%H1}mc>!Yazn}ILJKxIvnIc9CnhYNv}+*WoL%lfjg zOwlqce$O9>n#x})n)*_AIJf;rhABXwsQZ$m=b}U;<3JhUz-ac!Y@5YgOAa7P*fFaY z#Dbesy>#iPcB$>4a=Mwe`+|P7R7Y^E)apXbP;*91MW%44W6ax%*py+<(zf+vhWglH z3!~e1nms>$2mlU74{xO2{WE){>N&$&CkbqG>CxlJF{zWydcK374nY8bgaup8V5cTc^NMDY?326P=!p zyVJ7$c6w|9V0ZZEw-~?JKrVIXX)7dpb{?KD=@D15jpN?EJLRj7bQ#8{=f#uPy_P^= zE^}i*u0i}qk4ikyjjyb!X+lmF52}t3QThJ;yJY+aA10TX?=_AeZ++IG_~O)?oX2!8 zr_ZRXq!_qgX=ss8?}OuEF`M>*$q+m0l*?HkOfF;L$eXQVw+#09O4*;su;_(OoL}9& z$Zy_$%-0FQ7nvs@*gn6B(j$kjhoL@T*y1tUEaFCW3)}feFrI_ z1&i(F^ON4j?Ri$lwXt%EqnbRyl8Zn01CXVjpoveSt_~OG&8-$}(u^^Tc59S~j*8*| z#40}mJi<9Qd6u_WmDo1T_P`#Cbr%#_UTb9U=$yIt$Po6xxckdp5t`YWLQzo`y;AN#?PW$475g`NS zJ7FvNTl%e1A4u!e5RhHWauX_~@lKcVz=?_w%m9MVjm7CfeL9Co#rTahEGgg1ykV}qEl~3KtQbX z%#fU)*H*?C>N;*}e$%KukYTNWpkoWoTwPs5rDW3+kZY+J`A?nn+IqptDuc+>n9b^F zDIF$Z^XdHR_Iw+=scPZmKlROwhLlMocY20aW#yZcB{q{t*}!b~Fp945Vt$y5fUmQHt;jy}`-4ppT zE-n$zB7f%0lMeIXxvd$Se{VBr7}$Jl%ksW2pavp9d0h{~R>FdPB4wVtzk*^sP0j1rMYaHVu* zhBsXwc`3}c z-L`-y>kYg*qY+m*U67vdUJu&kaBcK!Ot6dHScd$3-2j+iqJ^Ci62sTT#{jE(Wq6tsx1XL4mUOlO7_n zaUhwBhGy>PQE~D1<^sE9*>DUXla-Z~_QWB@h@TBzL`rD@26f6V?7mGY-irO0_Ew}R zU8jpn=F>EwdVU+|59KyFenphF#*ZG1RFvIXC(+o3%7p-RZuy!#dMir{+RFgD?>Y=X z8)y%Ym#(^(5866U+x>XACFXpzB+KaAw{IWqIHagLznuJdX`LGjqnGZxckdiuGx1-) zS7RR<8mjH)KG)$O+4h+6=!fLdP_jnr0zYce9xOXARDN}X0=0E@KA4DfdrEqqX~x1L zo6nDI%KEGs5x%so46DQRQD_vlF^k%MyixbkN0zCu!@Re**KyjRUxe)w!;z~ut$uYM zcR)33#I2e4bu%U9lrb6n#e7v=^suK?+xkU@0EepN9vd5w59v9mWaDdcXp6PgE38th zCPZw1K2eV*a#yIx#Xe`EtZls`=C~$;HmzWY(>MACJuPh_aFj9PCh*ZTu;K8p@8y!Y zRPRpSU$Vj;H)%|{tX)}NUM}%rClwWyT1}KhHUfTn4iNGMTU*<}$-LpT!hoQl{wRlh z&7s!pWL&2{{ygjZ_wPBx#IA5%O!?)UppHvRC3aj~g% zC5~VNI5^}0@tRP-{;&!TJ5W6FfeAI-Q9%!`DA_&#u1!c3T!#70I$-sNjwRvR+(ghT~#=>J{Pr92}qYE@Qmz#fkWd&Wu2!tf9_4eou(seUABG}>u;FI=i6F-qocqs(M{jbQ2khG z-G;@yjf>Qs(mKAN>y*Tr*OLry&5pJWgBE#OeQ{CW0tgf&Pqe^|uX}v^P$o5uv}7fV zo#xdlw4cde`plI+tcXGL`5~Q zRU3exxa!YizoWRiI9POcJwGwcv<6=U5!PqfvV*f?ae8Wc^4xV)N`>eWFVC zjc+d~IvU)&+~x+c1-NG}&4Fz~h?-_tS12G9uE1OL>$c=V?~b|;of0ZXe2?3?nfKR3 zkE=`SCk|E!er?ht@HI8q-3UQ~j6^aXTp^FEW2W?T+ZtY+rtGk5(pm(cGlPd>=jJ|_ zUb2{kp%~!naP09pUL(A3-`gHtV>YDFzU-=|^LMaf)A0x!5738K_q&UdQR5`t-*G4j znD2qFZ*aAN3h*Qf<`n#r^YCE>)CyAzs*Bq%T(|&+FPDH35=+0zhdK&#_wC6hLX+0ag)! zF~d|S97JR?l0L`5gCE8%$Kb}Fn=^7Cr?)ce<7nAE%{i7sY zjFF@WMm=b5d9EwjVZ8G%y)L+YgZ8s9Byl;vAuPvx_cr@yttsjo7#K#?Er0G@K=p@v z5(!RVk5fP#V9$p~5^@fy{?bmzTgJ6{R(inga>(aVJf%z4S#@hjm5j$Mp9OJWe$m`~ zDNBWzotwKJUdbUogxCKLP2|rvll~`Si)um(W;#W;DNSn^-?h6)K**_v_M*oqQ?BGH z`UwD?0?)V{G`y4b2E}T9j4VxcltkNzDlU7IA_iJc!V}aq7n9Y~8$n}ND{e3hU4>3y z5Pvi4r7;~D#d}63zsgj%RvBJMERxgrGErr zj)>PN*4g>_Ye#Hx$K1b#MrkU3%Wi2xFBlQ{qJfoB@Z$kjm10lI>l@$p5!~$Weg5xz z{hmD8BS+|4L@M;p5-CK%FZ2BQ^C6H=Er}6onW#OTrVQrtX|QxZKPO~Jr8@@>9+dZ6 zneg?vG5zz~LBn;br2|neiUbrSw?qAs?)&vb@b3uzpCfbrZ<^BoU#@OiV|zp}4qo2# zfa6NQe$|R`s)hEWeg~M3SxQ3;6A%fn?d$JP0-}>wR1^}U{XIKL%*e+HYg%*6l2Lev zMap=h1W^L25D@d>_w@Eoh7j^6OOX=nfvTQu+)TCHW8MDzoeEISs82eQ7j)Kt0 z$NIFiv>f~Poe*L=S@kq$Ro+}z&f zy4FG~lv}n~(Xjq`^UW~NBr442)qXs7QzbUrHJK=I^fE`kI&_vPiJwY9Y^=u~5{TL$qM;V;TN9WU$; z-06_&I*?E|7@*6L*)|$PKAC*Cvd^!wuNE}I?}QMb3;N#r*lt3aZ%Ld_ef3Joo0^$l zjH>jyfk9X#u5|3-bk4c-F>-qoIDs^55CVkY3FVq_9j?hqn!K z5hBhgdmA8zWvOs9wPu^J$vvd!g*aA$VQ~!?wzvoud8YdgO&D(0pMbcWJUopcea$dC z1yGwkVr2blw7esOv1oDxVGiRXJwS@Tc!u=0{#7CKv;!F%6po17G1^#g~WU) zApKKeMLxK9PYJA)!Iy|cK&7m@!~jqqs88H$yWiXaNp4^-8klL`AxiL7(7JvP0I53# zT=3>hkgZ&Y4$0QVpI4Wcf6y`*kofGGG=ZPvg0++K@{VQIanwPEw!;K-N=kNO8Pt>P z3$^?NtbUwoNK~olHT}W@o}h#nG9ax#=;+HXAgMiE`AoxLVo84qz<_qnkS=b^-S z)lzpi0+QiXe*#;qo`EO$EUJqcld4Zxwgu#7Tt;Vts$9wcpu$q?tm!OvjTWo>{PPwg zN6UOog5GX1%7eTK`nKlpX3hQwqbMjd)nA=$SQEuLV+AFTlh%lUJj3Ap6O^e9!?DoL z_yJMJL5~iP@OgdhJ%y*I=ipmPUI8&$2$JU*85xZmQ$kx3iF+d%a}Zk2qoN{lIpsSW zsoH7IBt63YeMZ^A$CpvtMz?e4&-sZSQRww?xe{$igK~ZZ?M_f-?bnS%JeGP`KY#qF z1jZ6qGzYWN`bzg?_EsihBIRl^Ro!?YcX3pRxWZL}flm8*WMC~=BVhql+ zBZDmI1qE2$GzEwX$*CSNIsgHvURiC3%gf7a?Q{vQWE=FIdkH?Zdzr~gw}m&E5Np6? z=W6KfM(hpNvcH@?BV|ythAvia_VZ9ultLwn}`5kDU9lrxt zOYqIP=%-JgV^0i0wV-nBYRk1~!a(0x5L=<=)i%wa>K{r@Z+vn3A-B_^L9oN1iA{yB zWVdH)Ba9nNmUVbLBO-CF*nZm=FfTp^z_8=1l{mR`s8f`rTL zR%cgmsB^&_M-8gJ65%8y=uwyD3zyE}S#z-9nSwU*b?ix>`M(uS2C?^r#SGFlg- zge_P$Xsb4(s0oaY<{eypkiEjr&aQO)_^qzCbnRl%pBp;;qKAlOrUUsc``yP+p9n9` zAO8~&>kH0`V{`2`%blpBa*!od0&QM};o8L4fId%{&H-Wg^Z=?%vR!AMCJ%VcGvKlk zgTzEkGOMc2E%)(yTmaEP%fxhLaP+L#jN{Tog`mgElDtK!VGRo#8=G3&K=Hw|^76`x zijRp62ak%HGxky6oYu2w_r*jn8djER6IX>-Sc=B1Qw8FR@hZ@@2uGguVSD>!wKb~J zNTvtm5GCr6Wp@8s0ZX3*yF~D!REtIFa*mLB`_HEH9ySmGT^Fn|=H z^BZG=X@t&f3^Gb>=+OTCClO%XEj;Fb>8hlQ7{E<3WfJ0kSg1KQ>2Y&8_C#R1VmAnQ%zm`1cp;%5s9x!TtrF-0`7&H~aOH`o8GzJN<&C|<^ zD0kh>NuCz!N63}g zRKY+wq!7=wyh`P#WMnvjO(FA54nO{AQL-R|WHmQ@sEv@-pp8ERSF7rLh4d;6RIG}7 z(rS&zipqKMiMu-GCogGzI=@6nuO?~v2Y*h$x6=5mf~cmGm^NtFpAibL9*^Fwt|q6M z<*s{lS+Cu}j=d%w%y(zO>{@WIJqV3S(0_$h`NluI$>( zau;S^r6z5rp#fuA_x1V72BZLdd?l|F5o`!5y>K5-C&-|g;ij5^j7EQdf4h-pz77~e zUT)pu4;GR~tAMZ+9`|)yEX}}IZgF0M6b@bWT)8(5&7a?WgSspL2SBNpU}6%`cLE}I zL0{07b7bLJFybbGEcXV}y{MQt#l1> zNk05z&sBy;TN?W7?8vrza=!*NU(mIWv_7VA|FGP*@6SK;atg88=XJc?7cZj6C9iDi zm@s*+bxx^J;r+oem#HWJw44(iICcx!j-#&Bk4;LMsU}coE z!aoGfy5hpybW$zF%EbV({V#N%&R(!xc3*a|c+8P;h3&m@+i{zfdH>j1g&(i2qD4IB zg;Sa0Br2*Fdd~ZOIiDC4tspu!bM39|bgYwS&eNF}wl}8ss$BE-YE?B=etOOmk!HKa1b^QgXKTXO6lueAUmq^zIQQ z0P*@CaTIF^`{8h?VbnMMV6B$~+0Dr*4{%?rvocBVh8zO_WzpXEDLjZH03x41efsvv zzq2P}yd_H(E{idv>M+5B*SC;1A0)sPmeI{)(2>lGCS+h5`x)gjb^&4pVU7h4Yt~hw z1?y#6TIq^2bjS0M&%#;;HEIE62*&;H-Ss}ZMQTmp^YknKZh787@*X|nf%tX808LWT zhXY0p3FtKfq&0zi33Z(iK(w9u0{2|s^ap|bek&VbFrk>qS_w-^YNMcvMud#PJ_9~f zCmeW^fTs@OgicQo_xHB#uR2qB5e0f9K&*KG8d5f59C0P-KmsDR7Q5uSxC6^;{iGK+p+NMTgAY0+$#UK{P?lpGfomv?g8H80BV=Vy5Ro}qC`L!Fu zD5i`T;H0{kupEKT4IV2P=9$X`0N{dqN+NLPNj82q!B7u%78hQ-c1;!5L8@H>XNX&y zoSaOWf&F(qwZk9d|58v;&_SS&C=W?yw@Zrf)|1rU3Gqe>N9Y8$osuKAI(#Kq`uI>Vs3HoNw1Gbwi0ur-*5dA78OTY zhw`^?#l37k!VLw3ZyE}+pcZv~;%>YDwpq-NR`URv**s$qbf`TZvpq~PpJEZhJE1EpzRQRtn5c~QHKu(s%w9PmnRU`Q`8{NJ1=xO z_E7m2`mSRnr{;DNUN7^K1p|rcuP0ef|G>g;T^40yI}MRe1x5;_#%#EX*$y5oX!5{f z*Z+{1LKp$xS-{n8KhlgXwoha?wHqE8Z?#D;?GH2QwG}-(nw~k%N80o2Z|BGo(G@Uf zQrIyz^;{bp{V^gzTc6iB}VXfu)Y)!|D)wR7&m4I=+p$^M-W?rAV5H_ z*r%Jo6APcS=G+o;u)NQAUwCu#bYO;nZss7bpkP-+gY{3uyg~)Y83g1u_6T%>9^7z; z?@up``$HceyHb16Nb7t}$%jR>89?jMmp31UJgw!B36BEZQW`6^IQkD%3(p}4oZ#J>!>G(46z3nmo zz8yP08||dhv74ip)%vj~RS9Bt%4%yy4t;p)@zz3LVn@{QcMY-w?S?ORn1Vy2G-ZicpYu zZrk=Eqg;XH<7^&J`6>5*sUG0laU-Bb8ae z0bc+Ee8*INem-Hhhj(}^YZ#wcg)xzN*}e4lJglvxI-CV zFfg7!z~cME97Np3luH)|-MNNZP1520!HRNYiGTl)-sMra3tBi-uSi0V{Y^hY2=l|H z)`a`Xy2jAJAPHzTOwz5ueQ83L&>*{9r+hy6vZmM9t1d&Amn7q9zP-{dZ=V9WRSU0p z#}r&81rRrEJDmmw;Vo6cUR~a$@usTT@bP6bq?kf72Rr*$v)qpU3na<9L7G=EPIf;) z-+@?rIy_oDg(LjX(9ipUUqJQLKOuR5jcpLltTfx*Bh~JK90eD_>V$exGbaHm5JF?e zEJ7lW4g0;%6fz?O!sX-pCb2s1v3lj(w{HXrN3s?`KalS%tfMSb@$|KDGNr?kZ-kWp$U$CE4f1TiI@KS3`xUe5I&mg*X z*t4`?QM{P0oeGz_bGwhm3*BI*g2r2tY%yZQsrlz{+7Pv3`!j`smLks6HYn!Tvv!ztg2;|ZlJL)ZB(|>;*!F( zo_ztqS8m9U99IxZ9$l znMJpk>xsdxR=Ux-V%z*=^43^Ui2W2G=oZ|7H z?Wh_~xjtqU99u8Sk?Cov^ACw6$oK~}<33-pmpu5tY3k&xA6c*DQXHKjOSYjncb}Qr zK)s~g2t)e7XS15NZU#rj{*$Ae>_Qe@J^MyKA3k!(Jw)OZb-YvggSqOK=e^5f81v>6 zJAd$7bd63}Sx0>oJX{h=ws`0h$i-Vj)KJ@ZamF-93@fP0-@Ue-IvkU*la52AYQaHf zTZZy;rwT3IZ+`n%N5DfYcCtRaS9|-XrOLIlC}&e9A5^tCxZKlHEPuC}OYu-GsywzP zBLBRtfI}DCa(1~6t-0`c5d`4An6ih)Q|=#FQkO?VI5OG<9yA4w>>$>bBF7f2)Sj2` z%!3$WI%E}pF9E^i-$f(Tuj5fgr7S$(mR`oPeDceZ@pS*F%k&0`fKt)& z*YkU~ZR4k)RJhOFQCv9Ll!ECz;Mtg-{-eBq=Vd0XIvKugUBpFIdDTP<>LQvI3eJ!l zLw8*9+hzA8Q#fQt;qfbjUkz;VJo3Uu7B4xT`yPr+rq`<~Y_yjfdSSN-rT6xIJ8X-} zB35&s#*R@HnpCf`Nz2apCtTC35~EjNe8D00lMoDa8KWQmR|-i&8$>~RmK1I(GK9=-`ESX{X?1M3z9JwTA!!ob2}G|W zFk6gf+A339Gu)`Jg&&nkif1P+N9UtZ65R5)I#VLJedqpA!zx8=6Ae(aM3mlh6}(Tj zUIn$UQA3g%I;;X@3(=puVbr`CVcypjb+zZKh*5YwFK8j>;1irR0%bp3n6GRs#AAR|AQ0fJv4T2hOE z`v}pfk>ZK|FZk3|w6(Pp+wOXK6&%u`xonfKxd?36kZYlXpqGF?4QHs0AdYnmB+*SA zQL(NWog=O}!(X4@DXaz*<0|eVkpjH_J|8>Mns`5#&7o9X2K2v%g$Y}vA;qXdqCnpn z(FFn9=u2RLM5Lreg3}u;LVHs^zD^4zhX$I}Ca0#dZ3YyHn+0C1ht*ELgRnbKIg;9l z{M677_P;gHDyFdd-TfV0k^4!cxZkD-(4Y_cDuZ3BgaItxwkd}4pZ1kn$*agjrQ*BK z%H6$$FgwAOk@=y6TaUUKBF zYO!t64^}${rRMX=KfT{dsbJ@cnoEK_k~O9ex=mYeCddFxt}}|pjwy&Kb*R`?RaJ>j zSa=HMfegoHnlx>EA`}fh7gxZrb@Z$~tBk6WFfV^X(nSS^^3)~Y?OZ7T`{hM&dae03 z@fC|3DCzQaXqbe~;ag}wQ;}{yfM!Z8r_CW?=Ug7iUE$ZVYfuA9AG7xrpS(9>@8Y=_ zan$fJIU6}0r1by~HGn@+@BVjq|9J_kQ}4F9VNfeXd$cOS(eK)o1Sm#y{7}%)@MifQ zt*F;3a?BuSLv#oQ8NZz@ENR-s&Vk{;&4G|~iAVouCveoF$4G~ht7^mY>O@oVQGbb(+Z&~m zZl56S-N(LDlXLT#Qrc7sK8+G%&-L~D-fzgb*{!}a@EXT7`SiY>scU)eoi^eUrFg%= zhxXLo%%)cdMsAT>4j!E%-(gkR*YeSRyQ37VuakIxr^uY^mwX$4IZ2x_5qOxzf%e}H z+Fl$C@$=hG%_7dw&cl0r$X0X^o59ir3PfO|+t07hmD?nor`faGQ32G+4=;{dcrdv} zg@!VwkS#pOS1eZ{(w$Xc+q-X{GE>s*ea?NqU&ZhD~Mac9?La^qJwI*XhVFXS}n zUcQ*09vLMr;U;=7tWhiQx@}j98)DO&d=Du!?4VA#{OaoQS5<`PtbA%7<4P4163VHc1&?vX zARkn~MGf^EH`p;v4wf#c+;&U4hG16K9jZACs(>q1_SC6fQ;s)Wf9{^D6&3a_*AkeV z00*sQLa`e+$=0l08Znege%<-?s}l4I+IIJ``~h~TuWB!!J-fL|E?rGl7CWyaJqlW5 z0P%>@91_5?AWJcxUzyIW;P*q^J9B3i)`E@EWLHTnS6O>|A<`}BoA3)fjfmLIT?Zd; zTFK%NXTx$~*D}w%D>$Zh`!+Mktv99jNGmE*ug>VKzDM{;QdNgEWLenpW)w2!f%zpg z^d%`X;{goMZqY`9z{}_>dQactc39iBbIq9%O`gMsaO(8wZwOP6RPLm&&ZK*!PVO^D zCfE-;?9C`fC>ZkR)ixo}1qO)iYUc4~ZE=3zwA1Nt61BC_=gr%;JsncIt$ynFYgbWA zmf=xQ3d&^oAx^owyIYF!^ZWTqF5W{3P|w$H%ekCwtd_r}8A3?FuD&awnKDD@IC%N? z{dZiz_{4wR>@U-{eouPst0>tXu}VeZn1bEZn-D3c$Gf6&fWv+4%vvxiS!tNsAngCg zD76D6-4?qokDWPlrrV(uEk_=!66p2NM*;Z;Q+g`j4p=-2hWc0aC1PWFJt=JmFc)fS zg@!ntf_TMl4btDXdA+e}1-|)GpD4t$YY5aI5Jio%-Q(*%p@L(8lE;{ST2|Hu6@r>b zr-l0z6N}sQ1rkqwuiw$_B^dH-x&4lRuW0-Y(eic;#Bbd@hcQx9xBgwf_v)W?jaOuH zudK|K;*^1i?iHft{%SIop6j!1MSqswKEdf^on?x)oP6{U+##bW@C?i{R5|jePJP+5 z>kXG(KTWPf%&T{X1&lJ6q^k|~niQFqS+M8O-n{wd{rzw{ZN=%3?*_Lwt-Wfg-+xnI zx509(I83nY>gwU)>q}ElnAhHQQ4lWw$G>#6Y~+y7;CT_7ff676iN}@t2ZZXsh{yW` zy{Y7pCQ;f%XVB5Dxg%xs{fnhu22&vhWfFx$xVhK8dl8#b%ACmRFa9p*(Mvg|jNlg- zv7rX=o`Eovw7p;}ZL{!X;?LH@Yx4JXW`CT>zvG0#-^Ic9zx=QG!HpmDhjo}Tk2x2W zoiX(;|KMGI#*`FK#U@$$v^mG@`&{@Hv2WjPuO+M3(e6tlhY(@zkc(&Y`Be(qh%@fPL^| z`b^#2e2+3`+Z*qjLJJ?gGY|e6z+6bfbf4;LA(<_ulEHH@8+Fme5lh)*)2S6)p(%&&C{jr`!m+O)uJx)@?+t3)1iNvr+GGb4EkN|RIv8F|lJPA&AWles2l`tbHz8xI}Lx_nxlUCv!=gqC%WT+mfx zq7Qib^bNYKK2~zAj$5|ngo-)vfOS6BlZ~FjuLKI}aYfCm2@zS%*#F+Wj|u5rlBV zL_+aR4`zr*_@bK30@6*y`G9T^=6F3dhFWtC0flrfN<3fHdaeQ@{+Io};wQAVS%3yL z?OXKUG(nc%T!uTo0ULLRkOroC_ltiQzUr0ZZ#?KOQg7Lk_$tM$?Oe2EBz8*hu42kp z@CT9L&QK!zfD04x{;veoK*!ANQ`z@+c!u9@NENiCw^?v$`&kVQjZpGYetuFO8pnoW zBM~wNI1gtY{1ZAF`Yn$!NV$uXKojoa<9q5!NuLRVfwSrRjPsp7P@Rt8y%8zPzFU3; z8xZCAW6Lb~phKhd$P^<2x97xj&>D}lz_nz*Y>L|AE*eM^E)F3HV;DZ@q4f~S@GioA zmRXw+sGyC~rl#DmujxZQ)r3Gqq~xj|8fMX*uAQKLmfSroT>!<1?niMP5rR&-yNGyk z=3@Kz?W_IB{>CM0v8`+6gO70MrQsPKostNhr62U!+JEAOfM$-_QIH*koI>>ab-I(y z#93%S_~BR+|EMTxY0!d>U_{WX?P3W4(Ss8YXkDZH{NADw>^$)6mi22#TC*PlqfcNR zS%YxQgn0qbdD3}225{nJ-1>2+A!yyCypAyqCOak^C9z@K@3inm4-8{$T-?*3AQ?Hi zEod9khZ=(iSnpd=j$(^}@7j9k5olHl0~jE|eH0>MbCAfG08DQdxhsFbYu1ZioJ0R? z{?&NJg3oo{vN27|BpZb(RzF>0u2Du^!IkemD^A5ry8ahw$YSr*l9M8cHTW z3{@E29A8=g^ys+}6LckkW?QAMn9&Dj5}aM*81I75Qvmh`jQNt7Y$ z6(9dZ7v!dH=o#H`M;QQ<^|3fCCUgJ=)W?3pEe`DbH~Po6qHp<8`S(3XkNTsCRJ)V| zAbqT940S^WH{~&rP2*^A_;8X&LUk>R09gZNlux3M2-U z1x%Khn22SDL3zWv@@tcd7Gibd2y?Oc zdL#aHm!Q%`Z8_gk|5YT0jjs+{icobh=pMgU z$G?NgvRUZ)m!$ODTEnKl$ko$bIi@Efs1f%ysVOVJQi)J=ADP>~$^D_y$)@6RetM>| zoWl`bKg14)|Kpt>UKSCgKQgCv&#bPU+2DYXbVB9vse=YTWWB}iziSs{{qfp}&g|uQ z4%O+s{b^3YbuWwp@&`AsRh5h%;{cm_6z71TzVn1Q1=N10W}rNi`$bI5U`y5^Ux`@; zxO&_yjlJryGJSw->3B3h;%E!P1xo^u>xWqI9hGBK{Z@>qKG5XQxu~vBx2_$P^9^EK zLp}0IXggE)ZMtu}KT4P%u(!SYa2=VN;Xaj8`^pLGogw$lJX?1k>lfUy``&}i&z)X} zdWf!F!_Gd*c%SMY=KcfR?==06mNv`MHrgic*h~Fzd-U^e=~E#)qPxy5C0J&8$jrN~ zkzX=MD^!YCxN!dsuORm?Mv8Ik=2Le=UB>sHU~bkvdjG?cCF|WVvKBoHt^A()s$5R{ zkjksh^t<;eDl#l;8R}iQ{`2f9l1^EF_ryNEiPS8|0R(2WypmuWkDJ}Jb`5qf7KSUt zx2j07V3d&omjOxF!+=IZ?Y%C#rh@3EhFR?kh4YB38{%gz0D6(0oC@asS`R5B<2{M;1G31!-prezyc5NRlk$WX1 zm~SFU7IoG-Xv17@jk69iAt=iDvQ*xb(cO2<>c@I$F09b$U%(RAoTG5= z+*YtNyAjj4P|iuAF~qKwl}JA_HvhTs&LzV&UQeDpp{Q)lsfI-T zc~owzC%qq^>zP{kMP7a*yXT)H9o)aeGT&9C(?={4yKbVEVoWeJIY4G;yhc6xBW&4BfLTJ>&QQ5+K?2nac01sB|mFak?HAmoFhguf7I39urS@+U3qWff~uxwS%OVCCb=t9(*Uv}^A{it&jr%J$Sc(H#1 zRLQ!l5SnlZQPagK)PcJs{%fDLB2ynnq3(#&X_8dkKR($@axB({=DsFxy7ugv8(=^3 zE6_Z-F?yh{Pc1i}*rmJw^JzteIw6bBB2I z%^+;9`RXxX5mxV}h;!W~IN}bP@VY1A;gvhii@$-szs3G1sYB ztFwxV2L%Ms;Jy<`kHt5>JrgGH_dOH;AkiCp0M9cCnRcUDqJIFbE{qj82Lb3w5e+)2 zxjLxj`RX?RB|Z`}a7JAyplJpm0mMvsS66Y22IOx7)Bs7m!^~YOb(er$ls)S)EG&do zpYYn?_c)B|84w@Nq9RU~}Yb(*>iQo zFzsD;jabBzlS8w?7q^=v_d9NL3+qBC#-|px*n}{#Zu_-i^U>*<<{F&)2--zDI4x z_<*^LlM@-WO!s8n!S5e_Y&urRdd$207BJU8o7YFnf)OfmvO$S7i1lIF*)eI0tgWu? zwBaUlbtamnfmFkc=Z+JoPd#;{4VKO~Xd`U~jbxT9J9JsA#QPA%gHP2*{Y|;JCwDzW zp5EuzUgWwzLr?F;qxT!xIVSvFQof!s4K5d=!vk6ct*&jjHbRo|SGf9}CS*Z*-LrSB zM}oSk)^o=Ubo%BWFx-R33biZkYPVyx3~}pX-q_QYbNc=#lg{q(LedlUZo%zLitZVf z^-8X7IqX8S9Glpl?%n-K*#COA*~6YgRcwxDm)7XHZQ@k;5XA%VjMMa<1P7}V=R=X5 z(494lHd%K_{cPkht81x3XND>e`#yuy ztb+SpzW_a5c-4M1`%|*^%#j%dZv0atN#=&~kE2SIG&Rp%yhsP8rx(Z691s)?#Et_8 z^_XI~>eDCP!P>Z)`gKHROO~0d!HJp?s4E&TUWsKH?J8v@wXM{cdBHNy!Rq>J4N`<) z!=JoibQjJ4o?YXI*w{QzKcoxXwZQaWN&7kca757(7WVnc-jkO3Um~2#2c|OMn>NSc zM2jQ0v4~^z4Q{I%J%NQ45%SQNA%@Z}Uxe-$x<9$%q`Io=I~eTOgory?d)A2}XGefu zyo-R0bC2>zGAnPV6Gy`x6cGsptNLRuJbY0OTQ37Z{5FPzNa)yhZ2bJ0Z!=-3;a75A z|LS*;j_{zMSjn0_jRMqD->l657BA_3elPav{HwDERtfxvEvsnUK|xBh?3ng z>(kfcKiB-i7e=8{dGPSw8QC&Ic2;&a8U0`H>i*vM^ZcLZIer~S-{bz?ce$?XbA3MN`#fLk{9R{a$~#Q> zpiQDcoqYuD4m^R^NCurM=4dl}w4(Z57}>%xZ;|s30OK1dBWh%RkHI#=+9eF=f>!53 zVgh7v69&cnf&wzGp%zu(p`c5}>vT0^II8^!m&j?r1O%3Zwcska_=o@?koYxOmSU(= z?k|a116gF+Ao0=s7#Z>4l%?Au{v1f_Q;aDH{y?i05dZ|)tb)9=SKzTIsMSBO0Jffo z=jlN6j^F(RyM#nAP9*4Aj>^fc2QZO2^VJ>D=~hRm68Mm_hYNlj%CL^lm~);;$(J{+BbY*`G^r4Yq&arateSi@pw1&)e}%-;4n zITHSRdP&H{v**uGqrZ4Abb|@%!(E3DhoD{hjtn*OrSri00!v%#xMqGD(Aa^=r5O5N zeD2?ZXBVC!1mu_$v02vM7`*=qpgvMe1Mo4n0L;A*uT~5J8iF;h0WsoM`Rf6cf#@uY z@EyqxacpT(b~v`^aX<>r1}8c{4d2*xf9Pl*9Uf7Ne+ z*0dwBqjqw)kQsC!1c6>0^UYCINx|%jv4PL5>!ZzezXyNr{2lT%$V8&P0zO5FMeM{23=}3`F>Uh*QHyWieh1N6WDEr)i#S6jWTCCjUTm>!GlfCO@A|NH zDE^H>TlS%u(=b}Lyi!p@!NOeyk^hQe^Nbep@iGBh;46qBc#QGb1HnG>MUbA1Lm*af zXguVV-xHq(0ulIT5#TjwSegUqQfH^MzLB2jC;tMMj831o1%zfE?GApsXJ}eE15d7zPV}bnZVM zjyXWX)Cb3CbTnV~Y!54nzy}=h(m{tKYnW}lQokwPsu1w9TLg7&1vZQHq$}30?S;>+ zn~YHAa`FCOAoe#g{ZWp+^Rv-=_wVGh6VB8#Ec%+ z2Nd6k+bxJ{bq!^JqOuun11h4p4^VJ$a3IXA#J7lVIhU>t7q?qcC#b`)EhsE*TQ94U zXCk#x&0%3uck=)M z&L#{=pr3<~tGgsMRzaA9!v&9-KUi=tw^TTNP*DqBdPw{lG9VZ(8M3@YOme<$^F0T2 z2iww2ccNHyf#lo(%@(Ph$rA6fclXZLjz)&O#FK(kRYhOXP)BDs{2f=2mqtc#IALm~ znl3^^$k_`=9^J9y$GOCJ!@liGAIu1BNJyFU{kUTc#&~>V1j2@Um9IxAb0R@2cICc)a@Ba*)OM zx+C)Nf?oP989#pZ=ig$^T5H223ZcZQ=yZ()+~kh!dkUJH)yVyxV$>qll%h13V-B&r z?ye>^o{c`*-u}Zo@c587WNinzHIZDWL2)+=ovGuqnz!VxQF6O2Wf-jMNYLo!PtVXc zbwl3U0UNbgtgw$R!2a+QfQQO``%?^S-fGYO+*sc;XPeR+CamRa$rd7AuWF}pLnw4f zf}%9;2fyPxVio?@0{Hn6EdXA<3KBbklEGF>FXPl6FVmYX1J&`gtimJc!e5;7b)T`g zk@B=*=u3WL=Q4p_wry|g&dpd9QSD4r&A*%U^GG~kKOZ}bpG)c@j!@h(?>o_KU-SJ( z*`qFA&QaEb)1k5fPMYR+sRpY;D$n+QP!rZTo=7ESOQkhB^n}t%kN;v=+E8ix;6qr| zjbVRFQ3E%rvixbETpzpcHVKt_&o6>k$6K{dY8IWmfBxG6%kor@)xC3r;yV)!o5G@A zq>VY<%4h4_VLmOVHCnlQb-;fJodpfr{~6didXx(1*cAk(+d^@X)?x%us}N{IISzW1-u-PoGXZMk|6sqgSxbh^dfAzJtDwp<>Q_V7^?t5Sf-mt zg9-;fdcp)h)EtuXrO$M96)a%g%*$5=voMQ^p1>g#oD98C@M@zEoUxU_z^5`C*LT>$ z<}fU%XkE5RNNf@DdxhjFX_NNPs1oXWU*`>Kr>yTk%i-#&2r7l<_9RLZVeWEf3V5B0 zKR~JiO=z=PVCuWG~w5o@@;L*4&$SBL@?L4sx_9+1~fF{JdJ zxQpqq3T^^Gf}7B1Kq|Z%7#`j!$}ZB-Hy{W2{mAq)QeoEADOilOqTU!Q#6@WD_NhBG$p^1Qrc??9W-c5CqXw9Po{>=!0~UV1 z+4ox^m6nCc^6D;Yx2}<}g!XLr7><2>S+~+X;9t&BY|xCuA_UdNl%(vvctFx*9g+HN8V%uS0d@ zxe)#VB!UaW)T894exVWP(bJHSt<4hl^CBoxqA$z(vgd{m^1S;NCe^u6`E&kU^bi!g zZ_(BgOqV2^apoyC-54Zy+1to71Y40doU_gD7f$!8X^T`yovFX}myTghrLH-T{y_`t z`uX&mS#`b17dHHZy8uC@?Trc~quBTWkf{GQicv^w*9iI&4kJx;DtGVB>#E;_{9p`v zv}fqbaibIy2U6dBpxH3YT3qnw$eGN+`>x%}f7$OJ*-v`sFWCp|ZdYlgG4_|fRuMb#!(YODrIE}V_vBE|3+tdAZ?)Z~DX?B=q zR`%A%o&C?Jlf*im?GOyGs1g%qr&;^%dj+a1?_Mym z&kyJPToiabJ!=bgYH2FwR^?6!uim1aPtTQ0t1Cn@m5OPDSIk5$gt~F*^g_p4hbYs) zw}ScOwkc?B3+0=D;_;!e%4<8L-H1UtS}rFtHg-Clvwvqw`~iV~-u$1@x4ldMD^LnF z;BVeDb~_j#6NO-^m{YuF-&OW@q83vsHs|f_^#zDG?tXcGM_LvfuL3=D;^9$I4{i^q zN7iO5?98Jwf@QgV96$uv$EO1Q%1C^To)vPKN(xa*?ei8(URS#pP}-rF58Fm`@hs*Q z_3ivt3JdNBjDb$%U7JK-Qw75s0uSA46^+FE7QvN1O+!7YISYm+bLdnjFwm9RQ?4QR zLF8C+d~0t^lt;t6*0Nt?dhOaFyi<(*UoI`I=lC^O_uhv^iw{Fadsn7A?&O^qi@_$I ze7w0Bh8&c@woCP7D8WnTqUsmIuAGjJJsn2&8yU0JAHn+h`foG`I6pB^??F^dm^#sD zl;DP!#dxKhYNYfkx-xUN%p{Z zecaF%Oq*H`5liQ(W}u zHH|xa{9t9>DCGR8zp?F8;MQb-Xp(s%#9>hs!#+A{tjQrWj)oFRF!ORcnu1cyAW?>OzG|ESh;X3Npn%bC+0}H-d_2Q^F1g=W`3dhAO zb-BdF1M#NUv$C=_UsP892ynjupk4v4PYK9lE3jSQYcR}e+#X6c8;EtEPLJsqBaf0- z`=N8_f!ezcY)7-9g(-Y9p4Zm{m$GbxFlO~a%s}Ro@cZxG383@~qEI4>o>) zTk0GB(!EvF%0Bm+hKPIOsJH)mT?`{xw-dehSP4BF8@8S-g=_Ov`uNlOf;ly%TWqTJ0nAe0gCk{Ic)kP5 z@$~nX(%08F(eNaOmUJTP+XAsJC}S{D?aaqVf9dAB=HWhsPiq5VwlLCmq3t*uD6-xW z7D)_QApQ@}7M~M=5EU89gw)63?gC)zds4{4Lky*L7dO7TgWwHKOq_TY2*rdO6}nQy zGnfq}*AtsxlHHueuT?^qnF1?P3<>%K46hIZkTakbKBHJWkQEwe@T8$-?vJ~Sd-W;+ z5tIaT{0LAR$H3oSRKLXtC2WX@)%R_wEf!6e>a5W)B_Y=iikSONLxn>Y<^Uev0(B*T z7_6ifz*8@!o3R7Q&0`*qZ-x7fNMW`dvVn3D0!~IAw;8R~qv97`nuc_c#%0iy@(2r< zsvsw6pR0j|5cm8Uj9QQ`6{Q#g;LC%0{y3nFil|r~6vUVT6vX}zMiC*eaqhB^!yy2T zOppOZ5Q2BteQOhez6n@;zk-R>>3Hu(9<|dT*${c6hKwzt$ENE2o3oqWB%$YjA)Ucw z&@kbQ+2hbVwfy=v3@aJx0U{RjPqZKp7`bsfNoU;t-y=$F@4UZsQ;Hz{!F7&<&0qYi za>T+u1TxIc7k&-dGiEv!qLaL{R`1!xD@H;i5BQczg!ok)SYfF-tnNa8nUWAXz$2bt zsH*ubjK-iT?Bk7y5peZd_j=-IzwvR<-v43$U3qdqxSF_F&8>?AUKBGC1SF-B!QyBrHU7WAKs$K+}DRT4MIz(Hn2V>*? zc@{O45AhTj6;U3#ADhf268Q`~3lRC2K(Z~U1eWOI&&c(V=wQ1NLH%&GHw1=-q7Fp_ zu>U$_9+f?07Qh|4jC94`C2N`amxx%G8vW)jA(3~(@0B?@^Smaqab}C1O$NBfD=h!% z>w?}*TA^|%b}#*;uwvj$VC8+n2YlS zk0AvY1051Mn4yLN9!NM_0G~j2Hoooz`a?zN>UjuPd(k{%3ZlM4S+;h|H9*2d*+qez zD01;27?Em6C2>_kO5@jQc0A-O&``0n(|Qy+7j^DUHNfLJY9)^IXUX&}fa{Q`jY00} z20^|Teos8?RO7kGcZLYYe`36@^_$w5{GO3Xf0u=#^78%V0l)Me>r3iPb(rE-S&Ck_ z>$nGzqTq^A)5&`}t53=&p)u994F;$FkVP<6@q2}*&6`QedalVx_iHw?KK z8`I#ODXyr{!NtQGCokw=Am6|_in!#24NE}r3(>Z!)Ck% z;v`IOvZzi(pJv*c!L|G4XR`I1!X&0-pc%lUw72S;2Q0Sir$4y+eL><5bK`kNL#<08hCL&!O>g(`%`jU^ zHYsN}Y7ZM{@Q=OeE&;CqxfTL|y}xW-zT{(R>4(nI@1sRq1z^ZT6_?Xt1ExyOe+a7a zc&;HVGLF0k^dlszf^_At==`1kH0S!)Fr-Wjw*-K%A`}+}hvR@Ipd^8E1~f-LcDLbR z$9VD9YV@l>KbD{9;N{8BM`RVzDS?@9#6(Vxa;H^1Q6}r5GJ87i{h#M&XQXE;8twUo z5r^Klr93;ix#^lxR;*gJ6M{=PX`c{bqP{+-hH>A)E5q4yMq~>KR8iKb$2g{oK*zxW zij$jFd^qIiyl&R?IedWakcs@6F5=K$BT#^v&w8wjzqkI7HabSYDTEl)(a|yaiBJY| z-cXUzk4VIU*5Xir-KZEU_guhkOV1Batikj1FRjlPzzj~6NQ>d*zR@I1K3b^DmiOIe zw9`05SRA3ZtpNkh??K`isZdZ^(dWkKC6S_qll+hQA{hesWzUi!Ml2Xfuv%XNu8Bw+ zfGar9;mR&Kg2})1P&`<(yk4Z&C!BdE*z* zN7B5Pst$g1UN4lg3HHvC{l!Se&xNVt#yjR6W?M}BjT{9HfQpbtIlriA0~?$A)kd_3 zB&`rIcz^V*Uxm7Q9Z{&Er{F`sL=Jn%`6&+`JtE^2q1hmB^n}XF$J!QXk{)oS^hqeU zFf6RdMYjb?G-^Tiw6jn8A(sW0$IPyF){!AqyTs;SKPFTFV9#5%J0Lp-qPubdwNV!` zASIqQSU7->_rH<+{T8awXaSxfSz+WZumY5Y5(xQ}XK=7AG&mI4GCIIcb)j9z>o8G_ z9)^R#6eJXsg-{@Mko}6K@uz7f5>{VQ8*i(5RFIQdLkn|?ns><$TZzvJmn+d`X%xlL zub*9u%5aQyN|ZEEwP{Fd=H!N~^#hUEZY}@KU@qPBn<>P+04)A0rZNI80XE0$H6-b- zg;skT090fbY+zwgF;f36J{kiegk^YV!Fmw(g@-48%k5pO^M>uxS4%AB{9G_bt-q9E zVHiGsUb^$GR?~Ls#Uoh-Hx{1lzUz{~$-Bplg}k*$Ch2dV<5+)=AO5NJNAy~)ED|IO zyWj~Vd2A9j+l4QcD5P;idIENQb>^8B#Nwsm7HEv-K_>QK^uh)8+N(e=C_+r4do>;? z%HZfltjo>8hV_mZx1V@>Yo{s6v-T{Eut;T2`u=r}ttDW})n8Yw;_?5giw%ejws8Z) z&*BK3c<}z}QB0q7oA?}Ypqe9KhJ;kW;F1sdig&a3(l|T_2F+>vXJ(MDCUfA-iHe>7 z+}{Xcbw+#l9kiZe^gOtD$7c$BkjpHc-YRbO1e7ae#K&~8yw68lN!cFHL~il=ESNwkkRieHBL)d~C5GUSM5k(?+WEBW zRoD*RwtWF--6KBfX7+H63e27x8LRd@7ptCAb9Fo~v&~Fz?z49G;*YlM7>gD#(MLm` z|GHCm$QwcrR@huxqq7I+NN80;;-LL~1L+{q@?s>D0uTgI80H6ZOAu-SsKlAmr>`KKC{GL=+S*+B zwMtNIxE?j4p^-YZvNV0?T&|pbwF7lWXuN>N_$b&| z2;E+HZi{=Z3z098BoQfXu6M_GfXjl)_Vb0LS6d*_J_-#yWq#N)=U``YKV4{qQ1XonuG7&Wgum%-x7_Vs2}c3R-!AN_Y~ z#x}5;_Cz`TShw8q1HUEL%bKej`UN+(t>rl9MCHTyB06-MEw}s4icS8e#od1`xAdDs zcFy+vs$6O=%40tBokhojm_pYGjAR^cFIu^OdVKiJKDGOcPOD2()885f`n4Z1@Ny6K z6%?Xx(rdgDz*@Y4@oSfxyC$*YNJ>he4e>uAlKwWxZ<d3x%bkJ9DDCx|ZdHdT2NtQMiBlLytwq zjfrsI%3dun4b8}ROK#wdJ_l`N6_K5_{amy}q}1kSU);6AUZkTbOH{nbu^nNo`u9yqVEz8ug#ZV~*nLFT!Outvu66(WoCKiq7rAOF3ks5{@q1+XUo#uAqr&7z!HlyT7=sG$l#Qa zp%%Z=n6{#%Bn*ekJmdw}pc&R}TcJ1MmSu0U>Fnj}ve!jV{Y%+%LF_<+paHpf*wR*k z-x~UDu-2C0%1I4;)=t>{+vtgDfeEzzBfxuq5SCrLcaurk)O0^a%(6hyU(!z~iLoLi z9Z4pfajCCf-DNdOy8})gjKDxBNAn>fq&OQ5xv!7tJnT`qg5XNfqh<;wax2x z+|0MhVuQME` zj{h!y`VfCbF6OVl{#rS(Y6*2SRv!bFdWc5yExzwBMsEfAPkC%)4GIfAp&)pAXZz%Z zOllMD1nJI*zkP@DhL{~8MWBIMff_=Jp%UI{^3fz9eccX4mh7OFi= zyZ3RnLK&R@+FP(C;@2yx#9#2|D9-P3VDh8j5<5q&kT1%P?g!Et3fjRB&(28{W5=#}VeS(o zW)U~$>C?*{=9=0#1AC5E@VcC1xTEbH8clCYCG%<9udiJ`6gNA1%9EHx^e`Xa)7H|| zBx>^hXzf1@AsSYwqfe@+uwXQX2*?|~R?@X%dWc?u-d@drupW?85@L}dCvYypem9bN zfR!fleWx#r=G=X!)^6fgGU5becfDQ%X+Dz;n|w$RIWcGAmmvRd5!WZUywJ;@fdUOp zzb@#CYuBz3u}HAPqBRBYv5*814rh+b#!c|(E?;Y|DZ2T&fBEN*s_SO>$rGwDoswTM z`?$E=q4tA3sRJi#i&3ym|K4ExA9@rZQ?8J!@bW?(bPZX0d7ylqS1AP9K;1y``ohuc zyOSgHN~7}qEsKuw96PGt^re#IQv6bE`Y#Ylh)U9jUj`!rJnqF*hG_!DU#rO?x(KVB zR^$>8ra2Wuo7jMdp!m~{?aFJGr9`_(M{oEq?=%ka))Yd@NWHuP`gTR&=1;7MTaGk* zX6{_tk(x!Pp&zCB`o2FYdO)P)x;H>{6lQK-8a@V6G=9~n1pOIQ)9ue`szg0z&7 z+#|M}3bST$WhDYvU4URd_3}CaF#$T-hpY$Ur6!wF77Y)zNxHZoTTdiVXA2K*u+_B) z_mJMUuASFmRywZM^2bJ_YD5kkIP&|0u%zN!z&%5Z+?}In=S%iMEp-vM6*`s4hGTkV z+^hyo?R!-0igB+7(r3!+{+PNhJ-5oA)wN|8r&n-Lxm_m%+wiVF&kMwnB(`_Y6hT~= zhhG>5i0n-K5Gc&vq5?~*$+wR`wMMc#U&d4yc{mIsv7qqoUH|9jU){^4*4#s_d1+S| zy~)#<*Rj-8zFVng2TSUySFTLEzr#uD#KU`4d3Qa}(`@iOTU<83 z`0+qe;e-v1_(=UgrbcnIz_h5P4!@uEaC&9&t{XY(z73pDhH6KS8#{)$N?&~auHcm1 zrvasrksDt%BP1#hI;P4M44d@PH?60C(D?fD(21=t-D<)sZ)Y7C?4E|f z^mqA7uYVhnIh5pUG+Jt|{R7H(QM(_45DUIm&+x$*94O1-7IsBApbwJ`d#N zap4_m2=Q0u<+K3 zy;Ywk&DWajuPN-_Y?r-+S%~&B??UV6o_&|jHM?9Mpl>R@mLJjQdwrlKdT-mH=qpv* zk=*;rw|#x*5 zk64d13p#QKwe~X7+6pd6To!z-^**ddmy5z1Hz=@i19ao?RWP}S=MEXAvbq<*Y(Y&t zlbDd9M0 z*#nzOM=iJAU1#&ea_{!L>y9nQ|9G2WzcV!acM3E^LAenr9=vBYeY@}w0UhFlBMHzh zLc6bmLJ1!hfG`1t%g34y?LD|tek5rjssL+`h{KOt`HdsEY#(LeW3@)*d%u3U#;+&z<>tOqJK|ONoiCEt#v3>h-o;@INrNnc=kL(dwYIk2y>~CsYE+Z- zuYh^5p@NRgP}jL_>w;?fx?s=LK?=3@V+6<_h5EM`R!r1@Oehv>6E1IcFL+OSDy*fZ0~ z;+Uc`V$OSYpA{==URF}_gZ&ejFt_0Cdi`WiaN#(~sXpTUKn_>xQ*HSV2|*!#J8$3gc~ttX~gyR)RcJa+x_ zvdF^<{eO71zzf?{ItJ~m<3BRJlW-f6TwpU|Ajcfy8GT?G<_nwr{e zkhsAZSTEMvryCuJdAurUum3gt*yI4O>wiAda=EMi5&Pk}rl472!3(-3e zEhE^Z&!@%Z#;I)|U5{~#Q4sJld5_ydpT;lmb`Xe$^U0ShzK)EXgD^B!=>G4Y88(IS zz5~)D@~H_F1*tfNnudm%|Jrh>ONi1yC7XA%xYasGs9it_DJN>u{sf!^Rw@jNAJ|Ox z`lN?hX zRGi}a{r0P*O-%Ukk!@i&YA_Hc5Y^jjD+rcO0otUAc6MU0aYI1)1@`>{0s>UeAzSw4 zy-c!?l;bX-j^L(6*SN}&xU4}JE1fwjmsFO$R8i?@&4k|4<9*T3Fr!#`X21}&B#yIUc#yt2{*C@+fYarhb1r-FimD~JF_X6HsF8J+JM%bc8?e(95O0{vKX@^@u2 zRp;A8hbaFITeegHw@OszMib-#|0Bfk9|f7ie34VVxj)`ZrYeQJDqS{M6W@pqRw zLaoj& zcS7EAJ#+{<4Z=ZC0E50$D_VpGVU;5Zto=B)=H$z#m_r;{_LlF_k3_}7*(M(qbkOoK ztSz2k&(}MGi!ej3vHY|z{EkpE#@=oSTY1LmKL^IWg2F<~YRpia|CNID@f0+5^WE?K&inh)+l&1uNH z8Z#_;!B?xwtX5ZCf9CtjKPPI`8;I*^-XOVwpWPRkZg(=7vm_)WydSs0+eIPXJ^N5Lxa+&m4AWf-3J8o0|7@XD=5&Y~Dln z#Ikyq!|E;D7o#B5|3wqp!mV*H1?xouO!u4?yYKS7u3@tmfrS;D2O@VGIH*)=bQxDE>@80ssJz<2$$w)N+(UxBnv*$Y5d*6F!tblfOv<38#5A#c5q+>!2x9L zxfHr{Vjl*G{q%PqZ;k&KyDQt*cOwotnlbt`tdc4;N~L)M6cnl5A93#l)~SaSC;0!84i^k&N)?TL)UM1+_f{qq=TA*a<(s} za;t7^lR*mq);SE|d@PU1dm(PGB;9e(auCH3V4@<}1J4m(2tVPxrvfaqV`c%zPus9< zP|%>9S$}~&dU8`()DpkEKSg(4m^=n|H@s_D(K)ae{mA>iN`#yoK~tEWovp-#wICg& z01~E?D9NfUUVi$B5-W>h5z8GBCCb5XwrPv+X}g>--S3OGWBmH;5eb*fgXrvUACT#1 zROjzHVzXN{xL1fAL${<0k|#NKIV~;Y zLa?Qh!u~mH^xjtluT;BfRE6%o?(fuiF+^(_pAGANmWlK|l0ti)+fB@E8ye8gRm=Ac z@_!M{86khcJ6?9>m8i1R^pgAw6Yi_6e`+ZOZLvA8^shqWV{+gSNs&6}lUnPQ`W| zc9}TK+UF-(`C7mNSQlcLM?=dqsCjh59 z8Tx;?95}tV(!>sTyJQ7jYNG*3uExNATgTxr7C;Ie5|^X-HRf~=s>Le@z004nOiR3W z@Fq+QHxv_ld@i`<*lZG_y&Z3VMmF|CaRIm8mfOZJ?|%qyYx1Yr>BnP7Z>Yhux+#1W zrY{pQmZy5j159lJ(#k^^$1Jp$J+YR{DQYcJ4k_dEzI-Qhhnc~e>U}>BjZjIPII^}k$Mo>`Z!;r;o zdu&TvgQjQ~4n5q0KBDPOVE(|WiBHOueua{qga&C3^Tx07j|ux`Ws&&Tvm4~7!59FO zCSy}C^oW$G7?schT5MvjL~gL(q1zUrKcW#(vx%q-~;lO$~WsdRGq z`eldEKaH>o+70AUYhuJ8ITH{H(`U3);M6C92ZQ8KlMhds3!HmPkR#xF!>IXH35tMnChR&tzy7JW6&MjFm6W7DA( zbaY(+Qwaqpj;&2LYfmX|_}587Hre5fU(3z33IIGYgyWIJaEz4}#6tyr8JbXH8w7#4 z_f`nX9R}!>_gW?8<=uEF3-yz2nAA61KS_JwwN?>f(LQ%`?y_ja86r+^9~4h4i@V$~ERYv=l&jP1S(#$6dU zCNkV&Hm;gNqdN{w9{r|G#GhD_Y`i@``S`!yR+&x`3>d-`@al4!k6K8+2hIv~xHt)E zQ`r9dvB|il22F%?;OL%sp2jsBWBh%u*S+-i5tU=O2gx3V509$-k3Npd6trqJ2$jZH zfnFGZGQ+!{FmPHC`y^D}s|;7ITJ;jR8RU+{BMS8bhIrgZXvU8LhNFVjYAxTUYkut8 z<1dcY^ZuE{!`_>jEvC*~)>|bW9a93c3lYSfe3_Ul99t)a`5KB(+HJrMfdra)^rC+x zz!x+b1b@7=f05;Ueba-ZN>p}C&xF0+eq=dv?b@zC{!2i}8yFbwCM59UK%i;IHuecG z`I#hmA`;=_!sKKPdFDz(jQ@wQwnG#B2Qc*4Ra3;I2(yRT7VmXmRpdjNGiQag-7;SN z>5#YQPv#j2-}X!f$jpvqNZ04U0iND6m{Oo5*L_44nrleO@DU?7dOh(Jcp^7f`s2S2wNre z{KUir%hpn`9Szxb2VvNNi8!pV)4jjrYD%7W&|?01;NgM&TQvCka4=(U z9-sb-B*!+mY$`RC3r5GrG{?G%$?HLXFopz?aVTlmZ{DmHUnIZW)G+3}Q!2z^lwXQxmImo};g?Z={e>^K-~>j*fJ!`2Ak>l@ZqhI~;{{aSu0(dbYP;K_G7t zCXiV~RY4DPHu>>Yd_=TvPa)6UTWa!X|83S!inPuV=LCF0PdKkT_AUC@h&(z@3Qm`c zeOL19ItasWAdI`!BBP}SJA>ae4cV+c_j}Hf`|x`p4V19+2PI0+%4mWDlxgqSz^=T$WQ!+kc%iCgxkUpo~06n1u}HHKgt)7dfYbA5NQo(k&K zdz`N0X#PhDd4WfCESF}jVzGqekbF_8<54BPs2GX3&A$$dwVv&ae`=rHRRCcmswST{ zY+FKp8-yv(k%~tm<8r&rlsHogG_Rs@z*P5uEFIAa>`sN*&XGFRHTK-&53XT*qB!3P zO6m&&^AJ^!RNI2O4sc;T1H-FczIbcshNz<^TsZz*xtSykPxzGicn*juD0%_qvkZAX z82|9#*xK1~ZJxt_YZ$Vqz!1@Bz?0I38ZUm!y0f#BdB5g~ds=S(k(?|2A17VcrcPKF zmQo{>$GUz!*;*caJT0EY2xh{uYP0tEpDB2CUu)JuAnlru3})MwbQwBBj%b_f^Jjru#8OhMCL=Y#H>As)iaV&p1BO>g$&mH=Hik8WB-Hh81{9k_MVW>CgIY{1Ws*EwLD!!w@5N4ptaE+1FdJl?96P@hP%$2?eTEm(29EC}SoGD=PdvQP~&Ch)cg;AU{x0!FbuD&A7!WUM#QT^G` z@W*Fz?x|)yT1h4GLwsr}Ew$am?eYLR&dK=+QHy60PX=m7tf%+y5sZ0Rc{?a9ZB*df zbY}f%_42q_Ezu0KGBtEH+h7#ijc*Gev!{>G{hGcLatviU0WV1G0KCbf6%(~BxapmY9MxKm=bq<;HkX^#***xorU_9 zb?g>g8P6tGT_ins$z;c1!C7_9Cbo37l>YHFng(-qwZy&+ZG+m|6e1fafI~&oe+1T^ z7rMvoVqY|@E%-F9rY+-4O`6xsw#0+#JltXn<+ChG>K-lK_ql_DEhR%wZmgdb@NGJh zBFnL#iXoM?jO(K1O79=MWA zAx_XiGXDXM=JOkqrOyQ7fV=E3x>LLKS3Nsg@S^X4^F{9s^v52k$gZS!l@~H-cmhL! zl?ou%$t|9LAXX;$sMjHHAy+f83Y`uVO4$9G*LM?$-v_8h5lOU}$JZU4-Wz0Y$WQzE z_*~F8+c?H#WDaMd5s$AuM}cGk<`E^ODl~OVivvl0`}agU_AHf5vl0^7M^-E~HZ~^6 zaHiFM;Bo@!sW6BW7*9)(iRa+gn_{!rO2RB`pzNoa1N$q`0N;k*_xDy2coyZY8m6!@ zw!kX&#~HYSr{}q{u&?+B zLC{HRBq~h`QXuyvW)DNtN@6g8`GEx?rK*yk{{ldxN#`1WDFvru_!NQX!M&i1l0(nS zKcZT@CVMx{Nw)egRY{8p>)4CS%L_V8@bb`qfr^xurzgoZuwq<8W|idBt&A3e4iGO0 zBp(nN1tcUI%h?5Dhy3=U=x>&xE1!TtN;IcLn#kq z3`E2a0TBecL|>_qbG711rZ2<32|v4_g9|f^*`No`ea@R1DC!kU$7*qJluI2&%*p{{=m|4-{*_MaZ`)|4T1WiayIV=`Q` zcC9XwxPnsvi%5Bt>nHO=W)CKnbef!5heOxij%SroI?rh5zgxjda$j$6uM1AAT7ame zZzTiUojZ4qv@))CnDTI#cZT@}d>}FFU?{)@flW0y|M)53r8+PG#DD6f*XH=w#fs2l zff9wb9c|=xOp^e<5pWtm{;?g|rk%KRY$42*{5;2aaoN^qZh0@R)B=50lIQr^e<4zq z?H3U*0Tn)V6Y#rPbOOKf+ZN`gi;9YtDJkherT7P|rSLnaGCi~0D`x}=*^ySo1s?Tx zR$pKRF2LM&YfI3drzrvp6No>6LV8$qcDM%#rbg7ch>b@ce?{%L=Qw0Ok{Bp#;VQy< z2KkqXl67VoM-`4JP3ozL@^b)Do8s2#9vMNLU-JjhY;d}G+tM{7^v4ei8?YMbI0OmA z#zGXatGv#v4--MNOChtd)gfem(l|oqu@2;Ymt6>2=WQbk3%C?@;_`CqQ9!$aT~mFm zsOTY!*8ai;N5=B&@o#_HCLtLmC6YLa`g;k6GvJ|7F;c%-3mo2PS5Dx3EcN9rLj3*Q z^Iu`!$d?@g?-6q`zUEQHiyK_-NFss#>5#%N@qR2qdAmmlLcKzfnX-hIY@YXN}e+{1Lbm5elFW?~L%bOJw<&0)i4yiIx@ z8~bc9qC$_(E8YhzMFQ&|gCKc?1K}|`?z|e9f6rpCQ|pHfzwhL4yF^5uV}i+^ACoo^ zX2pPrM=1Z9$bW4~^;z+92MPF20&DT;$EApb>CD(fZxZCY?grJzeq86@svk^N(BGjk zBl@k)o6F!jJLH@0TaW%_7JvUbT=p1waCARKav(-TRKp?^Te$S`*SP+2FdZr_F7EiH zkN|V;_u!lh4ncIA@*!si?;R^NMh&abFPi7z2|L1cA>(A4nvtO7C&Q`u7%%aA z^?+mapW$Zq!k#DuDLUs}c>%h4usMB$GB}58XzzfFp;;?A1^=tthTF@3=kqEmt?U9Y_Uobfge1k-Ez^&NKf4AGi^!j}Z-qr%Mrw zph%V?Ci+UUO02E;tnc=Vy>wUQlI9<>ELHjx$6V*Bz=1{MLKM{hO^*t9%whDScO)xH z)QYxj-b_dMLC}$sQ^g_MoAKnE4XLVaC38DGqM|?v&}J(84R@M|SOMNaPyrRmT|g=$ z!4PY)px*x!7pK&}-r8$$J{0hnuX9TV3yKrEzm1G|czB%ievJ0qg|Nz1u=R4bq*i%+ z=suxzRB7S{`z$OZRNsJvCEAVY$_%$=WvCUkzB;qvoV*dt>4Bo=g-NLL(7AoUV=fKx zzxDULWu?ggxriLWC^h4w#pqW_axr=~{F3}0Xf~n2q`U3F0bke*5M(8F{rYvGt@onn zoLg!BCXY=g5d(j$Mi6a>H7G}DS9;xsu-g34q$yZYwJYq?F>eUK1I45apo^HBZO0C; zTzP0R>oyJp0A;3)&2Or-$LwG9JjV;qcJIxHApboTZOK54=Z`$+#G!R~E$rybOu4Me!hTUI(ctY`tY;s7~DDAEs z!B>!Bxn#+bZ{qxNO#hw?7Z(?yOd|*{F)aepBx45do+1NbSm)DhXZb;76F&v+4tf@r z5@?ZByS0i#vbY486ZTO_>=tvW-Dh!I-I%7yLp|#I;v@fK*8=Vr7#V9MbV-Jz8oR5f z8jWhrYmFsmuF#0AIisT!(K`*a4Bdoy4mOCQkYRmF@Q>A`5VrC2mJoRN8VDURsvVH4zMEK z{puSgO3PBi+BuIeB=l=m-c$3H9c^i^9c>Vj$*YtONo8`5xbnJ;BSUIzEnRz0MaR4R z&w?fwKI~xE?lzw4?2(PT<&GVFrWZbNHfvv<`ka=2tAp{;4L1)t_P_2(Bni!D($&Uk zRkI6sWz}2j{ji-WyCpU{%{kAW6mhLly{mshBgD}1YgKRMYDX>$c*tZcGfHJ1I5g_2 zDG8;r_V-O5{`{g!xhQ9PbH)axPa~x|@%CHeKHkJyqPAXE-;BXT1mTc#6yN<-Tu~g) z9XG|~7-*9k&mu|7l_m3(?-q+dLn>6??f6aGcv-vRlqSn9S z?LF+&jURmw%kHtuq}!Zz-puLcyBTX{k$~tn*ZigS8t)E`#CT56O7YsCd{o1q;b&d2-304M%U1!==0JPWN zL5ZOL4)5X^NuQZpMC7E7W0D#l$0N?3$5q09_#6W?7ueGg zy|9l-`c8dd6x*)6+iV0MgAjz+#0JiGEZb^(1nnS1RdphN5W@UABN$QA)OZLiLWE(B z>i?TCjAu;#7GzfFqRRl|lx!wcs4W;=@@-+WBRprz1Z6q_8<4C5*u|IK9BB=Ls+%)m zfh#5?B4!f3j8$5Rx)cFLHmHT@2rN>BY&Fb_y3|HzJ_PuQTz%9 zrcg7HtTDmtDBgs1s}&@T0Fg!@H?ba;WQTVjxfJH%PNJ;av`M)uyw5F+54glOV|w?rA0mN9inNLh z>MD8yR*aHYk?TN#HvM((G2PzEkVp^^nC+nY!;!Q1=1+Wo-w{8^=ofVx%*yxa>0XQ` zyAY2F%@@Qe7=HpG9Kn=pGdzusTFOvyd%VKG1$}78A`%uBHO+8Kz9jxsiN0y>U&>#^Y?88)QA&OL>g>*) zI}Zt+g)Bk`)5!P9$!`303h^03i5B&7&Ikc^=$_Cte3a(RQoIt-XwU;1J_2yks{6sl^geZ)3|*=#Z%RJ7sPeseblFCG*oN;3i|puLF9O~ELDJ5l1${lDdY zw7cD zNca>`v>;rilqg&A^)(_|z8v%3=F9ndAHoS^zWs5el5NwdV{-_CT^}ef3u?2 zXnyih`pmFn{h#AXv0o=_n(xoEob2_R1i@nf=QJ7A04S9~@bH@lp(P7Ri+kjW);%UM+BrBI$|JYFC2a@&Lainmoli7mc`33IZ1z;fJ=h$$jHyl88wKy zvsq&4xg=rF0nxR8uE)Bt_c)Lmpq$#stHGTZl9O{7exEV56=^WZs41PV=NA@cazr#g zlj_t}cs-726sI5NdA~b;jWyUpIx(TRhwiVzm1%UTOZ}d3x1abgf-na}rXJBySBtGv ziEe=4hS*N9X;Q=Ba8l#oZ2Dg({)!4xlsrnS?jKgNS!4T&A$*B{(}awlF?%Da~gl@Uu0DA$V%Xw|Dx{S zAnHO;W+y_OiSR8y+aerW!w$ zKYFEqnAS7S%&%f*$oPfg7#ghj?{-*)^;v(D-yYY04aLuK1wk-Sh{G45KW~x90y&{e zoj&`)g8`7zlRcDT7K5jMZ&&#h*hBv_Ix_fuTU*Fhhxw;S&;}-jwM}67&4-&sBV>b0 zpoChUi^`zNenwj^No_duUIl|>NQ6|+3AIzuaAMa+MvF$roY-ce)IBYA`o*5?L;(#G zSD4h4Zj@)%pD*Tan$hb2mED;6@#Df7gQUhXoZM%T=HKvEdlkkmp4wA2g1{SyRMk75 zL8$yuj24@kDEqc}4#+aT!j$T1CR}HLGY;444&di1_?ZE4;x7MU#j3>Mrcsdc&aXDp z`@&?{o_4L;Ucm&2>-_B_pPRSH+Gb5yw+gMM6ARW@`+7inB*4FqUR5sFu=EqV@DayG z-&XbaH{BD`HhYD3T~1#9eLT$4<-DB}%}L{(k9B^DVpwM8=o#cMqKUngDRivg|ChgE z9zvx}-6Mvt9-j%BR-yG?bM!}6y$!P>we6&+MP%tCH(6t0#~hEs%TDFtmao^u9DC9j zb|Is`ldq6BhBbg1BUc}o;i-%gzL2rOT?n7X zXe*8AnuTn~S!=y(O+;D5A9by1^2`+Fx_`jK&33_-yv}a-?ThR`d44#MqgdX}*xjvN z`{oi)AAAs&C%Cd_XDwU4-i|eTZDFTjnQCG1zT(g_&_Y#vq9k;A)jqLXTo33`OMemv zCaGuAHtmV}qI6NrvFqx_@&cTxW4E=RX9-pe+#I|kv0GN-^GHKL?c`Ul0$3=vzC3C6 zPQt;Ma^S#<_9$5gbHMAm`+fwSo|xY6X>%r|J}Ab~H=^-ZGc2{)aCqWjGA%0bLRjY32@2j*bF!@bG!bF4v9)S{h2Ii6O{UCF)g(Oz6mef&>~p!pHJ`BJ1@q96dj~ z8)r4;2!>&dFqxB|RoS;V=t2ATpUeN7JJLlJz;3S^vOVOqtSs^6Bl`sDYJJV=0(eh|Ibn@d2#Fm$(S5!D z=RS)F1%+MaJM=@*6M~S*henzZ5JW$sn!3h0FBfeS#37Mr$Ty4Kd;sj29R1LDJ%Umb z3I=U-w}0u^xgiaop~3jf|Hs&SfOFlx{o@~%rj|;jQYj4*B}$R@Kq<0?D9Q}U%1Eh@ zWJP9)GP06zTM1c7gY1-pWlQYk=m$ z=Pryw#AdWt9xD|?8cl#qKtJtqE0zkQI!xS-o{;_-v%4c8U!YzC0B(c_hrSm$@rc|~ zbn6#`e<`#*R65|{21t7dcY(OQpw*%ryhS&Uxx)h(6*fm02nu7QN})95JKomTHf7uv z>N!Afk5E%QSBSGme}gES6X=FfwTFOcfm+IIVBlFu2zJ*+p!CF5wS(P4PMjz$vsRf^ zUoY&<;Bf&|b{s03nKNfH$Y(Yf<@*j@xnyJ4ZXqrwFL(DTuQ3R52;Q{G=>Wbg(=MBl zq`-rJ;Pw($JlW_lnfP(5SX*1~u?x<&wY3E~1$Sm^Y&$%}pyOELkq-=G+R=L}H_MFR zDw!aW4V5=hc3{{5XnV&AO0K;IR`*5UBLLCKM=fXmnICT(Kkc+w+hcZE{}n2!vA)C% z3wLi=J=CM*+M!>Gq1;IGKz^)iX!{JO-8GU4@vokHV^0? zz8@t)fC5G-m}urWiGAn*&t(TZe9?|P^$z_oro!@}`;aGhU~77YvSIJM7FIl6?j9O2=zshb`xkcC`Lf+mqP;4!gp zr|3G^vM;@FCYy~O8_6AeM5?mhyfKG*nc);*I;>3r7pTBrg8hk_=My?wmg!SbVuN(l z4XQqyPq>mNF7H>%R^F$Q4-eqJeB9vz*V6}E&lZdi+m6rAlbAAo8gK%}G+7sSbc0+8 zuC;wc1g2Hkj9^p~icuM05eyLL5GQV!eBMw}y_%n_#rKbbL zi@?5*6XU_IBacq;9x^ih;F)^UG5F`_Gx`2^lng+ucQBZPh`@cHcVO5gf6)rif?aAP zzc|2V1!8p4V|~Sb9@Uy;x5Q^8rWOAX>wQVGKK9*xs&9Vd`3$Tg@+@{mFaS=uZR}cn zxXW|TrjGGq;66^Nogn2+dySC^DY4y#?-8H{wNTE3LE_rF;p+{zGY&sU3DdzQARZDC z@l52P&7U=Y=h}Z$f|~rN@nGZc|5-@)qxWx~O4ArT z+4f>j<275kR@{BOl9yLerJ{ZMK~>*w*TyU8HO2>W#mupkm}bKD4#*D*FDhox(d6M6 zI(_l``)gcWYVq;$OqeOoL5sj`q_;0B@WUpWi4LxQOEDFo$4qM|`ot2?glaAT zEcWF+uej0i@@s>wdmV1wvNWI(6kQk~Y4x-eut#q${vc8E;(`RxkCBZk{=D8s@IE_Q z`|jee5UEju$i!c8M6C)0|1@CHhSP6cpKS39VSST>%ykP8{Fs2=HXxik>_HO3+`gl@ zLy>VVK}ivT=J@h;;IcMj5*7KtC)n~*M6fQ8gvFizn<@`Zyk{}OQ__%-l*|U*=F$GC zL;am<9m@`Q643#dkAms~HDC&^B=F1)#CR!HB^uA&h{&m3b1s*}SWZ^7A)u zGcX#1G1Zhm;$RaKR?F}2=0qdudG?}Ap2#Y>veLE>V!a7GzzDyl^qIC z^8%qek&gBe4X9?1@#lEzk*rcZX zLK(rf%k9VIT||AKoz2^Rs6NOPvMl_gF$R;gp7Bt8JFcphe(fQm6}KU$7&{S8rN&A# zMP%g2=iB^82k-{%#Jq;HdzBwl#G!B6_x0}Af~^YmS5uM^bU=P+Xlio$hU*(s63!)< zoZjp7^GIpDAzyE8V_X5Qt2T@j8jEu*dHGe-XXEvT&Yf|j)!m@tNde#Ro99A(g zRYWXSe11q}f&KghxnujH4nN;wKbvTWeNG}iPEU723dv?a`e%o?|_IMP`2Z5y?MDMBjl>T(DgI5d~Fi4dnBiV8|<`7tlQ*PRf8SukNGH#qrWB-8NUNrW{aSo|q z1lJfQ22>PN$QI~@M9E7WG(pLaC-$$Hj!sbIBeT+EvKXdnQ)5(S zJ4&(gTIikR6VR7ZPYb|PUP3ZlQ7F>k))-gJsiK0O`+?TIPo)|!#O*uyEG^sgudQY+ z$Nd55GHM+i>PC`Q9yeWYK1X+y25hoFkA`rAS&J%Gz-pO2JY4oWBt*`hBacTSCHvL& ztGZr%$q`$`Qm&^xk2)E%Hfu`e*oIL{#VzG5Jxv|mf6bb^qq%!c79-NpOZ!0Uv=1o< z^R?S!xaO#)MxT<=m|7B5FV%UkRM{hplO<+`Yky_Oo3rkJWsd#s_)_Uv&ak<|){ZreyknZSTkmDW>ht1yF=ftKT3^SPUcZ|4 zveWADTtr@A-ocOU6^d}!d(WP<7r|Y@9&jG~L5kX~6x&FH?P_>tQuo%|TGoS2-5xwH9M$g3Ae zel{8b@u+Q+k%?mSvEc@za)P-XS%X24BMJ5`HviOA5%P9`Wf_JJY-nr1g+kEW59wja z+d4FAtW_$>#>|@rBuDFw=Pv2R zkR#Txb}zs_ajbvt8duNS_JyK({Uy~J?x)7xC9Lmw9{MMk&>eP_WY&tU00i+o9dSTI zu)Cwu1TFtM5bHo0qj_MP_z~1^NN*?tXS-n4IHr&jkP2+_;rSP|EYqE9@Iase5?P&Lbkuil&?KP0u?YG%S$wEdJ$>~Ky)IDbXJ zKgM&Hz+?jXehJx`KClcQ!SL6j>7n*9DXEQ+W&(#BP~C&W6m`XUU;^eMOHx$EP>3$Hw?7QfG=K}@PnFA+IF5Cm?*W{1#VcaOrvj7&hEOvr>d zaroBOgqu0KkJs!xf6~$AMKI!Y0)ZQw4E??Y!Db$w2&dFQm@QzVzivO5i6`>cA#q5| zFjzksI=s+rh3mgp08?^+Cuqz7KT&dDXmp8_iwkexAY%3gB?T#{uX_i>Gd$=fbjznnNL?ws*0)wuxpltBO{hFBCvhbh1A`t-ua?i_I` zsb(-NFu9xpemsyqXuFo~LLj%x-NVsyopbEZDe!M;s@`&>!m$w*u>iJ1Adgfy0&@W$ zz@4%&FbgFI6@U}YqJ5|nwKDCQ31a2y>%5v`?Kh9@!OaB=HzSqwOg=`;lsbiC3+;IN zhv=6Rm4MhmoThc)NKBh8B(efBUA#D1CV|XM!)VkK(Z}0xDAkT)asC1g4kDgQ@D>9< zjN{cf9kGlXpqSn8FsnN1q`+*=% z1~D&$10E!6ln=3i?mT=Pz{U0S`WOD0>SoCAfpED^^Ir*AmQlEg;OK zbU{OT8CMaH_fgCN5JHq&TpUxd?cl+Kw3(5*1hVEwoffdv!p#{#4lYU@sxyg;k0bDm zFlsCl?oL&yskpgV`_h}|vhM)Hb*k3dbL<$SyoF8Gx>uH*HE0+C)+b7hNMn_7;Ux1bog@N*lyFP?IkxiI-FoFFGZuov5sB@UQ1 zWBbF?{Gd{ZkFQvs&kTKo!WLPnfCQ{0z_=6@;$7Y(g(OG@y1dH?dTkp73)@)dMlfyR zEZg&MH-WEAvuq5`ZUChv8AGb<<1TA5%MG*p%5x)VCfkfo}+ul zH9hf_5Z9|xowdbYhT?j5N9NimwSPJGxlTFNpj)(Qq;=Jo56AgZEW9nJSEi0|R$UNp zTVpF$t+@OttQ;zO;h-;W8106h2C4vH~R{ht-PB0u%Zd{$JoD&{C+1C z$5({u3UqefE%cJIJN~_0b-wAl;ePwn>T4?-!`dx*K@t=&>JYZzU~#qRDwL5)`~ZqH z^u{b$CK^Oj4GBRv0ZA0P7;+FMq5xJ!Way48*BZE^(*2=O&=}PsP@d-PqsADtnq`7I zp5g)}8c$;$$vRG7nEW2kPTAdaaXx*wKWHVWC;Ilwm+LUa98VVVE49xFIkeQS)Znr2 zxEkM1ztS}yva@Y+qoeX7Y&|x|MX}9UYLh2`I?K;*%BgfnJN166gZ(-&~neeCC9bdNEiyq&I0{TO^iE`iS40Z9g zzM>WPul)8$32piEQl58hz;>>yg-z!|N@wlF+Z4<74tD?GlF_(5ty0*kg^E6wwo1>K zlPYwxVizp?!H=KnZ(4iJ%U?@rWTVaCoB}_#6OxkWVcZM9(WMq&TYJfp9#0h@J#x1v zBg*o<*!$o+vtjGjdoVKa1hDkim6kWqP~>;o^ruMgyf6n7UML`ae0;i3O6kn{tozM3 zK%H&j<{LVHM+bP(z!94XL`@U4LF5oZ7lkn{q$9!zAHi_%b$!XaWzv>{BwMnzQ3 z@UPTF0-G?3sLX_b`zmJdwtiH)GVWDC^TdIZc!N5%Rsqc}kNF3MvfY+M%6TTy| zv;hCWAa6RTsh%q(IAObgkm3sL>-HZCIir-x)7aEyPBJCnfaPU3?CryVgUofEw3>Y``^6X#EF@QrLcYaFyCBg+6W)Rg_|g6Q3rKB+mppZUfIOMuog%n>WAeSQBlb9Q zUfRnSM1j*tM$0%#Gz{s4#9Yt2B5N^yIX8B#Wz&fh2pE&7)TppDmysD0k?xRasi3e7 zKb49NHL0c}atNga{00U%o`r@Ex~DL3U8}3B*&n**xn5$5yQ9*HR?(PeL^~2kLiM$t zBKaD00urL@_$H2^ov*MxV?<5Vt7-~U`FeNl%z)Z;pJZdrU;-|gMJF}!o->-PZ;wwS+!ej zn5bc}j&au>l&Ewe5Yy3OcHj^`Y&TE!z&BJx^iuLQ1d{^Zyx6^IGM39yJ-&ic@HTl;+2bBf^r2%jzy!F{J`g+F-$|JTg%9pa{YdF6m5 zqJXjpRRtGpr9N3ZA8Y@Q@&G>$nmHLQhQ2b{9YFj*AaDye9s6l1!oiqG2_TwlUEpdm za$%qX<9RX5FRzyjc|^Lh7co-t)|f58qy{60^)OvPn<`-XvqZc%0B+6bJyDX2P0V9US7o%m%g0==>)(CahJo`*u%PX8U{!mW=qQsQsJh5JF|C~Vm6>M_VGA4kP6L+L2y0cVGZOo17X|T~ z?6SBLAvO<*9iEMF=~%h<+A?2LUPK+!bgAwThY#{KZ z5G-;SC=_tnCt#ys`Qia3K=hjRNSCWErsibQu?>R`VkzdLa0}ggxDI=Xy5TP@U`8S{Oh--}R{nntU7c=CV|Jk(DFw%7d)e0CG8VzV` zPH9xZiq8!Wp6cq4I+JlSAO=JiYP6z^v0greCt8;pfsp|?7_$?r6HRN%V&1SKze_1H z(*EFuVKImj?P5xf8G#taz&?m+WLH*80wi&WVFUJ{A-dGqUQ>+Ra z5U)tF@Ri<$vRZ!Fr%V8F6DxuPx-JCTonCK-L&52{OrX2alGCMQww9?STfI*Ha`Mcv zcTD(oBKqU`zU5j14+pJx4i_54Da87|^v%|ZQ(x9(&7A79qE?5=^|+c9pSn+yQ(mmk z(pn8BztYr2>9=w;l&($f(Kwhn9FT0Xvujn^yUrBA&vjM-%yZ;C>Q=}}2JA84)++yA zN4>JPe~PM1z5IGHI>|66ruiZv9Y}Zl25B!*$%goZ60{{)dGOnYg2TI+#!|N5;LI%f12+m%!B196-)H4yO^xO;n#2 zwy#Z$u)V;OU)+&Xw|%3~;`J)Vl1_$+N|!C(6<*#ms;_Wj=$m1J{WITUd$~h*GQ2jd zohPHQ;uf>3V~W(x>6OQd1!Jn;53sb0!9gTD?Fw12RdSE}Uzcd1_BD!npyQpr>Z#JQKFnj>7*|$Yhm)tn3Yt_Zk-NMIY@Ve=?{r1=M{NlGjMb^qt0sVP>!fY2dva! zbRm5;kpW?;NoX;NSRpNixX1#o0E4)UnD1!C4;tj?zrYqTKrXTT>I_sdgnI!(LtP-N zk%6g`rCU)M)bNEGRhZO%ENeoVR`{>fP@OZu`x)fIhPAvu+@ZpC)t>2(1ezxf9O*;n zx`ludA;XFD!ZNsLJKnu}9+P2m=7n<+4gLYim(9{x(B-q6^yn6S*sObdIkd6^Izql z_ALV}3CyTp)U2(18^xKDXEmk5wiyAQCBHh)&MxAabw&i$12iLVf*}qmAO6R0>OCS* zs4&dY^NOeWH{`-8q!1$W=&m~xRY8alaxgC7m}3w$UBaG%)4CBHG6=;2(BYu9n(`W@ zAPr;D4Zs*=m0!EqYS}$ke!K?b>jwy`^sG=+5}vg5S01e4cBmehe&K%BVWU6s(;C#^ zefwWL=Oi~6d*(Sr48qqNJEaE=#CXY5Lr{YqhP;3F!tpsJuO3|n%#?BJ3D}N}a2CVy zquL-b%>ljVlm=ui1Z4!<+=y)G_bV6~z|+Z$-zSD|6(;C%~NZ|S?o6GcIu>H0l; zs?0K;`?}sb2TxrQxNfv?njRY`=EsDod4A0SbZFiKKqmH^vMB2;?0F?Tk}+_Bao5L5X29I$_SFPjp$)NPnw|Glv%jw&r6r~#;lh)_k zDU6|l+TgtxWTbM;I1w+3J<1c455Q)SMi{yEzk}J#{KS-z6)^^oZ=pLF=9s^7*L|>L zaWGSKF1)OD!*itqMJmk1V9agiVD^|s&gsL%B&n^m2<+$pq+j1 zwUju!dCN|=tSL5f{JO*ZPwuWJPlf-AsHZ!ehPtK!do`kS7p+*KtT%WQTTeWguxRTB zdVrB(FbM4i3ICaPS@mrJ?j8&lTI0|0Trqj{ zi0UZB(}juf40jP=BvZS)yPZVGo(Y=n1RM@d;dT3>ZFJjeb-9bx=Uw>ur=I=tGYlFi1s^QL1#QB zn5!Q#H{XS~ZJ?tN<`;yWBl|?dbrf1G5;~E}IWFet(W3&IZ&|2eChjsyJtzo1d^m-x z;ZkFu4WJiHfaDiys^M!;c{TLO;HkL)xU;dNbM^SZ?N0DFU-BgnYobs$bo0;_QOn6AD5w~kUu#zh@%xo}LbXjEjPc=&apmYS85tR85tv0-#kChi zv<%m~e1VhHwNV?`@1!@Q15*z1yjijmL580&lsXA09|R&5P=Mf*3_i0)U+m=Od29Lq z+o+;XHenr#IVapIv=}1YdFxP4aBMo(wqfH&6R`H&@8AEXtER%L&|pbMD|lFsOGvCk z*bbfye(0j53m>Fn&0`vYY2F!~+Qe$(Ib_vKy-IU)Jgy5mkESY_qdG@`Z(s+w=vD=o zoE~<3aLGWC1)r{?M;W_9keS+ySRMXB*nl1=0A8m< z`?kD*zEOPpHOPK*ULh|K9oQg8A~^LbqvOA)y~e;qMlS_(5zk6jEQXBHc0+4dc?4#o zh#`W_sb8iDX;DsoyS`LvmTLG5s5`OeLlMAlHA#mt4uF6Xbmn_V!sJpdmI9Gz}a8-ODSgys9R0ca;aH*y7RQm~Ie&hC=`Um= z1Qspf$F3#b=blXWhnfgEA6v>%AgZXYo6&e*#J&18SGXt;^Sz-THS1?BG4N z71l8-enB8QPT8dJQCXo$AIFx+uh&ya2c2CHwF=AYgY!ktl&*EYqhf~t`wmPpClPNX z*UQO0=rlTYY5|?|7)P2p3<-vnVBcin3}1Q|7wYt><~NY(P9J%hz-d6P zAsJw*ypE)_bwNg;^5n_YuyJytb(dYx3B`J>X{#JLJ^=WdId5KH=_i^MfO3NZN&SHk`_;4-H6-A)*vWiZ$EIWgC!$FFw5f(74r2CNayDsX#p58AK-`LV!C;6v^Ki~~#CQGd?_DeH}FWEROv zFvNvdgjrm^Jwr4vkr*breJ>4CY1HE->*>UhSs^Yn2ODeS}mDgTI^YFYCq+Y zoY-sdelnTld<9uB;Hg=&r-;24)F`{xyRYxi{gmff{&?-lpEn2mSXa#cYRFzDu+hdY z%PGjwR&#VzZ^!&dO>sTvGW)FJ)P9TGrQ$xH{rh*@IgOaEf=dpmcyJm&M{E@qG*nfn z7Jva+_O<1MAG3VdW%alOcFdj$c_*11P17;mC;wRpEKqu1Lqiv7sKLo8y_Umu1}ZrW zuEBC~>>R`~RGfYK_{60nObJxA6}3lZ@}&=O;viFX6pZbzQ8n%<%Kx>yZTg@=kGuaZ zW|a*&iQh6qQg<`tvNXPyeRU4c*Y~a}^zy$(;Dp0VJ#Sp915?|czRhqC(5~!M@%ij3 zq1aR;`r#bcx-$QuJ!a{C4W1IXfUy-(Pjg~Af3F*qjKJ^s&t<>w@2*92$COJ5#JV-j zm#wyG^*(mR3p-PfuutE!%V^tY&+@hV=WTtejqCX6LcOKGq~ON%(%5g8eR}rJxomO~ zCQHVW&T4Klh+rl<)Q<@EzpxQPpbeOt~+grI1-O`blG# z?-)pqH1gS=!^RBWAjv$(e%%(Ms#Bk_o>Q86yjN{Jrxs?=oW*kyMSTQD^<7&JV{o&1 zXBK}F>XqcNry6d!{aP*{4fz(d*W5fD%Wa4YD|Eg(UQ;4 z!1pd(W&3}_)gz?N9BR*MAwcg)SfmfWJp=A)GPf ziViL)Vv~r!LDD<yjux(LzjpK<&;P67Xpfn&D z^uF66bEg!?N0VjjTYN8P5Q|yu z&>xZ^K34xMkhl?dLvnTi;AcI`DLCa305h&vU?4Ef7P?$mRFt-%9&Cke&eRz=B)r1r zikr3vAq7+M{RAw|OgvY_6;nq~MlK#G&&Y6-C2I}x+AtEr*@-dlIygCCWVIr(>a2bo zN^>SaX$Fq^VBTEo_d;s4+X|PWHl}0k31AiN9s02jew|DhCUQXivE$F1Xgrvlw}Ga` z1r{}s=XkV#1lM8}??Q?n9%_PE(J|^Sy^2|&&Z8yx(0E|*XnfAFwS_E13MD!?)mrl< zCN4|#)JZ}OL4F9aUWCH`4es)cec(Pqhj%R@I~)dA3>4U0uK;Xy)$mzaUOFC zP>}{8E)Y*EX+CmV!C?R7h2}&73I2E}6pZPS!%hh6fjUhHGZ-o~QQmb!!l}7TR@tls za&Q!EN5sX&9rf|XQxo4v;o-Sv*VKV!}gk5EXun=AfXtU)c~)%`W*%tD&h(VN0^n#eYWV zJJ8osVh_>B0R#|Z6yv`89v%mQKhYjL$?EoiZ7w)yh=2@#KzVm4{ipIHmJirkt5rLY zW^&I?tU95mw}m)L4=8oLY*EzT`RClr|EKEZfR}FPSUCo655cwv!6g{$0J(!?+=F(G zu?&DH7>UuZ%qLzD3Cg~+t}H8;R9a^s@LH#C=n5Ew88!Y)%hXt4vKpC@p-i@lthdpL*4HWWBANH?45}R=&y6B*!V|$KsP*4_XpX)+5 z@{a7sfu2`eMi_I`yXB}DbHFyHVABcbGZducx=*SE9D8ySmu?05LbXIVJBF?__lDQR zb|{57fQ%u+XiP)52ODtpObonrH}KU;$OQ_oo;GEboN-N)^~|pL6;G{a8Y}QNB%dg_ z!Zdc3XRAk@^4zJe7BabY3HJkZ-}l$pJ4h&6P^}idbf40_!j}U}1$y#!w)oYisxq3l zzmtf*Jy4ZzoP5GDptbK;aqI)5-m-m0WGU4?9yuedWH=I zx9l2e!z=%&4B2YssF`VS?vFE?|EM(y$N&negzv;=;nLMq{tx zrY;|gBHug5+QFW_*6Eic8ssf+z0oi-B_rZ)T!=+&9=ID5TjZgL5Pl29E1ZBYgc~ah zoGJ-fLu4{RWmr!rK<+Nv_9pQ_KUpaA@I;m@gV5@CdzCkS0E3uV-QBCPM=Ih0u|P6) zm|8}9#lg*|^_SK6{!8P233LMD<=Kl%GI^uY;f(u#@TD1u8JE-Y$1V+AmQ0a|a@@z-9{|x8dq!IRqM9V}G?Bj2h4byTk*iC|I z1dpg3?c#3#kfuWasSq~D?=`@8#N_`OHnPT_Vqn-{;D94G6Uv@uZddt34M)J-dQXIS zZ2Plj&U^&Cp0d+Wcs?+Hhw=)>z7#Z>*FzKu$czyo$BgbDTOkd&F?4$jMhHp4Y4G(% z^S8MO2uwgel5c}ugQhPF!vUJ@CMV|@DxCeaEOLA2iiiI;+1P#Yd@;ppJT!7>YH4i%o}xjKVnB);NFJ)C^#WW>lpKY8HeGX0 z28t+lY?Hh2b?0{Ubt>rtb#sU=N_Q9Agmc;nSP`L?e<*rpa?W?|Zx-}KrU^J0s31^T zP);H&jK9GJbV)})_TtpOO5JLhUsqqP(k~U&Tj-|5gW(9YN-n6bsii{c;#}B>Tu48{ z#NbO}h{3pc?`YmSSK>jd+6-O*a4QKE5l0Bv!BaqhlZjp*0fKMd{k7yj3NYvej1ho4 z11V~z(jPvU=-lw?ign^&ef`b!pR%V)Z^dJH0r$PFIyt`NDh;23l?m?Pp7=h=9Fx3h zbI36Uo5jZSsYj;_&q?YuI8IEIp*HsWnOGM-8L)%GwtlmW;Z+QDfK7s{GVUDH7eF#4 zIlhD3gK7A$v)@4qT83yDvS_Y zxb%1j8!$+k8514n(L1BFt$#kQbkYg~lsM*is!njYOjKPeotVO6**yV63SLHmXxs2< zb5Zh=s2QKB8FUfet^p#sT+|dqOOj;X6>KOFhdRou+yF-{acGuwjFT9xi`yB^I*D2_ zlBvkB6~i^)>Z9aT24%LgRxQ3ajtM1-IS?MzG^%t(J1Zr5%>V4rpHO3>Hqd z1_VVDzF8>$sT_MX+T>?QoDF=?P{?>o_iCYHeg13o3ydH@@z6-Y2`n2ijxzqi5cncB z*X{eq-NE3b#7O(@d0b$er4M5^yj8FxArOz{KdkLaa3?5~1-SGU`C)8Z3=E?X&anAa z5rxk``t|~_;pPI3I0kcXv4qT*RxiwZc{a_w9~7h(JvKX6`GNb%q0yH?x`LgRZOuD1 zCvN@1a3Kfpe874vF=fhH!;>{;EEswd12|cG86cs3X;CYOuF@mq*7oOxXv)j)aRNZh>PPA_XC6`Oj0-Uve>(*%LQK*)avtR779r_#u_8JUkJW;Se zsFcDX!+_jw{knDa5oKT?T5lX3gQLL%;pmBH=^udC9WLwSRYFO}U<-q!@CX1mETtDL zUYrf()H|qK3jwaRfR|2t1dvDhUSI=gO?VlALn2!);p4HRP+kj*MQjJ#U|Neu>sDE7 z4!9G<9L2W6-8&9qX*UM%u=|-y`xSoSyO+EwlR7j57ruN+gCPqnzBi)PqHtZHRcx-g zHy{B88cXy?I$&`3f5DeoWob`zl%Cf7eFiGGnC9sY&b}nS)0t`PDO+iu#?DI}a#^qU zw>ad-@bU>|`6sWqHN!R6znr0vI&J9TZxijVPyDs#PU^k3cTl(O84D>ft=N1tKSMW5 zW9^othE*ytf>Wp7E`k7ZM~cf>fFH`qv)Qi{vfL4=4V`4pjT$YmzU@BOo(vM&`H(Gx(^d_w_tp9?2^VwFpd z##$r=fRnHtq1M1?6*Q#3VT#(&*vJH zFe`thA^-W_vTgPN1~T4QV|M(I{*9Pu_}dmyhSBXi^0v?t!_x+TCpud(&Zy^UQD1f| zX4)aJXE9iXe_w`*X3B$}=%R@VTp;(vk$b4Xe@?HARd`p>XIG@NmZwZ#Tu;pJdZE6m zeOa;AeQoJ$k>|Gc4hOayn{?b(ku+~!?TE^NtN>RDb>x${EtbpfiKOStcj9)0i2nqu8E zwBFjR8b2m#aH+_cuG!@I zCo9jLbE_!T^@Me$P(xw;rKdT3&2O8D5xX6aG1QXIBAvaKsDwAdY#)=l2_VX4g}mNs za>jUZx(Yxy2r2r>LWaZPi0cmilNHkCMZy@Bz=hiQ%k;mDE`i>Asoa!KBV5uQ0p2qHLlXU&}6+%X71nPqkq+u{{!S$S2cjhrRkVx>#4yr6QIQ}SjD|~Qy*3k$H|!x zkfZS!=V#8BT^VkpD$S#ss3jOGspbpqU_HhB#HTVLIholzpcCST=Ne(zY9~j_7~ZIW-h< zr}BANT%~>4vd&0dGyU}9Y0Gsj$JI~sN;B``NC+xcdhTG_S5dro z#+Gjt!y?KIuv&9aqqe_)RqQY90q#W)Djl%~w?8R=92Yt|I(F^e4L=ExTbR&<3kA)7 zj(l>>o?cWW&}Kx9zt7K)OWrdyx)&kN?D4t<&I%lLx8Ccgn$G8aU~YWOUS0uo_X^Rg z!)<^4@dnw~-Xu&XkPmcVR9N3$Z9`t;a44J)vPbCcjW-wchs4LEd^%`;5o4%K^hxXi zA&Xo$9RKB%@(L&(l2(bC&fwtSKuJ3?|K!P&1@j~)&1AYx6$R|^c6VnbRwh(d&r_nU zEG>zV2h|4!3LuDhw(FUhYdb!q3#-3M+uSg9A;;9Ot2k6smBUJPj(6;R3jdCdN|5~! zi`=XF`Qi@rmj@m%{Bub>AIU|Myb9x3EgbaJdSDdoP*6MdKTbt43 za83womcbSp{Zu150LoxO2Y`8h_RU#~sEWjY?EW2u-!WQ^%UqrC*YbYAkSpco`hSq^#K19hC!pX;~tQk$3bHBcb zIIhs2&vGY)ZQ(+uedr#Mq?+Fc=He4xaY^kKY$eQ!Pdj&qVAe^rbWn1szFRRu-Y<%=m*Y%mWl02z0?KP{+7! zwyVm_wb}L0F%F<=9-D}C%i~S&_qQu#V$nX0~n-D~BaK(o4q+rUEh z_xHzaem$Bi)U4(D!w@EVxVzg&Mz$VY`4|_bs{t42;sdbXmfL}B4F=*Z%iN#t8Hpwz zBTj!Gc%7@|{AItxlOs=#wJEXfcwdk$A9?2DDo?AD6QOdCWq+LBZeGev0^59^A3%;qWFJ*rk+e@*?K8MWAP z?jsZa?@{s_gujKBE#&xg#0{tI@2yF@_H1TV?hMW>+I9^8$xb%Z)p0Zo{ym>k-g1ZlEOikJ&{3$JMyI-D!bzB5!UPdLQCw+odh+C4+x|3o z#G$MQ?BWFr5TRYFN=gOeW1ZtK(6N!`1*`&cxkue@CX#+M0IuNiq*+0uge5(r)iwej z2`OS9%a4c1t>E=6D?d55_ab}3IyUF+`5a*AlzBL%pZiP$8&BdK(>;7kZPFgAj5u=%E|V;{R+}O$d^uS%S=Y?y z$~P^S?NVnv<;(8(nM8BKpyQgqaFANav9{&|Q-qD4?!$eQGP{%&ZsOpSJ?~QU!7qG+ zxRF09l9%M#j)@)CF#ECK*u#pW__1?L9sWs|&$^Wd?%wDm&W(rULy9w>Skoqx_IWx> zlmd)bTo>*9nHTOH>Xeh=Q5%IV{Em}T@XMED<}hHvwuI;W7pOCUVA#P!{&3zF3xfc~ zYoKoxIT^+&5Q_(b2W@aAcJ0~o83+ME!%$#c{Cp(YQ5ajneVdW4qk*<#7BHg5Z$Eqa z(i8Z|HpF6*djL9@Q<1HFw+ax50b=grrAy1KL}5`0*4+a>wfE?Qi1OQ8j&hgUAs7e{ z#*8vp(bdb_JDwz?knZET@$21d+nS703DU_jt5H(JU?%`s@eY|Zn%5)u+o`87b@ zP*`kR#&SkZjyUQO5fQK+R*4_7RKYR#$1*NkG+g2wFoQ5AYl)X>@cn zB^h&Y+{0_KyWB!Y+>OQXIaFdPF+Ay^D{Thfe-jVS6V#hfU-UAc1Q<*Qep!YFG5 zkhISd?ymkv|8a%RMn*@IpoBr8!!BRSFfSLeObhJpHpU6{b5#oXT_|Y}MV5X7F9uhw z?D+r=SHN=2VQ0hpfRfZEB_*NS>FVvh0K}CtNf>6o^I~yGZrwXJpy?Nb1cOD7GH?1O zChi2>3)?DzFCo98&Tuc`;7I7L)#o};Q&VFBB9i`FSXr)RU?R}ayz}grNQ1ggC;;Ak zj{mMYW8S=ZXnLkXp88_Luz+9D1V0*q8s*Q$s<9aY0r`Ah&GkRR=96^s@O~-Q=bCL0 zDi=xGVDuPAZixLA3G>vjut&H);8J0#S^j*$)RlvD_fUdY=>agDLsk|^NVtz5T7r7V zA+2A+YLS6b6iiwF`TzvlG6o*8_}{kx$JqnUqc-)a8TF~IscET6*~tLTqhs8LbvpGM z4x@xBGVKTpnE5D!O(v0lvAZOKQN2Mx;PX%?4t%Zl>_EUBuYu+3C7u9n^LbEhs>LEh!_E!E^l`7B ze5U(bG;td)BluspAtb^kic|~f`1jycDnH4EmYE>;xp#3cB=pgP-Y&)i<%& zP2hV6Htwaw6JX`__CVD2^BfCe`#2P};vW*N7ny;$^`r;@8m5g$1$#Ns5W&J~3#>hJ zpd$0}RnhQ|7xnsl*m*ilhRgjvOUY=aR)q{a5eGXlMJrB$u?qsT_wV1Eo16bat+R7j zEOfH`tIG$)UIkNcvOvZLr3t);Vg7#>^!=i*5);jy@EGGPp)&W>utFSaCF|8l85cQ; z3r?b0U{TkgEP)eu%f0s*X}5;jZN>(*8Nd$N^`Cvb`0MxYkfbCZ9Kzq~>ow!gp3P?t z8$Wc5*VLLeHvVOLU%oN>%B~(T>OLPDnR8H9MrP`3R1l=qAWc?zvdObIPgo}lco9A9 z7_gxGg*xE{PBd@{T(Lpm5A(Z%_ z7KKGeZ@|%rI!d{8C`R<>lrWIn~P~e-huiVM* zGEs<&jdi)6=zAs|PT67%luoY{H`HNz4uD0dqOAT9YieCIFm=eTRWNnThK31_vSo|p zLzE^@1tT+Ti5L(!VH8MFQP}HOka-a$i*|iHx?1#p5``B6VWiq?nadF(4S*BmckPVA z%(Y`O5MM5{LnWuMlj}xhejE@SO1@B3OX(emLP)4S?u`D~7G)Kcci6+pq<+diV6ySz z=0}bkVFkHeQE@r02)qCmA(tEQ8~EDtsum6?LcZ76XF;4&_Po^(7~SrGdzciV<)f%# zjX3q~4|l;*F0Iu{`aidC&}j(Iyz0R){cR}?lfty6eL>8OQm*eXY_xrDd5w9@I=kwfUzgq z+sl_PufbdgeJS2(00|F9SFak#1>u-Mfm_$n@g7+4tl6^92exS=l8FluZdKTU3q%&E40od1!J80ZdSW(P*ejPU!z_e}gC>D>$v6wQXe<~7n{^ZFf%pzct0vnz}AZ=a! z{m;U}?w~NE9TW$3TF=y}Qx)Mnjc>+<*5S*cE{qYNUrVb$QH9N$I$>a$q{l$Xe;xe; zm6>?Da&h+f22@9Vj#A#)-P1#EX^>v{@3pSn9li?|`b4|Ih3^b2KKd|tmgpdJ^5h&gPPl9S zrC6^Id%`F6r5AV59FzVQ{hY6}sK})^ysXu6LU%e3{7&#xKIkNTam;zzQColLP z@VGbgCj0N@2(-mh@ExTMj-A^$ukoPWLsN$PK?@zl)-Rl)v@v0sc1Vn1n`Hv|^22o3 zg;f}7Z9J}y&nva~@S@beA2kkJ@WXQR^BvJ7;Iz;F^@q?=kh+FK6H z&|E)R#|IyA##t*_es2m^i4xlAywEmayVQdg|ICWB$wHYj0TLDL(9z%KVj+vP`TeAu{KU|R3@~ghI*@NfX4?;#tvO({j*VD z-y+ojC6AxjG1Lz-qs=!4*N(Zg)_nh-!z#rBq;7^*#aF$PBWiJ+aY6HbHy9swL4&z_ zZ|J%n>2S`tD)VIH@DOQqj%(8m{PTEEuYcw0_rRU|f_ovuuDj5Pt*US+7&W@U|8SenJEv?pF|fY<5MOq?w6P4oGRId9cMcoTU&eiw7rQ!cqQGtFSoa^Xx*WoAQvHTe zos8wO@sB9?X1oR|0!l5ZwpY6Exz*Nk$lDHmmpbDYv05oLVYKX1q-@M>HYt(i|H6F- z?o3CM#zaAHXtm|dcVH>CxtW&!y`nmlOicyhkp)a_ksT(B6p#9?rN!~tvyIpSw9@8& z#O|Kn4=P)KpYd$n*|#dxI;V69Aho zSiM?m|9&P+o`5v^BEt$+EU*xqi=u({`m4n;&!3-1`2_En?|9pj&z|6%AW|i8+e(pV z!NK;hI>1Mmvk$L=hWGHZ&oH%Xncj{>HA=qu|A>3@fS&Vy|NCnv`%YQL7$o~rQOY)o zC`Fqhd(w(jDk=MtG?ok!(IBN#skB?dh$33FTZ>jnC8_Sm8#Cj&&bhDOIludl`;R&2 zni*5y@8|PgUa#l&LW22rvl6O0VsCcmm&PWxl9$5Qmull3Hq4K>R z9j&9Qn?4a!TknEbAhHjw+q2PdMS?OAQfJV5|^vSyTb%3ZhA06GZCEm!D-+ zOxLbG3@rd&A$}Pq9)E|pD_0Jp@|l2w9V??Sh4=2=TT)Y!Yc#qKlG;Y64*CL57NCy1 z`zz${XcV*KoAKlb42+JG>Hstyz(fQ=p?r6sep?fCwm-xY$G9+i%Z?m5ghU@2nVtwz z$0^L9bhRp2$Vu(lcFEr(bzYtU8apWBf%*U1IywUCi)OGN=*ESM7x&N}OJVSlAK35*?4AA{{!22RtY~_2Q!8*N0b5bXQ`q1p^t`|3)|!brhK7HlJ>8yT6j7@%Y}Dw{ zi1&LeU%p%@ju0Wu<3J6%$1*X?*A1>v0>$AC0yLiH!LY()M~}Xi?P_g37B!PV{fXRK zq^&)J$_UAg4_3O`y)Yq=P@Z_)Q^0KrR z!h<`BY&{xz2_;n#>LnQo<41Vp-TL=muTp^Y0NS9X_PBF7C&0EvC5pX9v~bvwARGW= z7J#vcN!$~>WeTeje0|*@h{aG6v|iiQ{B9D{E{0|bK*e9PWtPYqWC_AFg<(Cyjvo|z zKMI#W>Tv3}*_xUj@*|yM>3BIBXn#dYI5U*EnIzYpYUC)%hS0yV^`D^I=AUW@W{A)f z>UR;<3>ZTt7m+PSK#9n34%69}p0@B^bXmCQ(HFNAw0KI)Jqedz__hLyWB~~ByT^N{ zuz-a7h3TVfHGk?j!g zmMl+1!R+aG9K>uoY@D!tDtL}rdcB*!=82->;#SYg%TwsJu)}sT3W~fr^;<1f+OK>` z;Qaq40>{Mk@vJN{xGV`}8Hkrc!}6;uwv$Ke^lq4&vc|K#Q=0|fK>89L8Vj_! z&b9d-`*?zP3ex3tqdznBtzU!i$29u3h#EcBU zn_PPEebBUN)5wzD-E!!69Aui5WuuRFl#$~2@sEv~YxJc(E@n6O?cIBcq6{|2tGU)Z z9%1ja_v|X8@X&gxgM)*ZmJXu9Y54O`KS_f0!FHBOUz7Jv0lf`JA16?&*Pm=c&Kh5` z_6rB1%T|e^+JndA8A4qZGeFS%@kP#eg+~!~h2AgUytzZ@pB8vYf54p@J1>nn%sqh? zpbZoA*~!U#1XfrvWly)4X-|Rdh`3d`uy;tsZvv!ubaHAb#*`U4nDzelPWKgE_x|No zdGPYYE^a0vQO6apzRC2sWhtztKj1OZH71WzQvrch&?X-tJc_k-YU(EHYXyVKmNZwA z$INL|t6ZF4LcPDryMu}Gs8f~t&;+!O5zb35EDA;NDrBSRIpKstgID!|1KKcef7|bs zcQ?=7F&Q^Bhq+hQT;Dmn+(_0ht$q4%{d>4zVE(v&UyB3_G=yN3hmRb&MKD$S4jtBC zdvy0mh&al{;g6g;r%}KVN=nkuYig@iMsuu2Y_krjz1r>NO@RrhsusjZDyh1KRsj^| z<-2$H@nX&c7>a1bJpGR0Yf3&{IQm53C=|%fZR1Shp1mDz@!wtLk*dp9KHzDK*<`-H z5}FS3ku~XQ*+OFf@@2msT_I7N)4Wz9*>+Pu&^=T0PvpFVOUd)fQ@}@#DMsXsPpB=4ohzH4V5N zzTw5JYeqpe_dUR%Iciw!9wx4f*R=VYi@djkmP$MJocGNYSG^|(1^QSlWJaAIY{)kx zNitVMV->Iiz2*lo^cG}9d7zV@2&tnUK(9?kY(ZAS;6BcQM|XGYs^;i8m3D76KoV;f z#nP_u@JW1oI{Hw!BCO`A{De=;%}WLY-e_lchaQEq;VMIy5z5XoF&R`)P>{JzCU?yk z@EWuaoW-UtV@M+e(+{V!wFr8j>+&xZK#<+N(%{wffFj8c_+;YBTf5p87r%b}*iXId z0e5$qgCqD+^qApmAM_!*dZh~A@GkE|h(yGVPR5GTN&C{_8z{bnHfZJ!dAvJZ|JaVX z12*jJp&V7v%=s)LwE2R7kU%XWOPsJ{98JpDO2f29wk5{az z>iDGB57&L@^EYpHn}oFcNkt{!I@b7TyGSsxj0#h;?;u$7*f&?L^ObxR(k#YB8!uUs z{pq<(8h$&8xUHi!sX;}Sj+phd>|S(F2Hp7!&+TAnAE=jz^)Ou-ti=goqlFJ8beOt@Z0K%SX$A|DZ^Q z@`k9PWL>g zpnLV{BPJV2&@vm3+h}|V-UZj)Ru`9g;!?y~A}uO%&~jjP7U>peXXB9DYbJ{HVh-(* zOatRwftdrht|A# z9cZ3R(L`rXRQOMo$Yj;f&4K@iN~B!tbcP_OkY_!ljFQ9LA^=hu!FE6^fO3aVm zh>H35LPRGpgPn;c;64k2W9Hn&i+4>gpZNDuq_iP}Yp@;yIn8Xch`dI=jvklRi~CkV zNS*2SP|OmSawWwgIW@Hiz-k5cb*6`!o?LH+3y2}Y5+T7~QuoQ^2N-a*NYS7bL4{4_ z`SXYom~VI7Un9m?i#W!Vl48yoQ@jHB_-8 z3X_$|NEd8zUzp{z;PjNkESjaumMuxxTHmVw(QfA*nJ1F*JOX);1ilOM(sIKW@`GBK zpY39HAluTEvQ#1{FjL3VGy#|kPpCC)bZ{s}_7>rIr6PWevU04+$$<>Z)Hj0a+K=4m`f_8`f8wjv#ecaV84nZlv$kKjpGcj-Y6;+i6m|*oBGyy z|D)ZQrT~Nr>w70Z--lq71LFH>TxNqOR#5j;}$d-GW;Nr~Sk6rYBR4&Y)NHS6kBSr?fchjK|3u+88 za}~ST-@IO1KrX?YakXHszIt-k^}cq2$NbPG(c8i{Nd$%ugmo^fR1EOs;LOys#qol` zC=JCXO8}TXCS-MwS$QX8y!@g9ynUrQb-ETE`iGj|di!Q%D48jD=_tw~!@bO~G_Sl} zcGu3q;Sz%rB#fm={v4wpNa-xpm&NxAkx>!u%ry zqX3(%16JM|!pktGjLTHtUHZ1hN$5{;B#LGd%#s^|h{pSm9<2kJ7p_#wv@-z#a^9XD z6z2qHd|-7{@t5d8sVlWF>vEBXnWgJDyFs(2N*qSCi_7;4jMX<;f5Z22 zv!lU?&S#X~1jp|VFFKdnsW3TvMUsx+^QEEL2LtviEf+tyt+JWW(-TCrJpZ#rgL6~D+Mur!K<3!qW-^gRPsda*6T6Y+7 zW~*J`cJI%zuS`6Zr=(vTX%iG;t>E2X(fYLA%dzln9Lm+Oi#?^KHOL_XQ77{?yDU8P zY^&bABc?BR{`ht#&7sUd88>(L`A4meL7P?GFnrkOpj6{T%TTv@H@|I zny$`KfT3SM>L7W_pA|UNPBUq*B0zaalItFkkj*P0P-iBs4!6WB#l-r~Q0e?W@?)Qy z)>JdtP&^dA^@fcb&jB`3+K5!`7QdZ7Z5dSGaXgNB%!QEeZIL6~e(<29gelL{nd;|s z|0M;gVsu(=kZ`U6=nLl+l$|S6fCb$PIwN)`$*VVkNvUqcbj|F>g8i}C$DZ~Xnf89L zhTrA<_9ZmVt8hQ1eBOfoss+8G&Zf8DTVD0K{|VY14z`t9%h7qkrZ9oJg_2bm=m63> ze-^qpz-Y2kGfnfJJXr)gwt$T|cI;S@yGStCViOZ*N}R4x=q~|s%)BUbspiFGiUfcVmLSWISE%+Qf!g+&{VF2Z=7Luawk0T z`KRyj{BPb_3&$wzSY)r#C8E~8Vi!Y+SXv%9LO>b}(^^;x*kReg0c? z_i{i0Mf(nPBi(xR*rdL{Cxqi12*;0abp&0ARE_4B!Vx~2>>x#MX5kz2sO`=i5cqc? zJLGiq*OfyLd*y!qxB6m9<>~)9W2+n!Ohx=8WchS4dIB{h`~&J%E=S={O*4<+{`FlV zpIrHCzT6vxuef1_tfk`ebg{nztQCm;JBwU6Zb>m1{ZV-9=cT0$KkfZKB6iEcW554C ziTj*1CO67K%L}oV$xkAX<-D7^g(nC@Fqsa35_17C^nN9<>gl8 zQK6cdVq^{D2-mJ%o0$b`AR-QsP_1KgDco~H9M8=!vi&d;gcytqi;Fu=85D|!i^*RW zn*GwrQuwaeQ|vb%-@W*6`3;?u`yKQ0n!sliH#2S%@X2cxdE5T!Oigz57O@h4x2EH1 zU+pVh`J=+@78fU!o`AfRb0E{zb&1VBAVo_YLc2;ytzwdj(1W7=!27GlHZ2{tkyJd9 z-RIEN+GVp*`>L}Skblv!kvMdN=4z_T=WBL$&2-9!aa$&!>5FpS#$hY+<)I^gVN~3y zYXbrMsWKHT%1XXgK=Toq^7TZPEQw@1hm%Tna#Va2=7&$7oM&W|GcaUdhIxdDa}uT| z9!wR&u*D#*Y#cbKmlQ=oQTvMg3C~CNsjh><5T!uAJ1PByRG*Q5N#-8JdnFlg9ocQP+6TlyLX?t za^<;{CRoLko%ogb?|4H9775@SG>S~H(gjs+hM+_@K2|0T78VDA9MeSA_Y;DEd9V(u-42mZw znlRs+@P-m9Ns$+xX0`?tN&*qaZ@unVeKCJqDTjkF3OCh1a$U4^>A^I!*W7e37rK5v zn*Z8*aoyk*RPH3T)2}!U7~X6k zBu`%*7UD41p7BG6J)$kEIi;|vR?*kqFZkcF{>cgM^+EK^zoK!$XDlL)P}x0y{@e}3 z3Vxy(r=ew-i6upWfQZow5}(=9Lv1JR5*~2+>rbt;y;}#{)_+)wW=8ar>?y|W`soL9 z3yDbIf586yjMcn4+yY#3VvH2qHdAwFut|I}R*`*belM8*4VXC?S}fgM9&go3jss!Q z0j*&VS=F8;6p7gN8-y}Hez$ps)st0V2*javaO2e|ln&}RZqety41Te^uEUFFj)s()fAAf}F52oBRD?Kv6ZuPZwsMr-Ag^cPw z0jHj~-5@^iQ@)M5fV*?^RIR zv4+EIuFSXO#Ita0Wo(@<`|voeqr6ibRe}J-y}gYqYjDU4(LHECA-SYXUOqWAM6*Y3 z?yn<;4s9hOgyo&imgu*Gg{@9syik6MwZ$B`t%A)}C9^#0Uj%K-nyPSGw&(egN1lI& z=G#{p`Wtu7(+&IdwHs)>eAkL;b1;I?UMCk1=qeeZjKI<`T zIl>|dq)OBr3l;K=l(~!3+hVXi&1w0vv^syia;e+3+oafq{Z7MXX3`RA@JPNRrRg ztje{cQ=YZ{ux)+pHkFvZmWfdvR(k&N=%4QhEr=br#R?{yX7-SZilL|j*!HMhylBy^ zO`F0}R-=HrZK?1SrWt5YB0FYGo2$lkbs#IEE6>i_7|Snj*{yHidpOUmB1KL8bzTU- zW`)urj7TGn{_sc@Q2Fl$z6Z;P<>%-Cc>?U=)D+oESy#6GEzEQLH(_2_L{TN;{OvhP zN9<(cTOd~fGG8>VDCnN|C@NwIT#%n%xkg2sFg(O2@46_7MS0KjAbY7`V{^(z$kldF zfdBWkTi7G+e73dEJXP1GxE({ge_PyNE1r^sT@1_SWqAI+|xsI&&MMCYkUGO+ZF&|`aR`RK- z1_hGOPVn+Pw4(a41$-v$t(7Te-o(-q&Tm z;+$2brw3|Jl~uG^J9($k1v*_RMfElz`D@fJt=JlIr^V4(l|&2nk3Wjcrp&kPIy65i zz14EInD^$VzWC!@(53L7LzfNI`%*M=+0)L0yTu>fQ>&VsRJUQ{Pjk=JIZAx|P8EK- zju0pR=7M_)1(;19zgznDlZ@-yRm#fG^_EVB-Al*JfGk+rBWb zpWScCZ0oUIdg-4OZ{^CyVUILVj&k((bOOyu(`+kNsV)hs=%q{N2^Nlb6QcedJ-gJJ}^af9ZhU4GA4L z7}zS*9RMdf^WpJEg@q?S6^vOLZQr7zS3m`oqMFx4ckTD_^V zZ*R?JYlJVmFB~3NL~&gBwu&MvXIepk-l)?0NC3hA4n7jYau9XIZj_hq%++nm)3MLZ zOQsow?;elN(fgju)~!N4yEDth#YHB*$@ucOx{2E9jcLT*ijlNx&o`(?G_QWg+nu&bpwadG3gbUQ=g8ldTBi5j9Vrq=- z?c2AfZvFJ$rT-&84UNhBlo!=~Iuw*|`u%)-xlK%9|IU(YM(SPGMbiGfB;cV`^S$i9 z;S&X$9(T+pi_V`-^xy$ScM?6AtrVf`WFEsji-C86AqmM`gc~+(ddWNmk+}pNvVn%d zsZl}SVFDa1AcZiF!2tUQ1pNGs(-owH;5Kcq(EYddrGmnpyo3H8xIz}*kEla>L`0zN zgw5o%H#Q{>EMjeb!laC*iDx9#xm;`bAodGXsB`KlykEq=i!3{yx)&egDj%9ZS(35) zn&D{XSMCO~InGQh+jmcf@z3YZpT8P#h<4@3;lpWf8y}^lT!7{hBh;wCzjf4t8G^BV zSmbJ>A@fb<#Yrgn35^#*gC5v(equ<^i-;@}Kg4B17EFvvc3dJ4)bDbKQ$-6#XM6vu zjP4rJ4cam<<5$Dgz;&pwSAj(c?Ew%n^QV+WxUXGAxkupOq&0;{=l<|A7<_q8jAp%Z z{{b}OCO*5cKWJ)pMx_KjCPtoE7sTD?d)-e>RSU^ljGm0-f>XVPbMPCNF2eXvo;*qI zARMHmoiK8$z}^5eX=et3`|G;{M>gAc9pgTt4gb=Ka5HjWG>r#f6dR>2ngx`8`C0VaQE)r3Jv0c1HvLr z+W?;m#lZp*BZ?)I(_ya7+bl%f4tbwrku7rE{#EnxNv&E<9KYkIpAWoVqBCN_ohNpFox+{A{FyQB%KD4--IdMy)V9yh zPhMm@$>2h}Ghv2ZLrb3U+{j(wYYXs;-0YP@M&U+&gVh( z+f)ZlOO6h1a9UoMl4on1SZNVFKW~D(itpu=ox{|-ris8{k@gP@S^DLthy6>}(b?V> z4Lourgg(^}oFb={muKM+dj0N}XLZK#P&y+ryYAoxB#IFOdfUX%c2m=f$tvH~R{lfS z3J5;LOef=?<+;BXs@Aub(AZEukysz)MFRCnfYlc1pVhXqn}J-?@Y{(hj!6bo{8$7h z!G&Qey(c$Rul#;;vQXy$|$H$ zkiI(`kYoHVnzyj9iL|ukcNff^J0m1ZjFCf@L$KaCo9Dh`2}=dXl)RC=O(P(fGI)5uLH8t zb9YhyP*7q&sJ5{WN`UnJ`o{IgqmkQ@GjjO@2C<6`CGYlqb7`FqV5{jn2T@T5sAw2EQCyk&!TO%>aoET;GG-~Tjq>PZ+v$ZHh6 z;$#-55RmR~pa+a2wa74?J*})^%;AOWbVdLbi@+uk!T@%tS1(2>p`6f;b^m_$dl{-9 zDtM@5q&Q{DGwU7Nm!4+CG~!drjXMBaW@q@wALvJrkH!$DJRyUK!U7ld=qi%~0x=U2&PMx@s1U}?c6OgY2$Z)m6$)#sF z60u?24fr+0L@1{SV4dIn+Rc~0T)K1oIxJmnZk%oUID*DBzzai=h@_FgLBEpDwea8T zk~nOvxx6zVsD5bJUx?z z^XI?f3i}y31p)vNN9_k^42JI?IBdxk_e-4zOnLlnW7r|J2M-?j5r&bGTs~}Si3QTy zFO8M1>j=*liVL%=_Pe_|9RK=ZQ+8ejwID8g^cWq*b!+fdN1a`zPPHn?tT`xq=fd(BQY`YX+jHT zxBhWgDasE44zt9%kb#XMYX5mzz2u;Kb98zcpR92hy6d|06z8kDM?b5!kM+Wc!hJ3w z6Kl$qb(5v7n$Mm+TY1fTwu)FvtwVZdhP;B`{!^i<*+$dI=v2kQ) zcxD5KYg&9xz8e1P=o>)vomR+rMPj%SH{G|KpL4u)yYiUDNbig37f^CZ9lf9KYn7#r z0uz{BB*9T@UoGIQv%3F*wUIeR9!Xbl>dksw$=-KrbgL9C%nle;?V#WdJgR5x6nXdFYLD zrbS~|v^WFl3R`(C?jz}vD0TYOsbpB?((w5b1oGRt;Cl`nn8KY@-X*D?_~H|aHiIDj zY(BQO;c5-ge6S&0)KZ*Hd$@VuqeKYTY4~}Uwz@cRsxem3NXPwuJu4a(Syk3YPsOq$q@?G`82KWMJcaolyKe>-haO!oS1d##LYK zhWpAb9zn{9LVyj*J!2J^rFgBZtjs7Y{%k_+=%mKv&p$mJNxV3*L0Wb z$^C)4o)wZci3kD!=`{_t#r*dtra5l%sk1-{)QQ1YqId7pXAd?VRuf91CPq@=0}#=P z@N#z6x&19R30aw#(JHJaGjq8i6JnF?=@!#5R{l` z$$NiA@IPJS(!d1ybiTCI$@4QOpE_>hlx!R@>0U@wK^up@K60Tg^4#nTJYvIwh7JlI z`_@A~%VPAI3MHq=jjGGFR;R_5%(!#Mxm8@=+n1GJ0)O#P+pb@5$e^p0<(Xh5Bk2rx z*XZkc@3Pv<9KD&+#-?jc(fX{?YbW$_>f*kvx;5M9QFO+MrH{Kk%d5II&g1gso4v=4 zvr{c@aZvN)mdhU#syAf3d=XI4Z~MhT!5_=hmwG*Oy3n#xwKh?I%ZN|?HcxvJUZgY8 z<7S4Qy5pQtdbp;X-#Y$b(NS;Jr~_?1wBmDz`^ijua^E20llijcEpn5~02(urW3ZQ_ za0H{U%)5S=TRQjrGR*{o{I|uj-L0rEVId*O43JS zwATRYVj6{rrUTCtRSHHFM$TbS-%UO1G|ZSgQ8a&`U_+TIB<^GYZjNce$J3^uyvmBs zKP99O9CKF@siGum@HTc;+gBLoJ@~P3oDh?CyCQv3jaXdtf#1d{gc;Qbv6>O+p%wnU zu(85{u#1NZK|2{o?PA}qb?Xge_`}{>WL&ISiJYg=vMagEKnnsk46LoN16uYd%6f3; z%L$XZkP-5`Dy+6nvAyuC*E31Jk^CD&wFJ4)oh~Y$*A zh{NaT$jZu6zrK3$;wH_hWI$?7d#{eof>)=8SH5C9Y2m_!7*KD+caBkr{4f58;~gkZ;)zmz{&##E;TVp6hq)k>+%9ifDdJ5{Uifbkm%2Q;s;H*`Lp7Nabp*ajy&A z{IS0SrP`nC!!6E;$M-csj;+Iy&K*k&s@sX6HjK8{1V=<{hXQb-?(n`^T8GLb@M?>M z+E6B_+gBDWyR_?CxAQOf-J#5VRIq%e{iY^onxRyeF2SK%9QP3%?CZS|sf(VOzasU^ zGcKM@9aOtLrtsJ3qiedD{B_Vf_;9U>gn!cI`$fcVDuhn-6R_p$*YBB4fs<(``n#0d z>q8Ai<}Mkl`muqt+OKqewobF6VBwEuJae&;P_=)TPQXTUu~yaA7BLHT4eTeb4)$Jv zy#WsWgyH{)_-gDyTlhE0mpz(hv;h%j~BX4nP=?2l|p z&!UdY6x0r>#Ck>Rl`DtvjFZ+(Ok)NR2SqCBvLnaZPn+JbyQ5dNSzqG5WTk|;nmU@^ z9sOkze85!OyH#5sQ67k7F`T6YFYLsX#Unt*`aq$wGDrkJ-~va)()uS55$;x!7*Gob z=})J4#~>i48u7uXu|-Bnm%7r-S7%W{3sVB65^8LbWl8PC&6S!x9eFFK%U4^~=+T`Z zQ5GyXSpF&4I4V^?>x_`R!{fmO4IDIycjU3K=x;7b$3|#tiO3VFs)Uu1(}ZUA-qWW? zsqsa+5b;4%2*41tFTon_a+N76D#BI}_c#Uw1CNL9NgFDBaV0NVvLxcf2(8o4vAtdN zf9u*&>muPth5e$C*wD~ye#M^MyRoy(0(D~* z3B(OXauTY**j)3;(h|Z9grRZ?DtVv;U0q$`4%g1t7jx_esBV20>2qF|Rred~1;Bws z#w1IH)e7FiPxv*y4%E#5$hG)vh-uO*FL8VchzuB7Ks3hntbZ%_xA2U?aN8pL3Hyf_6?1@RD|~mx zE^ag@8SiDfzl=(W&>OXM=Z=bJo_A9;Ga7wJkD#z80zV+9tB&GC`toEt1d&G}gtYj> z>`S>It8*+u(kN+_^OV0IHaVmd23@tJkpYVg1Zt?j zBieSR|AL9^qm~jhsE8v5cQ_0Nsbn>jEy+bMWD2u=C|L8Q+&AjFgojxzL!kB_Fdwsyn`YGNV(BFip1xmLm{XNvd_6oJa#Xl;Y9?@w3& z0bof95@Tuv=4M`g>B5BxtCHFaF?FuUt^ptG*}wlhb_nJY6wtTcg@%4cKq?VAkvuRY zO2-lClTCP#4r5&GpFhE#Mm3d&S?vOG_jBh?&$^MLRa^H~D>5Q-zl7FuRS1<* z?Apx3*C4mWNGMJ%idm7Tke?rKw5d;1)Fx+Po*S|J%{QncXz?5*1h=g>8TzF$|8o`3 zK-`cb$xF#6*eD+3O`&z37(xs!75jAAluZ?RQzard>*NAg z3D5fV_R-cM{$2u@1|Ae`KUuyLV(pOE^aq$3SaI@O6Y|oUl$U^bQ=dLmYR@YC$2;%W zP={Qza`!;FnYA(=z(+~*{UK@jc+23i-}eUWJ^S zEeR*Hs*|lX>?>va2TiKh17{N2X3g4R)hkesh-nd5%~FJm--P$UsCK|dr}+G|SPAkh z2|dMEJflnMg9qW>&m$DiM<-m_?+C!eW57ca?uF{HiksZ;={t(eHI%9Nd-Eba;0KiF z{{TsM$ZWkz^Zv`+F%BCq$LR(8`%C0{2L9ip5`pM*MPeIOnEt$q0!t!TI2tG%Zqu=n zY_I26hidj$QMvxrlr6kET$+GyJVFj9CZ{}nxH;z#FoW*ciJiUnFLlGvB)nzlT=vGh7Q%o1^`Ka{RLishHd%&Ylc*Gz*ckH zY;sGoVP0Q7W0y8j9r@<#4HK@R`xL(WFE(;}0UUbyFZigWQE~kEaV6sWJ*PKKkq~BW zZ&(Z}ONS9jWQI=}MKUL7nGZ=cl%2iJ=$I?n_ zx3>?nI@pk@R)Q8mS{b{RiN`opck@vmL!>-+-M>J+y6NJ@i<{7%7**a2`pUF#-aMH* zC)~Ig^x!!{*iA88mdAvsd}aIL_IO9}H6}tNDr0 z2D}RfxM5!#I7f%GR?x%KK0cluVP1?8Z4GmRBM(Qhc0~Lmmqj->K4tFdM23~L5&@!- zy9*=~g=E2p^r$ZSkTdb*f=)6D2dO#eheWc=u#k>YQUZ)%3(XG9n8=K5rKsgH0MU9) zGe(2#pm+~3zSb=SVlD%RR zMtFq9XVa%sTe;s>K=L|;e@BtYD$^fDnEX@*!$i6wLFn1HuR7T^i1%>K^+Bb>!P!RW zucp|S^+N!*k~@y#Bu61=wiP%0ej&Tzs-(tlt2?&sIv))>`f7rKdiLt2d&%BnmC7~_ z>2qv);WYiK+yVf94{V&P*0nGh`9J!s55XrD$!)4I_}ZAYC>;K_*I>O>&i(V=*M>FM zTvk4}-+hnCOf|h#vG43YIZib>7ZvIl9sPbq;KhI>d%Lt1`nnxDyLqe4xAjx1RPNYE zY2=`Qq_*R)Uw>R+aOaa#-_df76`g~PVkRr5FAY6>-7LZ|?qfhwg3$(_Lc8_B8kUlW zQdVE$bvsyXaJcFJ((dl;%2|`fIq=&`uWeD(sZ@HJKHKxsOdpplzR_l7}Gg^{0JL|F|9st)*quP*W~h|JbPCQmB10>D|^kk<08rj$$#H>8~?nS z+e^5*kta=Ax?l{wbeoQS-m{`07FW;Dg9bQ86rOo?nY4!*FX9db3CTXMFzyl#AZ}3r z9Klauyg~7XB+}4ovZa+_&+GrIrrX_Qc}?X3kw}EOO^oERugJp+%;>O>D5Ft2N zRkb9q8c_DrVAP0ewsL{L{V~ZvcYl84cGEwWNAncj#x@Q5eoDY^6L&%~L# zHToAE+SWGp@|M*8`O9Qu&ZRb_W?Xq+`0&=LQ3^d0hXjus! zo-uCQeYr)$>|=`t4OnPUEZy#L?9Rc>dhedK>o<8oqs<<`o6mMt#SO1Z_6IB9jJmvi zRKT)V&mHoOH@!D&ELMyks1(%4_N3F<>Q{v=EG->yxAL%bg<3}_Idh& z#^c!-o9wU)R?f~)qGUBNoD|Xp(2eU6>7nINi`lbg4Y-@}Zu9?Z>s)$nVW+>e06(%}VS+tENgfKh)1r~gMB78WQ zrWjs{^{&f}`Qze~nAbko%UO=_Z^iyMozI2^Z~M%Ce;VhQQaz$iZ@q1uCli>i(=hBi zOghU2Ex(A46tE5IfAdim7()anMztW)SOJNjUA)8R*;stPeL;gR^#mn{=mHQNzIx;# z<7I2nrGVqY@?k!8Dj^ZS;J^_ni_ALPoBR9m z;~xm`@6o;cc8un0ZPjkohf~7PtVrc1RYX?yaym zx07sneONu<7YCa@y?eL0A?z@l=J?bY@X-I{A?gFO1OE74yLL^#rjTp|V3aNJZZgs9 zzTN!$oacQr*S}_>Cw$dJ40~W|ReVoH#or+!xDxt6^Q2O`CehWQ3AllphiOoV{e>Ey zm#SBkOJ#_{J2$~)OE}fhdxZG83G3VcMsfj{Qp%BG^O4wx<|njm+qUK7K!b6RzbQ0& zfo1A+0O;%Oi@pB$4RVJu|Di#~9p!)f)nMA)Cl7C8Q2vQCS6cxDk^ zui}8YAHlHK6Vc1;rV%I&Q4k5?aI&L)i%T67&?~3cHd9~(W^BDLiq|s-pT~O=E%7AI zvD&B+xsZSUvTt2m(y}si*21=f>)ne5Ai`i#28f^|SRN5`ii#36J=(rpnvFed%$Ux8 zX@vB3pbNR8cNzz{@g_wS7v%F%MvNRYMx+$Mrul#vAs(88Zl^o`cN9p% z7Uto6YDbW+7ladI44}zvYku4I@ozv00z&5t|Q|xueHTG5)n@AZ+n?f~M z@^DqCFsuokA0|@khWf0;rZ?|B`+t9?HpV1ojncm&Y*~@NnuAuH-TI+}1T`}_1SyWz zqbl>FC-GHU`u~?M_`fIv)JOMmf2u&QB@FhY2c3r&r*$QWN92`;#C?#Gz_;%R+D7&a zm-+RWm@tx6(Ua}g55(3=THzyTY=}Q0fzuwRiSm`4(XU=MW?q{xOr3NMz31eDF!e=?cZNeH2&t`V~_UI}W z0>KB>p0aDw=aaC;1HGnydcIQ2*K#Us?W}xw*NS>gvMqG29zQwNOD?`<7Oa}(Z3>aYP-CSczKb=`#TvU|PN2WA4D&)44AR53Zx;#+#kbW~h zn21G?Eiuvs=11U--$?t*`oMVtJ7QHrm2UQEOtfoSI*Rrd6Or9@D;5^=4?<1A9m=)# zi)8oM+#KbK8XdrG7-BJvP~XN=p-Sy` z-S)>OYsJ9MOBaWIvVRb?(+Dk?TXIqfrbohtR76;mFp5$8wfdSCE>iF~zNc6|UGgE~ zk3U+w@v>f3R#slKk!YTpd^uEWHgTZhCKKT;ZX(qS2tP|Eocd zxV)85(v=*7ho<%jl?We>_Q^ln7>1j62KO658BDwQm}WS}KL0YWMcDB;H+J7&WBxeO zMsVZ2)}hQ$#7>ai=L9FlMu)?5GXE+l@_N!P?MX9h{nN;i_gAWvo?m;&GUwX;7pu$w z7bDXGGA|Dh!4-7#wYwH4!!F)!Ryn)_EdE1GU1Xf{i7&NKfZL#OV_f zUn`A1*yk4qp!c!E{(;`>T6?Go5unr!YBj6HvUz0yilBhW>y-g3ah+z5`8RG_+t9H6 z^9==sY#k^s5H}cdRojCiZ9|bkKRwh(i7Fz*kAK2 z__NUL`!48Kckut7X0~nWBBRjB4LLw|AE#DAcc`kGpz+ZAfyIM06DKfh1*8ZdO3?1d zG-bnw!V#c+x`CR)s>72U0Gytn6O%K65 z3zfG%)mGaZAl|0VVUd#7M^%6XOkyCK$-cFGK@aI)Lcsz7sTd#kJkUe8P_fRmq7~tkP^U+SL^r^K@^V^&X4$@?WOwfODK8IzzZ0Bzu%oIfN(OtOuJh7>JJhT84SJ@VUQNomFXB``yT3dHhFKp_CbwufkNpWLAPnRO+v2I&xz~G) zI+%9Oo};LHptG7{U#XDa1N%%*ymnB^UCF^0S-{fKaiR&9j8nO@HluiOT+fH59Y=&^ zOf78Da$5eM*Ntdft+$(ex$77J{ve(YKh!C*vSq}M|;A#_^n;OhRqOj>_KJAMo`9HJ02K@(G1`(;7%)YqG z8kq`SL~DyBOGuKqSvEQtRL+dzX4l|ej1a@(bB|WLV&R|G`0?qq_cvOV*lT>ldaJzO zFqUw^f=-}N@|gr2drXX}*>)BBQVfNm#niR>yq9=PurnYxJ(KBJpU7c(j=pp_Y$5`p z{wuM_oIf%;?7IuP+sojm*VZo<1P38He)a|x^Fa^A2t3l6#e`EtV>2P2h)_d$`-CBz z=$6D#Zqsn5pJ}ve5(y>~tpgJaj|0lVaP1(Pl=2yYO7qN1Pl48M0;Z%_ zP|DwG97d6J~(Qxn;#2{J;G?yS| zpk#4yW|ZL2oP>1OD9YM{29!hqj@ySXw&gp0A*Fsxb&6t#E?uZpAG7j+J7>?ClQFdc zyNxFUr-YoD7*Vot*y1f#U{jRDLEOEq$>@8v_QQvlw8@b*!k_8%1EpT0PdGa;mm?!D zX!ga}b%cW$V3`vuW}=8BCaSn<`h!rQ3t<4YwG|Zs{fBV-5ajMvZ_g9~I3sFmJ$J{K zNgYIwa^OHy)LZhqqqkgm8O(heZ~x&4mF& zOSsHRHHSiI13!%5%vrR#u!zBnOh_K$!-_!bbLY+p1?rI_$#>))JZO%Z8+2Y)WOGNh z4%9=x%_9Ikvc)U^m7Z>9dw{{K(P~4x2}pwh^uVtai&I(AGXjGK6lVZ%BgB0uR1tJM z`~nexK43tn8*l?q#W&YX%vL$Bee!jifMK32)x0IJiQh?+Br9dsD$1zQ(7}x6*@ZUQ z7VLs+aW)DI^z+mwp$N@c!*{7~=gprF)-On03R{cbq?J8Bp4Yi!$DxRNFeD=;6k~1( zZ(8>GT315q586Yuq8syCIDd zXXt)X0tdP=kwAA|PC*%ag4A6R)ri(nv`6olg&edMMRDYuH&+@~DtO=j^Uvqe#b^A; z(O|TJumQxDpH+4^gqQdPzi<<=`806X!N&NqZA3m8FjaPm=l@Id$s1nEj9zwWj>kF$ zZ^4sjPyH;OoRjE2gM58&)J~qla44iKf%(I}ms=Wwe`Rc(;9rL=B5huzExRS}dd{c* z7d5)>Jb$Hdri2Lb*^>($+jSj;^Q1L^Iw*?h{H8a3Vh+@u^)jdk&`Z5%%p6SbVpQYb z2-qVKWNq9?!@sFN{a+YZX3EV9%s7uMq^@oqtM^lVy$Ei#w~x#h6fE~4@x3DYn3aO^ zyu}8b+GL))Yh8LpQ6%)#C>luh;Zy*16Ot8XH{inw%iZ>W=sJBEF7%3*_C}b%ft0jQra{2r*w2_UFrr;{r9Uk7xCWL-)u6E@)y(K@koipAn z4U_-hwVfnf%*SBN@p(;oa1b%H|KqN+2Dqx%jf%~EBfJhD76Gd?7b~5uKxakU8I>Q&)tWoh{mOnNk?+b- zSKU~dZy$4?^W53L^bgvvNu50E#|S#EKL37#QQvoRRPE2^tey?u<7(gmbaW(TkbUwgWdF-`D07y{+wHz7x&0xs)}fLi~lJt{`a)01P->vfYb)>Zz5@n z_`y-9#;Q@Vt8BJU`hROi1+4*KGM|Q#t;gW3$BC}4biw@zHhU_FQ&AOC-2v~yQk!L7>F?TDy1a#u zj0g(#GtUmk0N41gkdSdy<9^77IFgC~d;r(|bsi4sr9ymXR}g~NPDG~y0?a4Nh9Dsz zM+6-8%pyHVo#pNqOI0l@jJGc9u?46%*m1vM^{no$9(4aVq)i^KTh@Ju?bw+q*f= z_p(7xqjsPC`xGkesIh(uI)*HU0%|4oA60rzQMwO7PskP5zzB7T>e{7?kU9xspZoM# zk0{^+G(Z74(_(qGyoOMeEEMWf2-s$yqi2SR?gWH82RsQm8iEmhna;*CuueiYBuH(h z%n)cc8yOzf5)>j6QUAon%QQ_B{#0P`CFGYZtpP2p^P_-}jj~{r%0htXPogy3*d)n`aEW6ZdbC#G*`=Opw z;S8Ug{8nFFs3t$z{yq3hoH|J=Ka7SDzha~3Kf@=!9ZG&{4$F(vN&H=18v;o0topiq zlDCZDpCon`Y~t5H`St(ob3QgL?7I!`uYcg4GqBsOlRzT)tH4q4(|5xRrYyZ&M@+Q+ zm2R8VBa~}}X`dW+A`yYD+_-W5X-{_=EkcPw$Zs=DZv8T}$0J9!xUpjVWDQsANHUTo zB5w3;sI|RfT&1*AAsJ|{=W(`i1rMyx&&UG*xsR%rPKA2s@{_%HRg24X8p8WjJPeK6 zwudtqU8+<3pq)22+^dTMgU6vK5x?8k*5ZA?y5y-2Bl0}5PR71Cy*SsVUfNkPq1gK3 zT{|`LwLBJdpVbDgLl1|b`Ww1c`v-KT&2l*Bq*gR=3M9LaOYldbDQ`HPlfVm1RlVMo zk)nE|z@NOIz=X-UK)zueT_im^;nYLZaANrUfdDmx3;W2iV}GEJGOh%!#-y7T`E_Ez9f8!2J0q4KWt+@_HwfM|jZiNy zSgALVkq6SuHgCye@W7_rstl##ian2vC?4) z>k+R7GAGIiA(jDeeiK9X))E0M~IWKoSYjkt1|nr0)X{_kdP3XsXb@5ewZf$Y7cmNdba$!004_G zakso-d1{X}iSx&^ntP;|Q@jcB$o>vr2tmj_R0&gj3|966$SWlN@?(G=3tAjQIQ2}^ zIP$5S=OR=AtLA?gHhg$yY)XzCnf1f^ zDQ|x3`&HPz!y3##8TDze87Gw;f*Do6PPsx%1h?!E26LINoN$Tqr5pv*>~)A{O0CEMtMyG2JVW`uI+5LE+Vvv*YWGb>w;)(!^c~ibrl_ zB$Bg_@l!@(=%)TMIL5D%B}7G={dWxNLJqy}RTs5sRY^U`DGqknD*tF|#AQbxorcqk zkLG0cmk$XwPbls+r}6s&Ruv0)N=%E-41zl^Nk%0Vxb;GrX{NXD*Se<(sF)8ZV-u$n z1dXshQbyv;=)c}GPy?)te-$X?c~ZWJ1cptYURdko=omdFyJf9<>XJH@;lnQ$R29-! zw9zJ&obUjPLGXI$20EG=v#J(rA*FriUkA~?sKUXb)$+RE)&q05_4aHs0qPz32E zm&{M8^T}zjt~@<%H{x>f7@v0@`y4jwxB9w zT5)>Q6}{?b#z&>WsKSl6F=eieHYB!DP#IX<-j=cq#nq3;OLcx)^}|V0z5`UZUQf+6 zs&kSdR*j0FCNhhDYHCE1c@s}bUG6y%rxt+dX+)dbq5 zCLA~SiAq5yTu`M#-p}38LwTDf-$FyuMlMll>0ohA5P%qv)A@v5!hGkB9rCYloZX@q zQPZ)xMxOD0A9Ai9dcUz&nK6!+Tgp$t^8^W?L`fteYVe#ik|_YTQekOviWIp7+P!~7{z=oot+!kb8PPM-+ylf@VPkT z8GmdIKUXNKnFlRlm)*t_Qu<}_-~;D%>nl?}I=Of?7bJgn4jr`f^ZVM`w$E7vT}n|e zzAP<$fQ$sqL4d<(XKs9f$B3*^Qu{<+DlH5HDW3RlEYqoWX;)GaJ4u8_3?DAi6`aTk z29skE-NpbSL|8&ve(F@oN0nCxN#X1x0>X zI6%F@Kh2E(gD`ddhI~WU!N^`}4s^!cB0;$4pH<5NE}X{&RX*z<+G>?s4DfgL2`$z- z{r3|~EUvg)dQfb!it!nX9=uE_GTZe4FtPWIcX@8;Kc#$u#j=!}=upcJo!9O)XTOJs zoFs9Vt;^M`N%a32WbZJy#)91kaurFV> zw$bM6>Qsuk$%`d#;43#7Rf@4T{P+E@9lE~W-|J!!v#HLr8E+`;7{leJpV`mPz2bPC z&-uK17YBt??@jx-&k?hLyeMiXKl2Zx2N~)10ppgQWB%s|-5KJ3DYJG)0M$mD85p`D z&kmfgV3Vv1I(4rJnAhGZFUZ9V>NX+_D^?qUeCmroBTLfzk(TMDql*8Z=B_*t%Jpqe zX;p_h?MREMlY2_cN-*eR)go$5qoq=is%+HBeP=v1QYOO`Q|LFRlckDZDSK609ru5f1qo0TKu zaoOJdmmfbJR~viXvVH!qJk)DO+g2~w@z2_u^BXizKd#zF4~h4!ynAMeQntbtgBM1x zPrT$?@@k$!(@YI{Y=Uy@O{#L(EO?#N1?ri&Z=Tt;mQt!&5$D5bIFPuFKD z=LwB}F+BCL4H?g1M}_)!o`&Ju;B2hl`6_O0_KBgMe0EG|m4Q!p`^$t8{*`jFF3tH1 z$p8@yxmq>k)p-j*4}L!?Ze`JmE#KHa&Menz4KH#!?Rt7hkoVl$4nlBib&c-FI$1o> zm@JpdMrKxonVnuCQ}5Xts>uLLk7fietwfmD{ivua+?IYVmv<8iy!XVV4M}BC1mI*LYA#wnP z$T)T6EA|z){Hwe{K*`1W4>jK*whtP5j#6&{$$Aq52!i2gB_lt4{tB{yG6^xoE$toe z9TonRygD3lfPkrGyx#|sAiC!$9Z95?@v-jlLu{U-*+_S370>m0wbK2jh}PvD>!M;t z8)O$>>avouv%xr>VpJnO`Uzw8{s5jQazBO}tsQ40meY*&2@46a1<}B9M1}VF?}`;Y zuJCLsD=TmBO_6jPRAip2uB#t-W?G77!5x>)Fu^<>SPCh)G%~>RNR@x>9WemAoiJe( z2?TO%=u}nx%!|6Opmi(TLNMYI^(=GZ8j_x~UNoWw12S2P7WVNiDBjA#6}oUc)sW!{ zNI{7hvqiOfPxKM)F4*Shr8v;Ca`NhY9Lz_uS5hcXu1wn;U6bk%4(llc3jV)5-<_Ua z=r7-3t%Rb~C!W&4-Kw>pB>Ru3>FDapf#Jb6s1<|fk0ZU|{hHsrKNS?cq-QBv+btVP z5rPCqa(l_vAOwPNuETf6AqGlG>w-vBSqp-(`b%^#&uR7M=XUIvf7a}POW)jH`HMrD zBZiFRS8sw82qZ_ReDQX_XYH=WJX%rPGr|st`&`}FmG*&e5#RY;CMG5k^K@miT(MpH zVTmy(W5q{JY@L~)iMWXaM|PwaaL6LGNR?Z&kBl}g(_|osw3Yd$B8bD!rf+;q4=BKl z&>q_cwf}UUj1BXzRxtmZU7U0d?_=nV43AU(n1_@%;H^xdm>QmuEV}K#>PciuiUA6R z!)WxY!i=&0?nbo)J2>X;03DH9Vn5QC`pyX5`e6@kfF-U2g*pJZk5DuCZOxi(fK>xr zbJm63Uv1l*A7JGg|4#~aF>f0@@oH#tG%8aDu!#E-JC-b6Dkd*)h(4GIboa#PpVL0{ z9JtYBRJ`b{41IJ?$B}($a%MxR``{M0V;uXw)eEc#wy%x(h;ry#Fdc|26S`<%U^JS2 z$zV{>K5biaa`G_3TjBJYs|0*lm+hU3M$cG4dbGOYqM|BL0`4O?tAvDoCK)d10}XV6 zo4!#+C0jp%`LC*BNnT@eO3Fz(J!a{q19uRtU|Rc5G~K=hA*T!4BIJimMj`uaM-JOc zR2d8?GV5M<_{9v$ z)Atgo91XSAiIYaCl(PKGztVn^dvltUgL%(wm&!x#pkQGCMKG@Ig^=6}-fLnKgD7(6 zz6ky%3CHwI>bd7fhfb*44y6n#hCss_2Gp|;WEEFBe`Wi3#7P%j{MdcFvw8)EQaZf+ z%XA9o<*Vg%bAH`cbHC}QDMOc!F^f}KD;<9s$yA9QymB81NLxVD)I8WgH|;{8a{1DU zjLcf7%z)&qyP0d@}9e5gU4W=4j{8#hQPCr*vYQAM~}*o*N8?!ppAsHs4)x) z7o>zbWGcTC7;yJC?slj^uB0E>L9MY-*m@nr1OlojzHM9;a`oyR)C1e&UkUF=VA0ys z)@A9Aoz<)f+wxq6Frx=pbY*nJTHe4*>+*USZ2N>!Kzne~0?(K~xQDZF2s|qiRWt67 zwfuu!a!IWYWwVOt4w;#qql-ej()Spl>1SfcYs$Vk@~xhQPT}>mU?o?Z#5eQi&09yq z$xw*{vf9Ga-aeLk9IkG&wiZyhGHIBkwo11-v?2?NPL5trc@dL=-dm#m8t+TO5ecX zJ{-D3=!f2e05A!;7U^Nn!&tuE?%u50MppemN+z>dtxV*~R{H-VdfC@YCvK3 zW;28YZjWPP^hFoj{Hd!>dtF$lhe47kTgq6M-dX>K=d^FJVyh4m0AkDMGr9vfA}kM# zx{`@o?J)rv>#O)^al4i0My8u8%RHoL%;&Z(^XZx!gNjhA)z=lyER(DTA6I8>q83b# z_O4y@r0A?HV+{W489E`b#Z*1 z55~-aU(&NmWEbrH==4s0uR`?33vo5)g37F{3+ae#$?t)SLSU zt8Ye(v-gNbg2Xj+V93wNw$xHOyvyEgHihE0<()<$%Z*9Li1SBi-CwB4e}}rld~NG| z+qNuU2C$%;Xyt$tYd<~D(HNh5sM#9{D%BKXZw70QCFYEulAw<)!gJBe0o@k)Jq2Vo zZNav&7u)u}l`~~Kx)pIfY`q@q?03YP>XqJGiSt8X$bQankyj4Po zkCd?mY3pTWtKi%9sNg{w-Q06!KX(tLHROnsS&0D_q|nLL64Ti{hYygxa4l7fFpm(a zW7-j}{K8wUNkgeLhFIh)0T8mT@hrB1?mpZ2`I!Bc4mR^|9P?fuXRGdtxHk#<`DApe3~$mE?8nWiidLH6{*{DuFkb^e_G^Tqqn!axT0grK4ONg3GE z6o(>H-RCum}n0%qUW8i z?zi4B8{FKPLmRw+(Fsx6_f7A|Yktw@qeyN<-d|?&gVs0o3F0p3rUD z8@vfTib2$v!`XG1iwvcS%Y0+pFk$od+SoisbB)nQD^GE*fPJ%5n?`Yb2A_mVL!tGd~T32`I-1ap?Cw7g~F{yDs zEE;gs<#6qSH}TJyuGD(lnb;N6EuU`v{FK@XLI(Q!L64)Nf`Wq|BRom+(ljc1kQu_7 zMp3tOoUxhmLLE^Al?IEs>w3_Q8^jw^4d0E@q4mI5G}d0H!gcffc`L+00`3dW%7^F^ zIc8}ormSoPhVK9>VbmKga`1_OqhL^E_ZwHP#ED$-^tZZh+PLv}f*lf>j7U&(h;Do| zv_AqZZxdG1>*t>-8bW>rsglj&2cD?k-Se=Z2i6gA6%Aze-=g~~+~5s;9#_k92lN{# zxidlkb3eesKBMiv=HU6~M=Ow+6Dc5r@5EKda5zgd3Xx{*`k&%}Y%Cf33dg;qL>|Cg zx%ZAW;QSIux2r$w$~ z6CJ!B{%=)0zTEL_xn)&|_6iZwV_X^dlV~~sZVh!qCcwYT!M+soaEy9OM`sMTG4mqIs9^iUHH5^P20S{nOD_Do!Z=`2+(%n-- zkHn#RsmYjoZae4FmVT1ZY%(oVW76UKY(2)ih~oQjIcCcMuNR@d`VJgaG5Gkkmk4ZU zFT@7z4P0C6q4bl^_hSm^$H5WU&Igz?8S27<0Kmh8u};gMkYeAJ^F5~Jo&m%i^So2i zvH%nE8mP7UAo0_csd7sFh0rm6s=tJOg zm>~l^FqADhEv&J-8c_$8hJ5yvLtaA+FokmA3;~Mb4+a_<=K$S{K?|HMf-&Cn&k?X- zDD`Kw1l#sigpbKgt-aQyrc)^DTcz@>(WfgWDyq=tCC_pRBs1gohe=oI zaP^4TXMFG)6x9}pEH7mDlbk+iV)n)#078{PhGkI${$+&})qc{XEl|et;E6;L$sl+M z1)FG$(3;~vnq*w@-n)9|k{~=JV6sQp%^TF5#JJM!7$A!etmZ}4bRDfO%QNx&K`b(H zG8S_r=P>NEF8sp@xxV~v zCg(2DZ2kcAlO969+mU$iuWv*X3_OtJZ)vF6d8u+Qn>5PHk1xFQBhe`|-ZF3m5I~_p zt}Qq_d23%r*x;xrJ+21E9{aG8A0!6f#w#}>Eni^bEyZIow17gn^Gh0X|E?V|sY=`c zjb_x4<2^ zSzud!(>wKK&YUoE?-#%`v>AkQsU31TJ-IAZuw4j-=0$6Ov$xJPRWdHeFGboh zC@f4^QM<=VZR8fU4QEa@9>yWYBvbCsM)2)^Sj&|=;xTq^Ap83w0%<2(BxA7j`c6*q z=#Ubn34o!w0kd>8JKWmJH84onzgT6ko@=S59xi`*1O!|R`}*g!Xc#nP7IjIX93v|3 zfrsiKze?X#l#-gbIvD?wV`%WJl&ybH>_6W6YOSmFAt?plc|a3JA$1s)l%)6G@c_{^ zjb$d0=qG=1a?%c)O|F#&>NCL#PWMojt^C|WqS+wB!)5x0CQID8Hb%U7LOKf&Ccv8f zCqEp>YZvr$qb5s3H*Y!W-Xd?pyt@=xCkI(hfxF$6Yw2rNVM%V1g(+<(^vog!JEd~q zNMoR~YoIG0%nao&frD}2WSkNVEi)iPw-w$mAkQEoeB#SCq@ipOXLz9v5bjEyMJU`0 zlT++|=8 z*6@j30Y!Nt3$vGyd8}0N(tBpQ2Z!AQV>P79@CFM0{o<<3-MBdAf)>(gH>gAGvHh`v zb7oL!DC1n3Ix)Cs0D%fHB7vfPf34%`aC;OZlJEsO1x)^~&ga7)ejyjz4Yy(x*nN3M zAsU-@ZCP%Ypewpq3Qb?Z0TvQyU$U(JYQ{Z0-wAQd{bF=B6QW9B=FTAgx)u;{7ljc7 z&D*qh?koi!xIa(O;UOG121%ej0^*=(EE?fmL9251=EmAWV)h(WUp}BvW^bbH*rqp) z!Z|dFMf1SiJ{Q#ElU|p=M+C5hVKwCx#J$B0t1mXjSOC<745CJ(r4|1!x174UIYh6? z>x<|ZZRx~Y2q;G>$^UsQZsjO*aXDJH^o)#{Vrt}E40}E4elnjaat@HhYYYYkQDqnm z9kl8hsOSDb9pA*MP+X22(GtG%A@xTN9C!#6x2O=GEn0d6Fr~9tZTtk%ZzKc<#J&vE zVW~7&ATNv{RJp-T5B+c$V2<+j#%@FS^k7;GHi?76z~|FP8iGV`q`L9l&|Zorvc)m9 z;Ilb-D8Yhu>32C=J1aAFA|r!Qq)5883{Ayj3nzBV*riN^_~*cJAz1V(cm4e?`p_?j ztHeBhtc|i=7+gQ%e@|_K0v!0ob7trn8ZKLLFZsoCk?@iYn38L{h`U`xolR*sE;G%N5fku=a=hLMQ1Q4jenD`5S=%2db z$zu%^Emy(HN7BX}|IXW73Be2s35i1ECvD%B<(0UOEVy&Yp$(g7c<|t@V&(3wB~$k` z>5~AmKqH#c*nOq`#;sc$@dPmNT3tFiIu!_FWD(@26-;jZXQ#hs;aOH|OFaE%hO_QC z3bDZa2a+>r$6t1!sxBqGGx&?fvF}G${Huu-p8uccM>`vHj^NKw0FaztM{;^o_-46R z#x)#aC$Y^Ij_i>YyV4X+CtHbEZp7sAoZEq#5@a$8Ey71qS#CxVBf8aiP?ex5so}`6 z<8^TLJ-8u2Db-#3)`L2z*Js=k}(!jR{h$_3tBCl1&jY=86MNa&lNgvjI5 z-ShbODmY9~G98fN1e7exl#ZNGeB(8$kzB@=!S--m;!^xiy)wA@EiA~EUG z;_&=!-8u~%pT!@!PTJEbfZUX5sIuWQ zW5;cO+PueAl@~>cG;OBj1DQdh!l0^^hN3 zksmBQ$Hya|_#(zSf%DA5BAd KN9=afGyeq)#4jiS literal 108298 zcmeFZcTiPZ_bqtTYYvzY6$JyRAc!bA8p%lk2@(VZCFdMX7*G);NLG=YC1;eRM2UwC zisURg_t@(Fe(#U>UUye@_v`BFQ*}$Oa?aU%t-0nLbBrrKdC%XUNpr4iS^oa4xOctU-yaiCZOQrf zx3BHBS@Y-Tg7>G!*Z%p@(&^)>d&7qxjV#0 zh9BA(O%Wd@?tY+eslxBPUS0T$)}iIu&IFF%pLcJsfz?`4m-JSuGxd3ni&G5>>R)xb zjTK2UdnhR>8CY3s3{`b>!bO{jW$1msu;y)vsEEk7R^xm_tAl@*M*ihm78gC^ss0)< zDXAHok+w`(^S&y15s@dQ0_SxqB5S$#^;HJ+c}UC1$aojWFygLAZ|U0l@NStp)~oAW z^b&C4dNuDKl`iaKR_-r5olyVn-Q|WPE#Y*-fq?;hYNNKV>J57ChPaywmP3tko_Xt{ za9<>^hl_{sDSABEU8aP~k9RDzk2ys*FPNsEa^e_T5jE*W6aRj?-AQmgc3oTs8Z z-X<)mvwuVA_Is<7pElC=&*rb@k_{>Nr(WS#Pl)o^O+_ALyL;s6pAQxYze|!iJ~h_a zsii6;8(+F7Q?x7*EKXW^crLRT(=!~Po-vaaU%r{6MM&xVmEf9 zHm-EvbcUk~vttRbUhO2u+)Ou$H~jkbYu4(@qI|xSBePnLqC4NOCpTO1&tYLzLL*5E%HI75IX{@a~<$J~cR77Q)E zKkDnxTO55&H`1A}p5A8WcK^Wx?ex}$3{$NaH2lic90n$>odXtwb<%J*QQ&EuCEEeVSf${rdHGizDd`3F?AZg@mFt3SAHK+okN@y*v7L z%j*m3>uQbrj7C~g{kcrvx1<{(cS<7_xf`fMkgkoO*L%2AsZouZ_O?nR`|8LydN>MPlt4Y z-SgF}TOwxm{3~%UYH1_V>XE#!Mc3Ws-;K`ZxTRQ*`S}nzF5p zpDxQi6r7wTTi)L9x@*_2?~P8wO-UucddkH|%!{7v61sNH!?d^JK&U=Bo<7Z->yXf; zOZSB(h-CD(hS|_G5F;YHDefKj%e= z9%o@msLy+Om{(^CZ>q>M;0R!KUU3MGjEt;bVKmE+tPm((vfNQ-U$s1uIbpRrIU^=1 z8E4{Dykx7E8x(>hqg5YyEo^4_+hq!G|4_lPJ6POA0UXF^O7*Qd>FrhlrB1Es#@71D zIJsuaT63StE^F51tQ^lix4uI)+sbx$5leTlxw%~(1?Z!=ce5y-Z7nzwo=)R)P>BR$I{eq zlc*sT{Mtdo*S}yl{|F~|WT6=cZKla^!I&`CB;k>c321U{~*r z+fiiOp6{IRb4FD;KFxWdE+nV-NA)5rQ4KaFpROR895p^}-}$ohXx9PE)9=l~r0y{?yde?#0DE!PS9%*(fVUttTbkbk&*KxN&QI{>OcnKE6;W z=0;pw3%g-UeO%?c%a8dM?B>2d<`?oYY|m=Yde|bbpxWc%Y&&<}*;!rK^*i_d^tqNf zM8J!j96lldOI){8KaY$&mC&~wY(L8Sl7?Sz@7}%p{rvn&P{R3JQuN7H%;D*~a*7j@ zv`VvtmU{d8sMQ@N9+8{y#lP(Mv{nC{b(>|L#hb>tJywT5gohtI%wsWr*Ltv?AwAEP zf_Ahf+_*EZy$;jNgedi8!h|@w8*`tukc~9}*I6nlKC3m`GOHN)+ znqg~i-2vrB39md6eM9Ax};5N@4WY_ySlVw6v>E`CX{UF<^iI~cA zALhv?0dL;)ryA-m`Q_&)94{PK>&i`hD_7AvwU*y*YTT|p)wr|cc=c9qxvs-FCFDc1 zW1V9)X^2s^Rv$}AKhy1W^z^n<=M7uf5)Ak3*~8!BguRO&iI58V)zlHM%6nW;uv6c8 zb-vm;XW!49sQ%^8WXC1P9c4Uy^2m_Z_tK-QV$vs*&3eQV9PJj@b$-+?Z)=&GbONq+ z@qfT@kW|lA7a^_SPQ%~UC>h9AGi@<_|Nhz_L1(p3pFSBGZY%tTvT8Zn#_c}6vX_=N z;dDYy?NC~8Wk8Hn5RcIihe1=(N*S+3*Y>lx1X*R)txVAH9%Y+qZ6= zRJ2Bg9e8>&_*-M#O>Zorvhz?}`rzC|w^4#}s$OQ=YB%kw$x~o9Z~Dl_{9W69PT*L*C%x6#=pmtkv3IZ$;j79)k6vS zqth{qo>SSK%Tm~WtDCb`yklOAfnHYmxq#!r;?tby==y)-nV zmcb&Li_e@5l@uQpN*wB zsbM&XA!dLCFHkhw8+&?s2Ac1LG!Xv+a6#ni$==GknUU7^XBt#xU%%F%je2JtE! zJ$h74{RK7WOn;&8{HtZ}{Jn36zT7k=(;Al70^9;I!ey6c zm7mFuEt(+^dH(9MFEt^5(;aFmT{C^l+mH>}g-x0zNpJ0jYC<0)tAuafb0QM^0noq`wD9w_ zG@E&Eg&BWfG-HZE^T!Gf>o(KJYIXzkWHSJYXV0DiesCCf3@bY?Pm^OD7iWwXM>}$F zlGW_v&~vmmsw=*YK9$`bZ=5$TL{>3>A*>PEgq28jT(nAW3wHP=s){$pTXxJ?@&r-Z zDUz|u-wQEMlhdGSeP8FVQ3)g@30o|G$V*~)xVA0b(3&Y9P zYz}kdyYs754cfCT51zf{LSxr|G`%}AwyjMiWM)!$#WOWN^ckbBoCd4$`kH4>jvcZ3 zT|f9PU%KS*a;%(nt~+;<>U`BbN&(IrJP9jVzwe;;_Z=j}ewMY(Sy>oTPS$zRniVA* zp|>zKpx2TTb@RDrugW$roMYVrmo;J{A|`RIIkw3+Um^|4;4=q$mVc!MIsb46!2YDN;6~cB6(%Molt12nIy2ndZ5gtD>%M**9{F^m z_PqxV3?w-s+0&S3`*=T4nip@(ddaAVdLL#q%b}N?A{cF>)yTe+imERS>!5MK^?O}z z80xiAIjR-fQJvDPN9I=mf4i?O+sZrM7G;xQ;}+P3zrUwPrg$*amn?yf-G%bq>Q5v%XtA0wwB z<0`!4dFAj`{bPrv+%CbT@dxM5pBHD6aYVAG89H<3nRjul{#ztgq?eT*Hk`nCiok0z9&HAS~Ob%e9iVb2q0=iOTK ztUGM)gqa=SFnIH8a#FP%_g@dJ-rjOWSXh6&>(gLsdcynA(DpP+!Jj8joe~KZdQl5J z+t)Jl{V}cG&znrAPm6Ee$29&W45=pkr*ZL6G-o55i7ovCfo8R)Tej#5KlRrxI1CbirNRdKl3Ac$FB>*$$)GoU|e3&tP zVE1m#;m-WdxJn=9n*`u-pL=~m@>l;Dipu2OJ_{cH7FEjzc_Tv}i+-8Wz@dhizFnbn zmWVTj?EClc?`{=6_c1wH{Q0%u?)`i=iLF)vl{)B?3PV{U>U5cuJ{E=Mqljg+Ahi{1 zEg~46WAoGVs)G6TRm>~djYbabcx;N8H_LaH_xOz#&OS$fnr?;TGu>jeI5R@y7_Xk+ zq2CIaWtWmWrzoDK7A_T}7bxJ^a&}wcDMrR~xU1*={de81PTzU-n$TV8G%a z(ie>>c#k`1^0HdcOqSj4%*(w=o!xE}$ZcK{m+zLqAWC#G&w+%pTJ};>9>6D@#T5y+ z5^Ygso$ul!mj6OvuRT1z*AQDe(~_1mI~2{8K*=pgfRg^nxbzN2_R_MpYAm&k`Puu# zfl6yNGGBaV<>ZuyUM9k7q$NtXE_?x?-`mHh*HYb?&+7}-Y=?aUa7AB|03BVCp;Qfu z=k#d%%>Yj0nY;Ft?Br8?d^y)`B?34kksji;BkH0?+p}ZvIaxr^xZp4}w}wrLpSq() zlai8%+^3(36GNmHqNpkp@iT}6QQuz^+VJ+`I)WK0_hqrB4m%+_mNWVC{rmS4m7UMX z*RC=vCSE{{%3Qhf(9GOCx3@h^oQmwVo>IGneJ2Vvg}_{aAzeJ3WQc&OG~dL-c)%RM z4ZEPna|00}GyB(P-u}9~xVSh|(mYY8@*w-&Zx=>d(-i=cQnkzXrDrC(Ne1&NVGp9m zS?6TmR$r8NFuHX4GJj+4ud>qwBmf4rSY4jA4>HbRyTO&PlJonxZeY#+yp2Q^9la|j z+j{JbY0-~I2{in6`;lc$ZUV;ey4R@P+y7~?-MZ7ZvZi%YHMe=Mjo~5+jL*SPzS8d& zJTL4=Gb2>SI*SwHZl>E6Ra8~Y?59_190Gt~o?WzJ1s^ju^yO@H^`;K+CI^1EtEKz) z?9l?1<2&c%+vmS!ie1KFv@MhJ8TZ|9N8GQ)5xGXQX=G;0v~{atdghD$d5Uj^#t*tW zS6@`>%V8AYM28Q$<#bX)eSN)IpY>7a5Cv!VuIbs|vK4IF|?Q~&axPIUsO~iCiv>~H}ZufWCfMe3h_+j$e9D@b?#0NHqZwT0d5We z^%ud0E(@T@pzDgJLJ90A9jM}5yv#s@eEBwGThkPz9BuKs#UD+20 z&I_Sgs>?L*W7974y1q3~XVXva$Y<4(V;#Av2!eK$5WTjHB=A9K$wTk0+sJtA*ylc# zm_^&aq0~qPaHwIm8v=mIw!-mKVv_!Bq5!RI49Ag&NG=J{WEuS9@7IOQ|1y00Kau!%YmzeNZip`Oi=$8zmw8&Lr(q}Gw5 zQwc7{pU?JVvo7&HF4|bRXptK?eCVQZ9JXxV&dyD(GPtc!#?CGatV-CIFCxixYrOpY zqK1bJh%z%QN4&3~7TuBj2M|y#pkf4;#xJ*{!_$daM`|b|Vz7kTI1(pUC*rpN;!|?D zk$4wg|0_h1Ki^FHA1vs9BjZHgB9tD*%NiQ*Ivge?2|ZxPJ6!nL;Mz6cM+5%;$Kw*YCthm+j1R zti%?ONSg?`$i)mN(t}Rbs#!Y=WkRxQ!wp}5|7h%0G>RO0qjS86726i3hrB&JjuxJ+ zkRtS>On(cy*U9%-z^YnIHz<_r zXe}W}UHBs#`lf&kPStA=bJchgw1rU@4ZBW+i`afv&4+}3kz9w*O+19iAa!~Acze?q zp8bi|6HIS%-8~Ahd(r4uq5=BA#OOpk*dit_UI)NQqytjHM?#}?5m%Oxc|{j>EmWu_ z(>&s9Gs!m?U_psOa48Wq7!nJ8=7&@i;Ia7zy*vnTe9r$%Ja4i3DHHbYh`gv0et+8SVavh zMr{C=kSU0MenCP}_za;x^0$d78dp-o1+fQ`JI+y`LdFFINqjuD$t5OxnDy4*S(70;B(y@pcI95q)QWZj`_wZ$969$W6*54V4R)x}Mw z>uRc;N*f@0{8zuZGrYVv=jZ2f9@DgikM;HRFq}Lo%)r3#w^aW9Xke3%Q}r9zKY>KF zCRj#2z^&$}KNnlD^>_HW6hoQ>78i#`tP^ov1KpY@9r~6*99>rKfM?~El?|X*-$DNU zeZ#)UuoqkakgtU}{CWxsQy)9hl3^N3rwa;ep;T~1!;C{4TUlFhZ{0MA(<;<@ukWC? z2<`?9c{r9%)|}zYnVz3N@Ai~=hxZ;6#jTW;mDK{{GV>NwtWB_=9VObpN~zH65Kp2Z zRr&|HN+0Afh(tH{J5&9+jCQM5!?G`5&hoz40>NJfSiV`;s~jZ0_v_bMkp9cgI?S0Y zLq2Ec-OdS>K5KcVwNk2({``4aNHynqw<}(OKud>^i=enp)qACyd9u_jzN2dIF((PY;nfd4sNl z%F>78?X#rEXu`ng^hC$^jB5QyZE^G09#hb{qtWaFvc7JPx?B44Fd^t4J9Z4!d0%bh zwc`ZWCGNvig9WUV>hm-O|B-6c-eUF$U`rIq*wi>dwpZ+o?I&cqu71?l|;{j_9f_B^6Er zfgI#EyPdj!gy3>r2%p7mpcJAjfVi#v-O;U&y$VtEjPf*NPQJ!|@FcH5n8nyl56auD ziZ`pT{Gx)Cas%oHJ1->_I(T0-yRXA+D#1<*y1Cdforrs@uV23o1-DfOSS`yyu!bpj zYmOz?jSqrXxGpC4><N9srzRa~E?~At%PbW+2D-SX>gCC!Oen z4clwcwMkY9EsSQ55tS}RfhAeCCR#ow#i*Sp6%zNboXI_G{sGscXmwE3{DNLSJ}&(7 zE>ct$2v2DL%*l18=8&o!CyJ@!890b@^~RmJ|4>j1#IZNZ8aNR`bB5S)Mn=Z6h|Cx6 zhk3(shOeiLUxfFBE(&yhgQoJs!B>})(B|P^qzJ4i*L4*gnh%qbrqw~8UogT9xv}KQ zKxDw-?eT%mS{cB3nun)l%#oJYO2X4(Wyy9KQnJ&S`U3N+fa8LkXeYrj6HH#qsWXF6 zOojl%Ig8-i{k9CxeR6F25c`Ev_iN{FL|b*v0DC4;k@at!9e6W(y87>{Hi%nyI;M9nO2Y^Q z6Nd$atOdv0*64{)F1qWcL>n#|7{q#ddJ-oU3|8x~1>;XbquC?Pca1(j^e@ev@uefz z-V#M|;A8oj7*FRfbSF=Wdj{JLMlt&BxCK=x3ylF2_va10T(-YH#6#jnwP84MBK-3r zEw|Yfyugn{I0ftc|Xg4@Qia~E9MKki)M1ZN0QIHUQhK0VlI2~L)AXm$L1p#Wv; zwnCE^1`jOvR@*z4GpG0C6Smtdl}S{NBT4ANG4<@l3wbaGk7nUl@}yfHkan&`hoba- zSvm;0&vNiCmXfj~9j&DEV&`a85U)NOi8b!(2Tn={*Mmn?DJAm4;Gm@K08j}Qtq4$ymu_ls<`ALq-N*$4;m^$ z1l7^C$sk*w&M}77hHd}}7)Ca+N3$&8-9b9C!)~E^b6;{jI$=_uNv9JJmcbCM!Ahp+P#0ts*rMj<}`wnhu=cJb{5G~`9~UzZStZO&$t}s5}O%R%t~-_ptH+o zg@ELm%SmWAQgCu|DiAhNH!Y_0bh4+QvHj_>Wo*oX#}aE5vKna$5{LmM6~cVPa-0DK zzOt&SMqIVyD4|35b?)(;f)ioh^YnPUT5b!A^A%o{fE|ZFF78>WMgt zlF782)*~D@HiFIsFa-1Wqb?8a&NTOEm|_$24S3;D(}%vE44E2m|AO6<0gvIZux=dj zo@z6psp>S}L)k$deAYPxe4tCPp&c-%>4D!R#1CoN+kEpsU$^8rX8-u{gE0sG&%_-- zQtYtLyhoK;h6IKSO=ZkkMP-g6P6zmX$_{G;9HILST|7%7t)5=-pUN=pp2}Zc%wOYf zoZNhSzfeK1Q-&PERSbVV?)oC`i`aXf!GaMW@2>YD$;tid8 zb9o6tz}0BlEjf`sAkK6{4W4!TPapC4_DzNWEhwAZ(^64IK)>dn>v|x-zb*8m9yvY^q>(N(r8Vw{@sBAfYy=Yy z)oh2&Qd5&6v8&eYmcG&yG||s9GPr{HY_C)Bjl1}B8q<7hsx?**ic?4kM%2=dbF)%& z8pT4Z(1T?_z)>~lBY_zS3GzqL(>1Fb?=CM)dj|){gK^62-LU<`kLu>1Utc>OOj199 z+)wD@5M3Qtq8+r^bZf8lRfmwh7-S(Y9{AP-o&0070Y2^xNM!tft?_IC9HayAXUa)P zNECDn3km6U72F%_%y%x(DlIM^fc|AS{%Ipzl*=xq?tu7^_lP6Dk#FWvzE%L6?(Xq9 zND_pn6b#UT@y;alD>YD1*-U>FiSh5PRRES$K$Kaa9Qe)f&QLhdJz$WPBY0R`ja}Eh zjVhrTYambVxjlZEpFkgYC4MMa*-ZWCXHplZM9D+O$pH!m9@EhrhNQwnRz3UP%sw0+ ze|4+pCzbzh-XbGeCl7A((_+_eizI%O;F-CVE&1pKjeYssBh3<7y$|l+mvFp$JudN9 zPmjNO2fgS;PYIqSWsMy@_?$f|p8QSW?=P9hFMiHa;yL8>&8x|Cucq~>{4asC0&Tm( z1MjQIYKmXCF^M$WBDrvwT17nbk!^U9&xcLI%-U3M_T)Qxu$^M9A>OrjAM^3qSnf|F zJHCFX4xn5Ai0tEGUh<*q+=%say7gDDlz-tE$Ps^*vAk0^NOhId!KVrE8CO$d#{y!{$1Vx?ak|@dnB_1^q2LhJ?7hJPbPo z1%w;6*F}X$`|alCY6`#f`k8}geU>CY{b7;w%ub1g;h)!MZMn#g z5(|Zw`sMu=+zq`MlIWw9rAT%zsZhSj$`$A8qDxvo}tSPj7{lZy_(X#WSQysSto2A_$EDXpU-|Wqw)-Q zB{kR1+IRWCW{udGor>aQ>4`Q?P9KiEzpwue16hy&tv{Sf-QgN%o5_R0hL{Kf3+dJg ztxgKAh7u05vPyPiG1i!JbXl;IS-_Tw!)|XNX!i37cwdzS!`3vvSM;PKuZZpducc$0 zoC@8g?h5FW2-`MMcF;hTm6ywEYQ7hk>sm)J|Iz41JM4ylgHs95!6{fE(BGm2d6ilL z$0M(i%PTfctR<~|@HqB&N6*L%VE{2*JJDTQZV&({3$w>vu>5x2FF4n}It()i)gMRv zg|MG}eKF_+jf&f$T~@wfy-X-P$BrMjgh4eIX2FHIZg*8fLLphRZbLs|LOVWkkm%)p zdktY^dhy2%|Mq&YZSMgX%f6)Y*^J+cQ%t&qW;fmv*}VZ3Fd7RIZ9Ue3dwWd>v(q&K z$PHWB7fhykh6=k6A|>zuYw5S6|Cj=ZIE}j`-~$~47ndTla*9c6Qu7i+ovJXMG;PD5ZKV&YT(fei;azCbcBYrQn=~&*n&$nEH*tBJgVh{eHe13 zcsuavDABsAmLn95THR>{IRq_gH6%+8w*o~^kvE&2;^hxJc%fLaj7 zlGdR6j()o5N@=DTJpg zA5OF=)6tCX9qFID9}%h+U{14Pkf4?zjNMvI-6CWPI8#20>-LATeMg}oYpsmzD2 zGMN7+?proy_U#q%>nzYOq72yAFQBHEr65&JvT zhge|*WCCBq1I6ei_7(-2JVRudu#%`qI9Rib$G*LLfIi17BqRX|far}uQ^$`Gt}O@> zV#5jViB(_yn`j(-;2BtGHcGd5j0Dci^Jmk&{v*cbA3eCoZ%&x5EY0iHet4>%3H)G( z%Tp-_z*E4&Jk2CRfH3TXtD!t_Ad1>J=bE&@{0Dt|yc3{Ifj$W^^DS<@AMJM|p{Zc$ zJ5u9-ZT+FL6NiFc+$R!PAl~rBLH1g7JEO`1mVD4sSe~01HEHU-(QqpW!|+BwY7Sm3{aSwU8K(=a z@SVd8-4}ADd}m}6mEhYEoQ_5!h=FR!Sp=UnW*XKh)LT+g!ietA6C(^KB>m16>%T;S zv1G<zT_c7`P(b9-J2?6)f2wGrs#aP=zRh0vT3%iUNZYoh zfGT@@jTKcjwF(U}S2WZ|WCoMM?P8*$9&{M%L6*+Ur68<&t1HW=F~+o$>u=`q-o0;M zI3Z%9<1~#c#|NIT<_m@2KMFxh*jQ804S`bz(UJ@Ej@qJKkGBG5$&QH*&r>M7^gB;8zu^E|z0 z>(&8yitAq;z077k+GbWdh62}`vW+lzp|g@pP~*phj~<)`F!os+u0klFJXA6Kk|YyE z@IZLUDH9SwU|{S`qs*{+E5s6E4H0^Au!rMdsv<6caE2-*H4Ru0pa&*yvlj-IT!#oF zYMYS%!sR2HFo-)&)d(96fnc{-nllxx)pF+#N3JBN8iGm(bz#oD3JT4nl~X`K4a7x^ z%nmq*z9H(`8p9$Y5c{R6hp>C__T~>F<3C#1K>CN~5AJbMM}IyvSuLo56A5cd6xbw2 z%ol*59&FD}$BHF@DYP8xPz4P@SRyfGVK+NE(kKn;-U84FkVJ$qzs9&@QwA_ACy(j7 z(VWRDMsC*&MKoL{Z)e6j6JUco#lxeFw&x&xC`6rF9x-;V%dwsGdiCnHOeSwLWmd|!+=57 zcUNjg%RrbUHl5p6c$Rl_y+pqAoopu_yArP^!-H1_3%)WD;JWn0wU*arRbEY%gAWJ3 z=&thJ{Y<665f?`*$unko{7~7KGiQOMUqn-f%L;~^qqj0ilzj9^ig@P`$F!Hlk+@-3 zdAcSIS&e(#rOwSgmecy0Le1M_LL z#B#-f5@SyLx;OUun_ueBw(=E$FmCy8hDwX~ZYK^4UjHL;a(zG$NiW_#jizSeJi59a z)=l2BGPiLR&$ey9(KvreR+GFX?R3Jo94+@~ZE_}``48UVi;Snv87oh$x#PLlnhzb2 zE3?Q&smYh^G>609C-+IX8TU@K9y{JsQHE8fTfcr|`6;$OC-V>TA2^D8-t4~Vd1?4) z8A}CQHm8Ztl-N+AIDfVjeC1O>@oGVb8i8!QdEeX9n9)+lj>` z527b(_@5h+#{D$*Z`r(=VVd&b!DyoL|N8m0rB_=o6!J$#>TF~9ImXu2J0Xs}X{(v$ zz5Moo0B-*#SFwv1FGeLSEjggaxB&Vs3oL6G(d-RaWX)Lf1R0HNFU+Tqjx$)L8lxax zu)Op~z1=B;{-^;N2mbDaXA!V)+sd+MMJ zx)iM^9oc!mQtEfG%9ta2#z31f8Ukz!o9%Q~N85^VSYJAF3fNhT$X|gNBZY#rmHe@? zMDZl(lTXI%#CtDXXhY{`R1V-pIoka{?SXdBZr-uODmRD!cIDssQ;ZAlMM4LZ8uGgn zd`(J9Dr!ClGXh2ww^{+h$yVrj%~IiyR(#}6O>*&sibs6sKUbjhw3=NNsy*oXj_5-H zPVIXA?xdgu5nUuWBw~~o3~7C$#$`guj5ATQwY4RDtVG{I2u9r8+&nhpZy}<`5!^e- zc=}O$K;vv4Ag_){r*ZrE`svhXoQ%-gpY(B}^}C*SdNln4=MpPnQ*d;$}W5U_cf zPqSzfG_M$y%rzt#nt$Ud8KO-(x2~IdI(zRLk$=4a7yu2Fiil|k{zj22Z|K83(~pH_ zon&1QhVefVQS5*>roi=Ov|vb055qJ)gZ5Q{-0>l+wD#6CwDOj#&P(jpX-v086xZI% zxVQ6|+ZM+4%v;uKQc^wK&!nDuX>H@N;`K?fPV2ADY3^EJ-uX^sm&rvYv1PHRuQVxN zcwas0D*xFtapV2l0TmTv6iyNcl08RGj5`U?OxjfBnvc#0+V}NV{XE|nTnB%u!2HiW z@fkn17;sPn4QgVVg6q)Bb3=3UZ?Yga%m~if@Wm=7ea?^le&EWL4_OSKPD5VCt6}gn zt8TlIbrPAd%nG^FsD57n_~Kuk1pdY}vPx_Prp9-kRVl1~{NPkv5Y>*#vsS}RnqS+% zCt(~OSr%WPBdN^>DTb|$`8hzUW#tD4PmE2voWC>`BH z#OsEsk8#`FimwmqQ=O1zIke+_w50;wfp)a-u{UCzhdVJrNf60kj()OC7VVK%u?WB? zm4(ve{8^^!hAL;Mu&`Tf2nRk4y0O>4ss>c7R%M%>eo?hS>AbAOm03(K$g92yq8;1V~=e28)(C zlGe&7H%q%RzHxOD9K-~MqfLjKSRDjtm6Vj01{LyuK;fc{CPr2=RL-paGOyHU6OsZ8zd1LEKLG_G%Ya%KP1azQYzXU>Xo3 z*9=Joa$SS~=giH<=0)rzv>f>iwZgL^qM{7!Yg#eN=%SX_!w?lQiV2spz(Z0v0*qc= zl)qQpgQxoJHZ|vEORKStN-!h?^-+6n#CW4k1ct7JBK{SIfq{k?@>MeS^%LqxwI{te zVw)Gg1&(fI{IMWnUhpi`7Fa&UoF6`X=%uWHrZxkb+uBC>Dd*m|(qSjAQD)!y8>1io z+2^)Cq*@`2Cmzb&7IICNr9Q&61pPpCs#8E^36jhHbGJp3$e%xd&gg#0%XnzaI)Cvn zL~TA2puAzyLoBt3<#md`apR$vVm+p|I*A(GSmg8M$(NoB{5F5TEc(mPv}Tgx9NLvP zyw>r~%MU07?rO$dx$@KO?Y{wjOnz!eef41B*$i}O%R>t@BjO;+Bn-TtJW<(E|3E>n zf|fS#-qJDm=E}2=)`#MFMBH#7?Gdo{UtaE z%Up%j4R115_myYP`M%S+xS{=XMXPm4b;N<0kCTg-N} z!6v-)%QwGhz{0Y0IFOI?@yE){s&zKG0y!rRJH)Ji#@CxW;aaTO zVr#5;cGkQkv5S?#DX~t-pxiaQNMOt?h^G1M^n;R19^|5GMYrPmYDI-tFWlzs&UBLW^0zA0IzPXV4UF0T zu3g@M_m!5Ify)`z%6X0v7c@OrId#T9?Fld1(BGK3ojUz68@<)-P??v(=(;!x2FbMD zgFY|N;@sQA{iwHS!@&(VxnGa5GCN)LAg5djIo(t;kaJ8{bKO6!aT#tEqI@5;gLN8P zfK4~t9ZvZ;Hm4-3Y5m+P$#zT>zm%fCOQ_{jU3k$;-S5W?ozt+iSt&-Jduc1VXVTN$ zZfmx^z#C0kwpINMFwad=Vz!Z7x^|qesH*vrxxgJJfiDba$9QOIG`mmk5!5oy3O{-y zRP#Uw2szZ4%TiJUorT*AZ-Fx0M$Hl1q!0Qd6nLtqWFFjVCYTAv`V)wU@_Vj#cm7ER zjLn(mCs93*pFH^(&2kb3aen>!HEzTAv!}-+IJgQHuW`FvIy$;UhxuQcmWTLkcBZ$g zj$U^3LcLh4`((rKkJ%OFIr+5}6%=Mf*Pi>PhtYgJdHPfX8ZfajXpu30wV%u62sk%& zBaqu9zJ>l!0*uuwQV#T>Hk)x@yN~9XcrnJked_|@Z{1nl+7B*2N2>u^y#UKzf=aBd zt<8XyXF0*JGw-kqE|{<@`5UGn0nlIhH^`$>a&lHBG6qbz%9!-`Z@|NCZebzT$@jqK$v9^FwXyjniO!*59gme-$$_iLkZopcPR0&eLX;p6?(fwF4G~ZJ-wv z<8FYV_2V)_4R(!-J!y6P7&6{^gZPl<{mvdn7x>o!Va zF%Vf(u01F8hc!oz9lH+}xF+A(*(h&b2UfxxKW1Rj7#B2dO=DI|Am;~S%iu+-fWcHL zNpn3WvTjw5VpvXuKlGn5ZNe({gEN0#GL@VSv40d?n_j}7RUbT4c=ipyJqJtP+%a0` zC01I8@imyR#X|#LdwE^CetkCywCK+;U$q}_C6?-?E~E>B{#&(maNq-bLl{ry90Xv% zF2GEY4IHlf&)y=TB>Vt=j-7TyV-OYN)s-s|6td|k#?@L%GBD3Yez*y{fPF}Uk74(o zJy`A!k&#aTDKI~?0an+GW@hIe?>Ma4l&FDef8s9#rB0H-RBOUv0s9-V81qBPicBgP zKLowQi)$bTrZ6#EhU!w$auvbOBfPnzTn?nxnhdPBQksF^*SJ5iFaDxZ=Qsz44+wl9 zJ2Wgih)}`EBmnL?4C7)%b;kv8R|nYjsxVVk4Q~Rs<=|eVozzqUS6cd? zPy!W+mxoySmoK+~fdVlaQek$+w_MQYOaTm2YfD;~s~=g@s8#%9MBFmZe}x_xE>XZf z#T*;cM`aX;xOS4#TP5K)3De{`^is_5Bn}6|_5V5?aAA>{6cb6PrbhFS8`kyNO>Nk? zah(aCBw&hJvm^+4*VD5T$wp`bVrp;WqQsx={ukHj;vLvNPahwm_Lec-R8;Jz)wc$$ zP-NQI)wVwe&!<>VSZktM^U$XJKBp^Rn~8}3&+%I8Tiz3rVcV8ristMw02QQHn2iKL z0mFx%q}RX*OVkx*<%5X*=LgQ0sF$L9!|94uPJMPV*ycWZ=&s56@p*^aIy!i^&jmym z)cmChcV{+z1r)nMx`5{GfAiA<^O-X{BI-mDX9!1F!Jr=C%;5*vMt-PMQBq#T`AqM0 z;sw;y#6c`hb9?^$r~2vw72+h?!x5homEhIoeXv_^r$n958ClK8|8VQJoNe-IB3-mP zEqVOlo88$L6CZ@{dPgMQri#{C*X{Sm4_F~t@86f$Dv`zddF_sX;=m?6friVFGGu*r zi_*579*TK|;|8wx3U$~|a@|T-PJCl=`DKINJJWTOCo(rDA7C@w4zz5$m-_m&DLH~;Yg8zt(i@o?d(ZqG*mQ-!1Uu$Vng#_+Z z<-mcGq}PJ5127d;B^@u7e7aqxsaNl1kKdlwA8cG!;okzgE+{^E@a3%e%E0*ik^BPG zP!dY=t;e>aRc)6jDBskD330{ld&YNS{l-i84QwRJj5czQ?DZL^uro~JF|?5si{}lr zs`8&r)8ZQ5t1Pi_@Q%4jiJ{b8QsKanYR#&}(NyKl6dYs1+uhc1#E1&^@84G!&raev zol&{)Ci#NMD_e5b&c~E)eqX2Enx_9#@}vsvLaK#vco845H`8C@=@sV{TwI=GQ2dk42V>z$tBt$K31zLHoIras&EO~t z3kCWdH8mO#D9`t^u1z3|U%IpwhAoz)V5kik=RUw=aSBeTBb=PRI9TT~$OuDX*}2C~ z2)j&`|8$-5W&*a5Aex)yVa#ABdJ&Y;1pSNcz%8AiExZz8w}68a9g zA9GoKD4KhH%Zot{h>DAEwK2rwp91;qeQ*Vy_`5m`7j7#&!p9c~aQy=2fvyP~AWBX> z3ui3HAoYuX!KAm3?`+8C{fAzDEREvW_5gmkM6J>t!!xTAF9Tk`E<|TQvVpoG)@B7R zfOrrOn_hk7L1ktntpS<;BrT{w+p^nVVr~Z6l}KKNrc8746MO)9VZgtVeVRIy*=!Mshz^1WWZEj}9 z*s4O5$Cv+A9{V2a-b}o8@sX=kQ@*pHNxZPJiOE@#&MfL*podZ0#*n)|Dh{xHClW-aUoXaR(YQz0o3Y5y=Dx z4$}^ygRN_D6?RhpSqe5BTr}~d{hUUJ@YP4@=^vryd4z;W8yTHJd=P~cLF3`$BV=L0 zhQu&I#uU3!;;l6%XYMV+;(T3Eanl9l3`qaC@t`?U4h~pq_5)&L11pC&{Ei$z%zac; zkLw2L1O$SA{=Dt^`n5PS;T^^goAFYlMZyC0{f5Vq5v;Iv5+2aTivtr*JfyF~30J%z z@o&rhp=>mN)d{r3CtUV^w!1qaDFXGvSJjW5AYd?R(QQDfD?&m(ilxwBi98Gj>zwYq?xWCPg)b8!HQq0?h9RO9$kNH-C6d$O1+Mx(v3P-)8`x>wp1<#Br7pJY^s=# zYax9OBp^Z8^bfXy7wJFf-`}eX>~bj{qHp>z6jZoY?K}$yjl^Q$8gs4I*bO)K2==vI z?R7|4H$E5ntw`JQQG;HwUh0p@`K4-Vw!0S)BA6L@2c)}VYAtS#yHA8a+jn0TL!_y)2qQQ|P;ni?p&cT>`rg_Qs@Zt@p zo^PY)JxTUz+Vy?Agxhu*xu5il5_t?sBR2|Dnn(iWnOD%qJNB-0j}+b~-{}y{zp6I5 zyFwtOxL#|l_>Qte0)^SHb^-z^cUc5;Pi%GL3oK)1qvyDA`%QbwoQF|F)S_Ddg#W%( zgNq(fo7L8tCvb*4Rn1joH-5^jK9D@;(7Wv7kc4!OWI%zevStW^X<0;w)9?Qvpb{zZ zH~l~807H#prkQrGm>JOvrHRqo;5jSn0t1*Wk%bysjzk>>nL=7>q#$0q=?@Xwn@&{s1O!R^tvnbefyCZ`X#sU%Sx{U;7q@Nxf4|L(C~-%Higyp)B%bRL#u4T^JHGvLsYy zrkiO@U8_$qyQQhA30~<8@WKgJRu9x|5b{sj)f_UY-AfChf7l|8>YGy$U&(B~LByMf z7#Yd!XSMb2|4qSV=KQzCTIY@jo;~-g&Ai&<^=pu-2SM}auBM_1^8lHFjQEhO-|j4ugKPhdm1srzYT+=v@iK|?n2 z-x+@}5&Sn2fKhq?o@JJJ>(g31S0&W}OYw9_OG~R6u5M>r2rn2N%4%sP8u}=PW!b+S z{f9%K4q@0>n~0GmyhSm~g5fa*Ek~v{(F*-4qMk>*u zQj|hddq^dsq)^(WL0Xj1o>WScib`9O7VV{RULX9%bI$WT=RBwDa{XQXf9k%!_h-D{ zul1(Ioq7Zpymv+S7Ib6q5fF;vMHnDNe5IL!db_=G4}fEn61Vxb8r|kY$ZBvQ2e)XE8|E5*7C*^Df%fU5o$#+8@yPc-y+kR{ z4IB;L`RWTxd2C_NXsTtG0+bo@xXrPwIe`GcjyVK8JQXgb7hxw&&~&>Mbq>kS&;4-K z)NYlX8)F2I^%a*q>b-Ogg9h?XKcni5gC8EE?(4{pfghqM#dXev$hiRbRGRDOJsutW z{CB+?07=>_bkK0voD1p3!VoN&6~ehseFlxULtfjb3o$w|(8=SM&% zNDzyjNY`or%UOVf9T1W$;LYBpo3b{edC+yrIo~)b2b=f$&6|wu?A3UvCZcwy{epr@ z4em&j%M5TfUw=bN4^q1zetmIy(j1V|8;B_{*2k|QHvOEe@xbZ~@BjOKpYrzcTh0OC z+0md^20o=FwLB+m1j!Yf=2EvpL4#D!Dm01>Ruu?lM9=Vx-&xMj_%{-j81<*wj@q9W zU)?VB!zyd(%9Y9Q)8EGS;sv(Adr2i-`0(Mw!$*#65fu#p*&9lVYsB*|^tZb%NaKc! zUtg8SM+gBFLQ|W-fePgu{(!vOyI?B)0|L7BNU4JgdJ1tMO}Oj`_<~R(s%CJ$!^qmJ zx3d;>44RqNSTFWs0{|fMHLeLsQmWR|N3pTHaBC7o{=QZ^ekL{s6~X2CSQO1fPY7_J z(|&}|+JcR1*OsCwOl_L?|D4$!s0|0=4uF1L(1$JVfS?zLfi&5 zBybuhI~Y{dgg1yM@3OCkk76F};vC&*e%p*WXCScSH@1m%X zbO$=_DkRY(P*<|>E(8_Kdf@P)rS~8xYPS84Y6L1R_KmDE8kIc~HkK$8Rfe3#%ZktDf)e+vmXB#eYdxN*GA`t5S&DsTzh+~g9>%&RdK#Ct-Fm)9EsYd(nFpea^7e3+E0I07C( zKxc`{=6-fN=XCqRoSw^MPCK)90eJm%i}vcs`LXT5{6cnH=%!63r<7aD6wG;)?vR#_ z0H5Thn+93#?G3wq;Y+{!;DIs@)TG!!9Jb5Wtvm-ip?E~KP=?o?JF6P+3=IwG8}j^= z(JW1kPi{1fC>bLGqN_KZ@XXC3Y6zw zv0yTen`16nP>o-)hQsa&SDPx^n!ZPK0bd6$d%xkp4{6oy9d%kN)T?DN#dq@PYzrfVh{>v2Ja8YdOz6X$UjVURKzyxJyzp41e`P5o=i` z%KWpy8ufjNA7r&`-X#n>TjbI7;vk#vf}8vR*^g!!t#4q^pbFm**iB@t$67`cN5vOQ z!3GsO@j%LXYG;k~QHgM%cNCpHrSyh*mz4V#~tElv(9vAzE0xar?@!Am=)n9_KG% zHZ4>eHLkgD5w4Nkq_*>ISZL^xNSP~TZm_vR)0anyBMpGWv-(uEAih)k4;@;HEq-0uj-#fJlKdqGuI}uh*_~{r-CHwy!T2E=1t^9XfuA;MT*%Ef=|gj)-b0 zo-T?1-bLS&%nVg@PxMXp*S$6)U_LDI=}-CJBrq-zm=8i?{jdS9f7XH+Bz;3r@+cSu z(tL3$yY*|@=GUyf%$F!^cd=(U)+YbM*DMWY)@zzPoIE_YU~h;oZl?cLVtpBT{<~*T z06qvIivb{U5L?(WWfc_&1CM}s7;q7i6PB)%8_&H)yQ&thXLyad^QS&92ciW^Z6)x% zGYE4hd;>t7uxIwigHU5~oymf>q+A&C4`9Y`a(bZow&xV zCL*{7GU z^i!XiGzh>Py9PvCC1NoZC*Wgg`X*=~yD6usYxutSD=qn45bpCmXsATYb)16>kWxY^ z+ButHyMSErM<|*(KkhzXy%EzLjzu?e21sA(px}g>@5bHjg>#98*E$+8cn|Q1vRl9b zw=b|gBW4tMX^ZiK9B}k4V$fOZyIY$r@u#@l+oElRDW|IFxf%E*ad~^(XvUOgY=)6- zLCsogzC=kZpxM6`&_7rX+Ow(B_;C0zLc03#lm9pNk!lJ`@+NR{kZC{zM18YMc9aKU z-@dNMM#s8)hRPhLSeR95&wWKrP><6{Se&gOdAP%Y(<6vvw1i}O!Rq2$wy-J%(2<8# zRA|rOe`7y3VSm$=3MLHHFq**1aV~3o0LksIcY)KXLYeaG?fE&2CUE%*ANzbqN>nu6 z9(C3<(qZN*@QZk@om)rLCVx8bDvilD2(qo#LmYTiTdk5yzhs+{ zBKjZDT^-QsEz3-k*|TRo5a{bb%>mPC7R)eH0Dvd>8YxQK;#OJ0x8Pix7CGvaM+AcN zr8V1iB~qSTukz?Iww)BqJ*N7;MCG_H5)`7X7A9R64ubics?eL?54g%MCjz(cNUfq^ zDl#8&SXjPK<$WlyvB&!Z{LHwXxMr;+BG4GP9mE?@e3HV283^?nra0bJ{)U(S4|*0? z>YiP@QX8{jNYBd0P_qmb5W$ zo9(c;-V=25yU$F+?7=AmzEO$iEq32xr#apD$89~g;(Zz=+AE{~5}F*p_^0>nF=B)T zmY~;$)jJlf0sD7@(xKld{;aq`ntj#6RH>}nXKC^7ky=0$pk~<@M$l4v`%F6O?t?E_ zcHW^ddsO-r)qm7W`JxG?y`AESqeC;jw_8GXO}!&*FFYD=`p2JRGcI(!W*>`vTVDPd zCb9W$$YsPfH)*J;6{AAa^#}}ln#|VY-EEaMg`)U}o{aTZdh{uLma-HfA))etXsr`J ztmW$!@M(Mnnx9CZW6IHR@p}MXyk{6dP2wx)1|VBuoK+nynckqOIdBN0W8DR87~bhB z9ApC7ZAdI2^|Rb6>0(G>d*45#MW(K`?QXrk5NMy=EO+6+I+~)JH-)WI1_~9cnh?6s z#|2`S{j31I8u{x0oc+IRx{OT=0PrsUEDgIkc-Yzk9lT#8LMUR3A)<#LHA2dV_M^7N8U}{_xVO*|e?@vMJ(36_^`7`H_YcF#5&Z|CWBwGE?GP@g0T3OL7hK4u zED(^Djl|6!0yAX*mITxTn+W)ZRty^jL~c&~jPd6y$?>7SzaOUVN+iS)sR1B3LH8nueSy$7RO`n*5tnBCGR{j+(}T2 zvOW7wkcqEfXM*J9T7j=*Cj+!zWL!12{y_E|pn7TxRkg9}@AebhO-l2;`oqbY78Z^Vss2{AGwak6t> zuwsuwpm|yi0b!2Y(a)X%3j|pv&?$^(T8c8a8_BaEL)JghD|kRYfjh3V4;wR+P=T#Q za7h$YoZuvM1T;hZx6JFDmZ}cuw8}b}=Ol{MU?YebNbx*B83zmjoRc>$7RXg^pIwIy za06xVUEB~XNl9Ed;S+mt!W&1Hpj#HOdx)_yLcoq5IDB44_AcX~AFCb8Vqn6D&Yjx^ zf{-$cv$Y32BA;G<_|()CPif}X&Kl=DGuLTqlf9%pQLKT`Y;Vv?&C$VCw9u#}8g8BV zUIF%EZw7m7V`f)8ck0%nYkQpdn$cNo_&R@MqCrHMGrflP=JTZU9dqTEsGD|-spU?( z+DdA7bbgktO1z0)#lJ^vyZCB`b46Xd&i7<&6ffD(Zx_a}A?j58wZ&W!lV+heMyis# zNP9z?m72<3oOZw36$cC?qU=sLulz`FojjhAZdRUj%>pmbjk=6~$ItYMP<>Ip9@aAq zH>>uWUv-QWo;J7kmE2pjc|(@@=tSOWwWSJsz$_X%?6M;B z41b&x#;YLh8Y)Uvf`+w@Xh=OqkII7jY(7YdI)XUNl zfDdAL+IjZ#+JcTiZS&zf?@#(Ix9Ci39#l6?!&wq5_ctZ?5)N*IG%axH256-W1HovY z1Eo&6%`VM~v*d$uEROKPtZkMTt7~#m4%jcy58-Z%`J0x!TG6fF^xTj_Kn>(mVTZp4 zB3@QgvmM%jCr|hgeIkzv@sOh8Rtbqvc+;l(2`oqnmU0v#83sjwf*_fJ!U>+^YT!_W zm!qJHcsdtBWlY;*Pr78Xk5}hhydUZ|`6;qX0)a=kSa>l}%&Q zniZ8fq7qW|`>sVDI-#H8MPFj{anr`0`Hw~JO4%JJ3;VfUO+SR{ztFP09%`S;&qIVW zMLVI|$sMjef0gdR1mw%I!2FLskO~Rl)$|Jp@F?v{@|uzoOow4nzM%AYyi;IgYT4dTd9w(B)SV%qM>QB-4T|Ou?b?) zn4Z^)7}>)YcsCTZ!WLD=)wz*hsOKQH+w2y>xaw?3 zN{205o_rB{x2^t_%Jf&x;1%A~7Svp}3ClQ?dAD0DIki)1-lev`x2Jb-QAW_-wQ|lr z^JoZXj@=A+y~R4&_D0G6{N^W-wS~<3C1%Inn`nclHt_7DVG0e_Nx5LPb~BoGvO4|! z8K1TFj1oo)s3CwIgFl+mVhQLCzI{kqiy*Kr0EZ9=T4SHXPgw)rFMw#wxv#$YOKSc< zRF}d>QHyc_YW)(}X_PcHSWucFV_g`zQonRH+s{I^^Z%u*kvv0&DG>J!l%7+F&3Ic? zRnj$l2}25Stq-<;k6f5N|MW*Bv;?Og|GjCoP(c8QqCEo=ozpkvavN?y%Pbutq(Ke1 zFataQMd}aA5a<@aAMDyqJd4ZBi6^Pf`)qiLoiB{v$XyuR>v z3--!9<7b0K<1;EZpzv!pY|#Fk{!99ftLZBW4t2A1Y)#I89YfoH`!E-2X8OWwh7OG#j{B_R6=eRyLN3G;0T#~=@jHUR1-N|^Ds_m| zp(r@iiZ)A(jHH1$X6>cr>W4uYID-5EQofHr4F&{!^|_-_AZdXBaEpMHuNOMEl!8(O zxREE0S8F5#)#0{f$gqG29=*OmnoDF&DK1VbA}IiL{h@&IcwFq@+t1&;gdZ2@@0y@v zy+N&4FGeI0I$6(eXl>iVaA=t>cO4P!K=I70BO@f_hbx!W^d2b=J?lk(m*Be2!}4S- z8sWcCy}Yfi=Hlk|dh}=;1^nDwMZvsc;A4>UJw4V6Hux;KWFk03H4JTyv6bedl{1s+ z^e)qS!biPb4F&?7vrLbAlsieWBWa=>$A(VPQ-(Fus{lYB1t#Xha{G)pbm9?z#QsGG|@ArzIwq z@^bFiD)O&sed&QDQV9290$aOg}|S-2FTkK09m4Ik+!ObMSai5oi#9^m0Zbq^X4tAMtURE~%y%~C(k#xnau z;Z{pp&`XtdO+I3~SkLPS`2LrgS#Q!F;JRD16M(^c=1`FVUQN{7?=}LVSxd<1}=g1 zVg|YS_x~e5!|;Fr&=7?4CXOtF)RX0WWB@~l&Yd<;I23d)NcNzGDy5seG*q2iZ$!@@ zvQpl6HSC9`(w66zCsP}wENlR^>2RfrBDS63yY9({SFE_s#IuP!N?H0mFUKxIOMeF+}yuYU8vnb&lh+^7UnqqEk%k?+L>7oj6N24vFhp}FQkOsDeBCOKj`RBVgG$1j-hkhY0s4z5iAHIJcX>_8hTbTLNLXk z^R)+se%($toE||NUO?;CJ;4;Hc<^g#ozDBq8(%43##7MUB-_p6cJ`^w+_b!|gp|0) zyAHon$Lb1u>zSmGfMmT#kFg0l?Q)XRs^cCw-NKa(%}ipNZURv{>OoUQ!II$M6vswrhOylAEtvQIG$bcCH8=e_K+Nn8TGb!owO0VGsoi z|L{&(Tlh#X_zKG=AGxZq56$MHLrqnVKjb!wW$T=6E8ZQa(qn1pPlKQ2p>?t4-9@Nz z!9&sQ>TzN`hx5{;O|y(fnRmBt6Q~bOv6Ziw&$Z=mV0oqI-!5?2Cbz{ zy9}Oeqr%w3f%mtKeM=Uxzi?l?&u)2^$5+w9uJO=-cFr;*&Xi|P7T($GbT=@CjD5|y zqHDKN_{S!zqSM7!{o&m=Z-34qd1oG)ZMUSY?v0Mc;ZsjpZ;r?r`J$@(q;TW8Xi<30 zo}4Oi`&Xh~XRq#0*|S#inzbxfXo*p3$1dLdRV|OHX>%5ruNO#FI9<6u@^A7cR{!6xXuAdb|>?lr%S%O>nx&c)qNHkoc}KPos}2K zfJTpGKwOo+RlK%gPyp>dQ%C^_xcZqnk}`qn-9$o_zZR4s__A$rm^z>N(vu*Ee$Z;^hw<>UYv(w(lz>x12Eg(F$z~0lePBSquZvaWk`knS^NG zZ!N1=a7mkXkBO|^)l86J@r{NuWN_SzFmBO9vU0y}a0rwUKzlZ$*)pf~Xo!#p#Ed#1_X{IR6jl7G6c_K z7Z5LE5ryW8g3{>>3OP*Jj)b5l1gj|ER1JPWAqo$o@B}uK;`3Nh`rT&nrSzloH7`Ha z?^f;;3#uR?&L|QYvGEN_h%g0kssX^r?m*<6O|BQebVh0SAA#BG|A7HX@Z+vWP+b8R zL)|e2Z?x{$ovW-I_c*3g_-KMf)Z9zsKzKYdhitlB1b7oJC^>Kvr7 zFp_K-CD@8ldtsd(2TBZ(hcJ17i#G4s69V3H7oZ(Pd691-)T+P?l^SM;pDVe=+&wWC zP~lx?PMg&FWLDrLTAzE_N~HLNf4mTX&ip0wdXV}{E6uQBLj~$md?07>a>z=7g@Nm6 za3L^tDuVF3&h_gdSN5PtT@DlD#&bpbY5E^8q-!KO`FmpxC*A*5!J;-$P@o~sDv$?; zf!0|%BxB)dgaor2uvy&B`1u?H0={q-lVqXD;J#T5iC((-OoWcEa)j-*l0yC3qW%+o zsK&)k$Nnz+9@YK_P$hDu;dbl4v;dJWiU#d~*wmn4Lc#e3RX?hLvm|sC!$zq(P$Z0{ zXy-dS`V8KwmyUk5l23#8#;H{~$G2}ep3%$m`&8Nz@DVw86acu#qTA8{ZPQkde_QcK zN%hJ+P5&g{NqTGc8}bQ^YZ97m0$`yh*ZPruRD3`b(P}}9reV|s5&^^lbs=6v>Pfzr z2=s1zM!#03&9R4#oQNHIyB&r)Sla~?B$a!Z!xhuDDjlbehP5gkc%=Wg`}qhS8Kj)_ zZh)QMquE4qytv)KI-Gt$b%76*z)%P}iSgpag*$maeeWb5*(5ukHCcVMZ^?e8rB%oF z@7=q?kg9*nngBQN`%zDl7EuMMpRuJrz{%%HeQjy-UY28f-A$;dOX9;qH>t`q1Dto<%FJ?Dh@&D3K?Q+@iA zQ=afohiGFsb|Q`LGpvYtKq90r<+Kv$RbeJ)x!|2)<%)S1IHE%;wL$*S951|=x1myReX5Z?J#~Dm99c4&9~9UjEj9WSrv}i zkZTLGmf81?E+kV{1}O$LQZL@wD-pIsC9dHVg=zQ7IG574VzUDY9S3j2*>MS>p14I$ zWtg*}KoyTrW|DtpDprTgb41-8K~1g7(|8dITZH$=zggpH^2#u5v3$*vl=~M}@2|J^ z>tIeZ8i<^Ct4gj}OXX^@c!l$AynstxZxZV4H=mZBr1XB260&B?E*4{Dn#~=%d@3yC z+~VO)&QBFh1^w?yDHX^cG4F2+wU}W4$e(Y2=7j0=jMNYF!L}O_vXS)wf?m+Hh37b& z3TiyTp68w1+T4qW!e6o1$@g?nV`tUuQ0>^|SEB1hg{;Q+q@I}&x+HO;fKlS<;wy)0 z-uE=-iTF(B%i>qLu|HjudH11;d(*jNZ!16aEUbt+cu8)=W=1E0qLG8=QC3rSicMu( zI^CGU(=%4QkSN37b0$s8yXCuG4pf7%kdQtV7~pzIJFGWIGqwQXNxJ0TZl3YNY1~*N zS%)y1aNjP&3D^yW7^xDE_FwUwiHnY08=Cm}WAD?3__y@B90%sOQjY&#f=f9PyK%hX zFrx*afcu_kB6sh`FoVNjfytSPKw`l4kOr2bJFFNK2Gj(Jn7RW!;%10I5|}6P7NJ%W zxBR>WX<n2- zzW!nc2`Ly5`6D|WE?;H@$oIL#8)|QD;u`|Qk7kgsC5m>ckUFI4*)ZNkkB?L|yVwbkdD^-FO=24^h3fw?iLK%5Ap! zVwGc=-Iu&fm09ST=C1=`DaV0;?yp~+T*N}kb+4aa~RLnqx70N;YQa4c&MkmJV@v$;8p7=b7VuRpF zqd$RsUua04Es=sel#00Rkg39F8A;qF8zmwHq)v8~l$-tT$qF2jnyfBMln zau?7PO8&@|106=XL6m>WpMQKxTkZzpSi)<2pRSzV*3iV5zIuAY@Mkz2XZ9Km>C(cF zgu4-7P`z=un;QkZnr_mr-z#VJxQeMMA3V6kKuUZ?fW8*5Ubn6c3)%~Mb9`25BUd`{ zF;K4GxS^lXOuW@3xsFh`xONZ7%M-UY2_BG2kKfSbsCDT3ux(owG)kl+qMF7g8A zWjyX)yjKrH!r3O#(dNcvAyRC?ScMT(B5lLVT7ZtpoIdRy1QsNzk zoDgGqza^7=C-NUUaA72jpZxtyJZI$8)j>R!VdphvT5cu!VHR%>)cVM!1#nHf8Hq4> zjl+;|#(a49THV9e2~!K?A=?p0X3}|WjECPo4?z=*+X_C#Oty;q-iuyMNMu&5gdwdN zly_>G8Ms>`RBm7%gUK+3YtbVYgW<1&8L?nXjhP!z#c=Y6s6Y|YNM~X3&~*SO-wN=6}>Wa9|0PLhq+9c>KP)oDd_$#l>}l(CU!00gS`2$YsRwLxGB& zjERN8FDN%Rm(>eq4r)>?y{)VyRwDTGQ2!IoxXo#~8xfp>^J_SCR5hbApGHl6U)|V6 z8oB8Ne+)fw@XLX5iEI0I+MHHpRB)K!4u|MfKuj7lje~ZQm^j}7DLQ`kO(41k8O>O| zsHz0vKJg}`5*jx3YzxcrFt|Rr{1fUS7cT|neH4oZ=R!cABtO3oA)W#i1dKx~JMvZ% z4xR9oAPwH5=Fhvi_4h){T)B>(2FnCy$MaCAfQ}^l5)U5^zAqkYbvwXdCfS9*u4q%@ zVkAm_*rSF`g~O`wF|1LlBWn8Koo5#z`+aYkK)_nt8e{92k6j+sE#|v_1rb18@_>Pp z0tv@C2)2kMiMU~5BLqgF(V36g#cxr^EnB`E|23Pu5e1{OJ^t8UWfo?wi31U>`3Y-U zu0H9TMV%q_nhbbi5OU&}AfzY+d~QGnHRFFEX81V(w-$4Ir4^d>TS8v({@F?~<*29{ zGb}c(71ZUkF2GJhELRmE)g^?yheq*(@1~6#>GvWr{@$1G0d$Ncgt-f6#Rp&RzQBFz z@6^-_G?cBTvDr56v0C!*eHokq8m5<_-_AIasFhs$rfu6O=%}3UFW5c^va1q@Wqs^3b#8zZ+A~%IAA$MR>qebV`vV$|8rVm zE-h-#S8xmQzI5%3{Q?$7|2Gu_neuC4Q@= z@2>YoB1H-nj47`#hy-S;bRNDzbpOXoAKbscWG{FU#n!k>RIkWjQX_5MxY^m+oncia zT5vLY!l@2})Rvt)SGxf(3;1-Wu9plBA|$)5sEw-JwtqcVx{5+5IG*f(OGd>|sD+)b zI6Eh@xgzG1GK;y~yta|NuqGln$PQcJN!Cgx^?j;pr?nhMD+>_4OF_bocAt#L_AT&g zoJcTOMMt-2hxONKV6<1={kh>mY@^+1$TZ3whz1* z{OL7lB9|4C9R!PHBHM|2{udcunm5}IZFN17YNi|%_8~`QsKCH5XeqaMOkv$UwhQeo z1;vAbb3Ns`3%Ii>uy%9XM!s(H$32cy1IGi8NIJ|9;OZ=f5L~=^{rXb_u5SkIi15L| zrKY<2O?$zYuGI}0;7y{UX5E_y1x9o*&EU^X7}eo;-_I|mLR|hs8OoYJOIe*|_3FJa zd{am)1fDa&T%lRL>_>xL?+g$Y`NckPP7=-l@*?f6!+E*6Cvlh`yIV+ni|8pRz)OYz zj|*9UJxam6*;ZCB?mi8J7x#YV(7um5{ZN1K<4PZ|+|)gZiE3HXj_cPo4_Q_~gYt&R!Bn_qF@MgxYfON(Y39NhUlQ%aF*yUh@c3!1rFVs(U zmgvLl3|#xxws4me z=pRraI$ybB!smi&s$h0xIe{CX+O$X=RCsvrPvF#tlSftUm5shIutgp+DDXQ!H1EK} zn8sSyV7hX9QCpi_k^*NC{hr{!lE65NBqulH3vIc3pug%ua+*HO4QOQO)YYYzGqL(8 zkU6|0w3l-9@#j1DRzvQYiycL20Yo5iN1>jEG%H32IjqqB5D8#(w4`h2Cna(GF^)c}V52G2*_`c3&M+W&X@YNw@dSp6{b-|MR%;SW2c+oI}HH`v@>(V=1U(}9XEd%hs2mF|=7*u_KT-DYo3VSA6--rYZ2x7^XEred&;S)6}3H|ir`mnMJY|_ z3&7=8pw|{HS_D9P8`Q--Bl$bJ*C(rpg*`0}=|oXF3zreJdk#jf#0X$3Eu~6}Gsf6Q zv=qG%+C3_}-5)pR2&7Uu-{uj!>=-*`a&zB_XOiQJR-Xox1&n&ot2M`;weJo3^3q^i zMXX9pRYmMQdu}u^6y?jp&rN4$Td8uhuJgA?E1GI5%RR3ZMCVsn+UWVDA}hOCx#n$G zTzv(as%<<0R3j^o3R3+A=?w$}GHgW3Jdu9@*s4DJ%k=M0U zYjua&W`4zjhU^Yg$v9gHyG;)jjFMd(#xC9B;)KLNj}T&cT7{5-^r>M^-ilU7Mx z)kY>kClDegm{gRFjg1q2BBf+eRHAVJ%UW3dcaab_z37|XI3 z$R2(Us+K~tid|5Zz2|GG=GP)#B*^2#%$rqzb0D$ecKF0xk9FfKm*JBhDz;79Yqr6n}U-U{-kMn61eh zt8&>Er~aoDXG|t|@F}w(g9K3k_k4AP?I-cWVg}5q%u8nzeqxmGQa2*dKYqpAq?EKZ zIjx-Os3f0Tbsv$i8;GCWDbMe>0pZR(#U>w0E6>;yz4NCAX)%E+e`P3&si8t~qu*^p1iRDy8O8~Q>aK<_$$TdA|x z;pDCeAKsBHu*Ys~qSoCDA07q-?NMd&fSro66Ea$tsZQFOba)+iUh3Ej84pN#&{#}4 z3%EiZ@zxv>d*N-ieEIT+5Lu#potgYmgK`Y$5FC?4b|{Py^c0eVL{D?d=&)zMdcge8 z<(gmpD|G%`Y@cTW!+tKTy~=BGb-TKH2&M=@CHndTU$%HMG=X?NU>2!Jw|eBrk=Rme z*nY6Ej-p_J80qo^6Bg=M{M4W%Tr4h|nT+5T=SK5U&HRIYHPuOwIX74MHR%ucO+2Pm{v|Mnf$5 zQHSPM{<(@X^FykPRGyQJk=T!$`I#6Q<#cp5qH-0mx{N~>h~nf+@Jt#`e6Xg;Vm=$8 z>+mT~S3CKX+0W^D(WrljRjuA);(?EeU>k^ZViF7Ufr-irFL4+FAArirrKygG0${X+ zd=KEM3L3(9B0hL|L*R6;37@YXLL__EkvTe!WVYk~YP2tgk}M?(5$8iaZ-5H*L9L4| z@m!FK0lgQhC)J)|`N3zBEf+%FANSS2q%(533fcx3W8q-;nGWxa3VDZSn&1xhM8}I^L#EO zy6;1x2k)_%eM>pUwxt}8sTI)4+zZ#4K#(^)(_fFCZgL|%xC6^(myLvphzrtm?%lfw=mQPMsL*-ETS+Ppio9anaJap^ z6$l`1X=A$JPC+zqxW&kHK3Injg7YN~Z6dDi zKo57DO)?P7fD_A)7aQAE;{0g~8 z@_QFZdT}6Sw$AXG?%+|;jXe;+ee3w61J_=id3X8HpLW~n^_iWkp#(uQF^#fY(a7j= zoXvhTl@Ms}_bHynrEm&hK1K?xMz?gvXNC&ZVP@dHv8((0=3 zY{KPv867-Uk4Jo8)&~EM8~T!O(zp9x17L#iD5I_D&*!8gM@@-V&(%1o z+}zja$;imq?mA!@Fgh+2#mz%EQ(5>??d_0mO}e!82HWZSQK9mZiI@=^l_3aUR=Z)c z$vs>o{ZgSObx>9*;dq7p)@hae@3&^@1C-{!>qCt7N={|2K6VlQoQ2hFY*n~Nf7`551#WcX{dl`-+oGEFgKHnrd#Je}fO&mc1%10TmobB7G6o zarRrk-`{6e#@`JBFrIUGjzIi;5RgRRno1*KY!zsTiNzH{O`NYWz(Aya4!lT{Nq_yE z{&SzvG11d&CF-`lx_nwO(oxX-pl(Eo$t)=xUTsoEzW5T&KnEiH?L>9O*2=We0hD#66#Kl<~UR#S^0OBBKpIewe52xzwlTT~kxx7MbDFK7ne} zXKu{#sc4v*d*#e&<}ZfFmJNN}o_}Xw?9~jHNJ08r?gh$`7Ds8QGqei~Cf}=xY>Lpe zVA>t@u1A`NuFYV>OrHa%E~l>1P5Sk(fw@A&WC*eyIewpQBvhHGUo;VK2~o@f-wC2l zmyiAO>GZc#G@AP!qyQgOV#tkAgT4%v9CTroGs!aa#X!2>qAdvCPFb7n(d@E+@@L zM!^Q{e7T^;!DflWiZ!(mQdjg=WO>gN*Vv1{{n%?sTb7zrR{3FjerxZx_Sp7?@O`3I zdsHF~CTp3VkBlkW?FkoX^*yahf9})R-gPnc4IHdwJqNdI8k-DEfC z+dA;{-oq{vGs6)r@R<zW;!AGgLFC&@QVD?q7Ze|ID@MH`EM79Pz?cPWjg2Wl%4armlWQSj2069VTL`Z0; zmbukhIu`R6&4bM50&FVpyb^aA(ayLVDZsa?UpcXCu8e;Gd*=zGj$lttLsK1v?xfHW#_NF3?T#_tEP4Q$2jF z7pPt{Q?UPjN#`X9jul(YGnxr`0!1RhZ4tSS8Qwz-leRgnq@F;T_zd|1@MmFOFmWZ3 zshWffOHHK$f{1NmH6C>X+Ek2WUns=640AOFVHxMGGm}Q;|@~39F$}5kZxm? zO>~(Hni=8@gsvdAY!GD67r?3T-P|E#v6vGh1;#i6&iyGq_p608nNDmo>8T7k@qM5f z{!(ZazhNxxz2>5#qNW1Zf;h9*?6gnNBAOEMBTm1O8rS(3pXQcb`GNu}(LM27ok+-Q z-o8Duva*#%)~O$%+Cc3%4fWkpdio`F$rq;b3TC?n@oKR1D}k`17Jt=iLqabRJ@qSA zOAi6q5$r+n;{SSJLP~YPVrHzAAGxC|k*-LLAE2Hi4${Dxyped!k?X_x@h7t;?I!c64&G2h9Uj2U3o>pASNum<#Czg=llI*gCtqt|cZCd)FT@mJ;$x z`_9{>`|;0VNdc<1N+kztbQ&7sarVI9SIhrP<)&PU{0WXWhprVQe2avD)L%4JebHk6 zj_H{Cl~4_@%D2E3q`Xg2FIjR4;^Yxzzaa`OX?k5I2^t}oCiJ{hKY!LCQ?Lz?;}*l? z*LRTKibT-JKez*r4aLUEZTK%OKoq8zBDf{Up`ExP_rB`C?BwLce@9KtgOsAo58hge zZ*+#N<3T#sCpNa97xiAx&_}dLz8$2{$$v?{*?Hr`efK0I;aqK6yPh1g9frE zOT63X=s`)*ic*32dyplygqj+IDx!>l{Y?;?P<-P`k^+x=AN3&`8i;jI#Lkzb3E~N$ zLSl1+da(MEw32EXxOxP>yIxUSs;OWtpxjCu*oM$lDKj-9S&;FU|MY zF@AREx~0Dvidn>FataIkgI-~G1BRjN(CMM&Ee*1ga_ZzDD-2ZcnW&Za1wGc?)ttHw z2iJ)(q(sCLR}A9g=xG-Jp&}?m_XboLQ6=;mm35X~?gpU%gH9|^4 z`Gl90^76zcc=pc~yL1gv9i}nTHzS3sh5pmw0Rk z&><1*8BP4@&oUmu*RjG*CghilbNokSNb{QvZX~=)Z*+h|m~vl-`~!l05Ytx0LuPf( zW&gn8A3Y%yU|& z$ke~TsD~F^lfS433)BtUxp$u{TV4G?x*sD(i00f7f?6aHh5i@dP&r*Bg;;|xypN%V zFMb;uVgL>%W&18LP1m>0B z3urNU4Zi|~s7{9_CsW?%d$=$$nbWN-Y*2Gf6As$o8(zazXOyCG+fHfr!hrV3K(qh) zEW@@*90n9%G551o&Yamy`GeTeKC9v42&BHm6%dyIy z-I6Q_p8`E%S-ndZ6=F7Y2`-omjnAU1w=yzw{Od9QVIBTQO@*jT;OnLwA^+h|weL!c zt2kC1X>BWPE}SsvRsY@|&waqoRI6_y-KShvjYm3fv)whC*gM1JUrY=cbMYqNKCAfw zBpU0*!3Fz?BxLmTXm-kYWY)snNCbX>&K{yk1*Au7_~6;<@jKhl|NTA$)hhliJ^CC% zrQ!Emd1UO&i4nMOLAFsyz$+q;qEjjyrw3;FY4r@=3On41J^xVMKq#}K+oCI_00D0g$t8GfaB5B9rIXLQ;AoTZc_AqaIbb1bfb7 z?kUIK(OUg?Ot&SZdnk(*ZLq4S>dY?wD01oJ>n)tj%x5OL0>87_c&F@P6E``_{QcI> z%O)+gs*$T^DKZKHfl6Z`PtOV^u1ou@_p8#5fCd+(h}FR<@+caP;S*6@RF z^%*c^96m@Bx}cf6up2fe40~Zll|@i9XcAEWY~pFjSWO{%0LZBb|Al{6U*7*B{)!)X zZ>$`uXD|~(H+s7BC-AvsElV@I?We>Jrp?6jD5<~ORqCaBqO7W+N89slyuSUnu@#=~ zH8M?(;0=6e)EkyqeC?K+U{kK+Ob=4s`s2Aec!iAC`oJr+%DpV@8)(yK`#zjbO4Ocn zww0bRy4n`5Snxz~U?}W$*7!N57rf^?CIT~_-`4JLPm>VB-5*2saSVRm1orEiE6jU3M5vdRY1cUm`&21 zD2a(0eOc?)uB9!+n)cpipCST*2|k9yxTzpVi3MHE{9Vrzu-ankW+O*7ACPVVTJ;zT8~Cd!a3EMi4wv8k_m{wgr9(PYighpxDTA;KJ*_9 zZoe_)iq>|Z@Q&49Gy52F8?F*!3y$xb=vCGGT%gP?G)}99NK=b71O0hGMY7zEV;a?FAfL89dI*Td*0r@^-LzKdQA+A|h^E`+`T ze&7Ib)De|zZ)?tOyn9jIpPKbDUEvTk11)=w0y>!qD+Vt-5``RE=T zy34mR{60=~cu`3<5~(x*XTH%|!YB+?3fDlu_s6XCfau50BasMo%_>b!#*+Eicw;ry0uw0t6#WY)!-nPwW>Ht39f3v&P?YkEvtQjSa7~!jUfR)d(hJ7d(1f znuUdgP;_uo09+o6)xQG_l{BA7CACBzXi%_}K(1B>>RBjTULK$GPHM)|F2kRb-9I<@ zD6}|z%wQ5#2rT(i7%x>d%*t9QPD?K19UA zROwdZhcL{CyjgeFP=O1DDFlt0Vq%v0AYpEo!%|y zd$u=l*Z_xiKmqOuaAAbhj7+uK(hS^Cc7AFrLZ8p#_v6ZoZk!WU+KSjEv^DB8jn`K< z(EM9#Bcep?=oAu_0$DZ^c0%c%zR_hwl6eUr?UjX~ro}H$JUJisJL>^kwhs645j}Rn zK3XO29q*&`l1}!KKs`dlKtOT!MH4bVw-G-G2HbM6c*nM^{~mi0Km*2%Y{ts~5>RS= zJQij*j+Bf&fK71UN(9LhlbzpF3+q=Bki0kh{e)Y-8&ocE(Zf&7%0S8uwG{2OF zXMYM;iRHh=aA+w}{~Yw)cou!CGgKZBWRNHhV0TdToyRvp_oz!gF6!(+4vQheJIMqH zKHc14gjGc)^7Pb1ZU@#+=pvN4R)FFd)@Ct`M<(vrVV>vS&!kzu+=7#{Qigr-eF0}A zxdrf1V8N7Cc3>G2=h0`#ejw~3`Jb3gESF|*E4$n3Dh;#t;1iazjJE#f%d|3E+b^cP zaJb^0qv)=w78-u@&nbulUJFoRxVdL%LK>l!3LhH~1q#xJ((C6cjb8Nhj4-^9 zaXHRR&1`e=7LPR{JHq}|@}43=zaTY2&gc0)C((90g5URdb)9(Hcq_)ixNjbJO6+(0 z?nS0pM9CUQRVQ2A9=j#-WQ!<`iH?Hy7u0+r=JG$ zoqElvBJ~QVy~!h4IiImDf6>v|q9kQIH`mkG_lZu z>0zI~F=(q6Mg%2+$hcvoXYTziUfa23FlrI!g0Z}ute|=Sr{j?wL}QevG_JWh<(7ic zCM}WCIspCB?fVS$9txyZwJESphuC= z#r165yI61QJO^rFW;&yHy(JCt?;opZHkz389hFRoGC zy1hLCriW{Z+NL`)ow>IjjI7voRDt=LZ@_s0E$iv8aiLkcG0$^vvpR;XhuSBTKSsKJ zb}Gz#I8XFhcmJr9wMmA?K+EMrDDSJ>S*-=;o(rTl+hku2U%m(b`Ot9=QpFEEGn#+Y z(`Vm%%Gy;>*-*oxdzzAu-?jaY-B(K*vb8`=mTDEePW-Ha_EUahZv@%k-hgig}y; zxZ-f1!wt}^JbQWG{yA*mMu6;#gj=CYK$p4=Xg=_Gd`6JBk-7{BdWTgOnec#>&Yw|( ztX8`1_C%SDB9hE)Kmr;d&a-J+O{oU7j9f>_m`Hq(G1)h{$70+b^Td`(!94 z&?|pzVWu4pY%brTZ=#yo2BZfmy_seGZBWclb!}SkjEvj_xzTyt%4jrL`X`BnOyIc@ zoDOIM5M;FhtSpI3Bv(6vJ%S`Y;j{}9L+Ly6~S8Vbm{6X=+W z_e8>ts20;eHBWvGRI{C6$0c!xai_Z?L=*C8E&yYT=-N(TI@c}yCotjcNOwg$0}47C z*FFFfqLn5YN`01d^TUXNBjJS6s8GrOg&bx;PdAEGZMM{+CE68o6kB_Z8?;bog+d$< z5>+lWKk_eL{SR5x1d$yUduem?26gq}i3u(~zS||&{_~?LPLkSM3l?*l`a#c7*GFt66D95=7znA}Tv2TIj?(vBe+pM?r zMGp*^A}qHOeiNd?C-i|{0sFOAg^)zRZA%oyB!2@pI|1u)TV4waT8k3g06h}Pf*u{D}nE-U3=SZE3g@i5y+}|ZAc)r`|#4HD$17tuk=srR21x!!HJ$m#GO92cHl8j0_FFnIh zPVg5`9DH2NFh^oh~7-hEK&2js_x?h2><|>7vd#(0zl>Za~pX4 zhyF*h2)=~>#oBwvbG`rn!*4C^X_WR5z0n{llu{}*kdZBAy^YAGqM@PWR456R$dv!F*+x5q}-9G1hqWAkX9?!?)z8=s;tbjWQA8b`U z(vJ?I;lcffU{fLlT|WM(gu+>dh* zTP+Zek|1q`ciLt6`SRBV1&J2gC#~Qw-e!v~-vy zp<7{0<{Lj7xCXlrDJ}u6<0Y`xFe4yn5}q|&lR{#t9AE{NleBWc*xa4be+WQxF(q%{ z7h+)VHwy%~Vx*Y*>;ry^z8~6fQf#3y*}g5V88O`N=eP_{g#JY<>$ERU2NeB(l59{` zaERu`k7JA?9G;$M29l!45D^+0+BY`I09Bt~1tWT4!`Ze)zv|hGfpuGk#;fzlPvolf z(@)eqK4yRY<)dp{|51tr`Ft^33xtzn%@jHJlVX0UxbO_Q`)<4)QYtD6Dw7XB2`Sja zr|5|aaTVzbUtpDWIP^3T;ku;h-KAz~uGZBbT9l8FCtZsGesnQ}WaCP{#pd132Up{P!0XqCy}Yyd_fODW2b%_- z{bQSXzF}U6hJ2Tbin2;D=3Mv($odWC3j)3bxU6xJz)Rq+zs8_Wdo#cEF^@_PpzV=_ zY6%zt$k3fgcY|^|G+YjAS!o;TRb(DR$wk~4@3L}u>px-t6P~Q03THJAH`2*q`P~H9 zaiqaG$D_*(metv`I-Y9DuHWt&&ZtFf?Ztt$!?b~Pkdm) zgSSvH2^sC(xW)_HkYeIQ4if$n2u<*T(I(9bWB& zc&Du)6C)Q=i>#!KqGa1_Ip=ZMpk%HNjRIa^ySv$BKHTTb*d7oV41_NpVfhB4sCYSy zEVXZ7Q_xSnc5m&5BaaS*hjXnfS-}gv(mx}Y+S|<@U?JJQ;Eq!$7eumh_hnTU6R(eg zM*Cu}*83mg(>*i5sqpl!N6PnLN*X_ z=3y`DXK;%{5@8uOWDc?cdec*>DOk>Pb%YE|FX}r_=|6s0yy~iHF;34-enkNyytEJ; zujR{EulBXy{H@GU`rkRqKnQ0Pzx0B&8fXKhyy1ht!{9*9KwB=|iu>pDioeRo$(>cx zDq^k5KYF(Ye9ITFE&Q^M!L}BFxP_DVA!``K7?i^9<`NEHRs_0?Z38&53YJgQYc;*r z$rbP+u4>v`n;n|CNTP(o{%Im?RN>%517)LTd^DM%1h|F+<6zlXIlW;+hFa-N;yTFgK?^Bzv8z#APJjl4Gt>sjh>Y3f)r`h zPv79z) zn#Z_OhJ}5oj>Y;j?75f%-|pSMJ#irA&cw83Y7ZBsEP}q1O`ElC% zpR@jz&fQQ$qClb|V~NmKY*+$G_72JP&v0VmGytM252_jek>7glQI&P>uzoXUUw+=- zMhm6iWsP)yAfIlB$r$t#sHH-^1d z;pqdvMvD!iCQb%j4Y#~}E((1`SQKNjY=bn0un$Nk4MO{K8ga#lONkZUz2OLMFQM>P zJUutW-x#Uf$->uzpX&o)|91KZ6y6gw@J@4Ne->`VIX@j|i?E)JDi6$at@tzSEAWiK z>H1K$C5ct(4xt*%iO4CS=uA91)~}Y@e}SB$O74JS`ev1~M3u*qFK+N9$esJG1z0K} zncoQL3QfTUV4L`Dh(e;|DsT}3XFj9oug@O)Zt5$vY16!*GFsb)Od5sY<5Lv_04mR$ zJC~6I)>^(X#o2l(qi{V#9@XlRYCb#hDX z0OA4RH%Nj82TGl9F!m6A`1ZNL9(7nV^Z5cNy`!}{H|I}xI|SH$-K!(_Fj7!((EMZ! zrZW(Tfm)6IOaAS45tY*wIyk8fCSw|>_>E>~ocIg}n5a^)(&_35$v_(rH4RZfn%t%i z_dmZZ)X(6~gU_0b6U@ej4}+Um>E4APXNVc-pMnEi%~r3LG7z8VTp)HO;_CTu4nez+ zeF8CzFOYuG;|?BITI6Ug4_4Bm z>Dz?#8H7n*!q|ky8Pg+V!Q#*7=#TY@C?dXCM-1rLzPmwgKwA;` zjOg1xX-C3f#+N(WFXL9pgi%dYWaEm}tNk7czMVYewvqE-zdNttkWO`jNR+achL%Ou ztU|7XMZ(sp+_^%c9x>n3LwrqA+q|Q1T{4;Qk;}d1{P`7~8%46EQVy&VdEQ;-B(>br zQS$D#zht7;&nb9CjLSo2!9*La>hh<$0zmby zpfW6Ge2tl`D~VE3F`h7xN0L|}7!_V>ycx<;cK$;f>*MfDGtz86omY*BQaxbR6IR5O zTl<#T$8Y4F2sC&?o|JA91OPlwbvxtZfZ3;7eV~|=TQj&@0_g8X>rA35`Xg9AozQ|7 zS+LF0Y#Jofa7+>ef)o8=nK7;AL6g^pIz%s!!62^d{T*li*~^4LJe-yMOr}0WiWq_W z;PDl)@75yB6TP3n_SLEpm9))={t<@zqM@NdAxs%U9QsqyI++>*GitsV44rR}>n6WS+OOWj^6H+^FV zqw};#EIK+Gr%Tq$f+S4o%GWAlenGu67YR?|JpL3MW>B|PTs#hHR)qJOt_ev=Ub30Vv$a0p;XO^`RRS@eA06flR@yZ& zGpNWhZA#GSnqpwE3_)(L$kg~HvIo~V$g@VrI(5gxRi&hrFUti#D=Iqp>DW||0^vJ@ zmDHnm5<4hXUujkGAo`<_no3)1=*!rQ;6tW2H6}+FPaky(bC1~}kf$g7{{5pjUAtI` z)7jn5eq=~?RJ|{&N{XqgUdw6tW{SOx{=|xi&No5kiv_rJ&BcxhS9dcTk}9liKbGyg z$AnfozwF$KkLiOD3AmMhM2sS>C zQvx=f39~0TLfXUpdZ^$`R_KQZD|0fP2IL|Nc167`41F^q$l;P?8d(~9{L*LXAmLd2 z5RcRrqr4VBf!?xkScPa1BqEhGnb;hLF-S2?IVCM^J`Ya;V4PxLvx;4BXWB1@Y!&zg zSQ#=l0av%Qv3U$R0f{j|5k0K#G~FDMV*h5Xh@;!u3f1wFO-B??gb$V|TRhDFIIj3@ z%7TFoSwk48xHj`5=eg?fNx0SgBUU z%l%utQZKwNmnlqK(sm=$cJ-|6CgqQa5K*yC-jQt+qsCVbhk!x74{FipIvx4n{jBS+;p8a3HPFf*RKWG&9 z<45yZ&j`&8$&YU&3P!HI$iEU`w+Se5QZJ(8o(}9X_;(J0LJj!#XJ~cZ^G`go?`a~b zE)J%kN*0BRVt*ItZKC2fSu||55nl=as8ox^8qfZC+tf}{h-JAMg88^*81Y3Atg0$wWp*sI4070BaBSdNEqJXv)@1Q z0Z`O@ci=M& zLJq?#JwsFGq#aaonmUIfZZ{bea8$6`DU2nW=rg=WfMsml5;{>{h+=% zM9Qw9tJ4as0DK)qbP)q=n@ab-E6xX_ROL@4`~3MC+S*1{7i&Z$W;22{qCO&gs}<** zfng64DM(?0bqoyRb9jUGI~PL>!GLWjzF?-dh)(q4PK4MJXT&K$Qg)wf za+}8nla>CV|Kkm3DP*kBQ}Nc?PZ5H)oy_ESVRKu?R{udGeeCFP4+>g6<-$3X_jvuh z>FFYgkPJm;H939c~wi6C2OimQ_ z7BtHzKyMQiZr4@Eh9z&s*u|&@@)nJ)YT?DxW8c~-0K)%}k^TFGTeazxvh!!GJR5l8 zY{D<$*%fBF@n(Q6;|x87*O0y%S_f+Ych2*h^)?>WH!v`u?TF~HaBz_a4RiJ>7!RC< zxfCVPJ)v|b%K2WF(>|-83KWkxbQoa!Ua$5n4OLtXQF5qm_6|HUXo4>QsXE#?gepl+ zF+*rM#YVR9c=*V$%gbS!+%t`)OlQ6 znIt&4G#3GEP%;}}656MNW{GM`o6pABc686k(w?B~V3b()cMepub%Ll=#F%CJQ?zg#_-okSdQ(J;p(xyY4@t{&DiV`@K zF#6wg19_|uzXpB}ueew}b*u5U*U?p@m-F7{EPX|a5r%{LF{msEh?i&TcwWBD&akks zu<59feg7M4@k0LbYCMFn*ggmiy+ZRVuqs+Xg@z*4=F@!igS-%l00Dc~+N#`jm-=Q{ zm5~Ls5dcJCC)3*vDcxdxBK6-YY6&@(E&lYvzZ^J}Mo@TOt zzIpSas3@w=DlhZM)oFNSdM~f}7aWsTR>xEeK}b+zeIXkfGg$gtFg&r7(IEGPaO1U= zZxIMkSUtq*-J)o%99MB|u5`_xlHDXw^K|7g*)c25qG~b#2cXq8wKi5&F?uNQaAtlF z^0Oe``_J3L+i3~Je?olf59J0tjjk<=GDTyLR?r4#M6tX?Jib{{s&!R#Ow378`pyU5 z&!45VQhKUY_U-?S+ssZpG&~-cK(xVCW14J!?AXI#oo*B>#jx-|@fp*nuYy1UwYJu* zAH(W|jX)}S)N2klXv*C&{);C^`pSs^AM>v7&!(CI<_a0jlx9(acO5!MTAl!p2J+10 z0OmlI0IH}L%W*6B{{R#`W8c1g6m>=^|9H)CcOjU>i$Jl)NCeBx%X7mQtfIzxo%W+$ zpC-kFO?$QL6Wi}@-r?!2|D`*{(y!zqVpK`4oRX4KvHvrn893wd@9J13f(dDTc?bX) z)U~;D=6E9RqkEH^Q7KTopBE@pbc^-${5K-}^V1)^z9<*e@PuLH;jZ;OQ+-~FnVIOf zy#`Pzin1)YIo5I2N4|R%Gi6psS-iEijDEyY<J~mFY!=CU237!xM#sXZ$3C;{&v`o*vl>8T*vac| z4^uA~{m|HuzW(YRZ&|0|)av(2A2W45QuY}C#dlRLp7Uzg!*Zq2cT#~Rm!_0O76o!# zjZzBRYSos6#_(Qs^-U*%!?D9^@v|0kd~ezk)pLIA(y3S7?^{A^WH_Ja&4?T}j=~>2 ze{b@s!M6ux^rhZr%##}X5rO|!CpPf@h3{q={p9Ii*Y-AuqO-R#>*qVWUruF>UFmL* z{r0`8Ys7YrNTpi;?Iqma6cp{Vc>38Srv&vgv)AgZ%RVMl8mhvv&Y|~5Nz~$bPfCZD zzFU4+jO~@XZjGgt)iLOwU|q z29c4GL3ddetu29HPk_(f<6SXpJ}X zXe1ctLUeL@ZxCGPGk&1fCW>w7cjI;aY1vJ%ufWXk*Ec>P~aA_wMWg*_>Y%GcPnVLO9#sCx zxG_x>Yy~-PRfn*I!T>P=fF38(3USgi9(uBR-MX*?BRI1*VM7#kFQ061++D?yTQ3=% zUg8208X;>;fSiBZh{F%{8Y)|08rt!MA>d<^8;OCAw~UntJd?u}^!LP#Xyg+#%zaZZ zg@c@QiM^hxx=zwfmC_Tt?f(ojKs-8Yea_sLeUM8W^(p#jI2x`hS}x3&h(F-QRk zCfA2m3N;W%>Wf6vYD%z$7DX$?@}Y93_U-(O08oKR9e9H~k3~uc>;_L>8wrqfyhVCm zRNXk7OcBTN*)|ZYg;|4Ev;ge(7QX>j8~zRCVQ<4l5K8R9iGxmYx35zI3Ov-FahC6; zaab=Bw=oXu0;fP(y5JLVno8r!;+js*LH}0=eX)*X8>jsF#65uVaTWv9pm-B#_{;*v z|N3h#(Y=r+ptpI9wgH`)CEPwcpgg6O>KfXTB?2H2fl|XX{^K$ra{M3?SyrxC!EgmH z420#7rRCE~>uGtiIu8!?9i6)JMdqJs(t7k~i#F=fBE^+Brcn7PNdrMI2asbAu1p_@ zFj?nu??t@>RQ8dblbuQ>ifFdEi@;pBL zZ6BY#V9oJ0*;e3ChvVyL-5kJQI3|gnVW5R1Ju{#}wiVdT2JZm1ei6NB^~nRKAUTq( zD(f+6<;ABF8X^wX*4Aj*loF@t^$aeu>e0?Ry(m7FwdDbxb)a!9hdsa88}?n0$>TOW zL2u|&4PEFkBn`3vDiH@q%ssrpg@briMUZxYKpO?-LskheO04<_0i;I9Gnxa&k|j%M znGMtfqAd}3Jp5K8>Hc7 zrfs92Fj^;m7raxkAH_W#88zGCk73|FeDU&S)$5&9yFo6PKHi`x3XnDF`>uzN@Hs#t zAxSVGG*|H#Te*w_#dbr#21uuKE#ursZO}Fx!E`y3qxzPRXZ{I&SOOTx2-CckZqEX5 zMRWil&G=f+hzJ2_lb)tUomgv*91eg3=)m58`b0j3;^Jb}&a!Z2CT<)8vR<7KuDza) zoR^4^J6`V83s<&2l?&E~5f7i1{F+!7>9IFxUAYDHF{&Q`0s5m9M6|7EcA(Jv^v&Yc zfom7yQa8DQkpTUXksabIU-azqo}Y18vUd`m(-*b1i;RrgS+m~Z#sgwMg47V!!0Par z$3Dt{%1}tXo0^M?W+9*Q-fyRE3)``-@hi7l;SF>R9_#dv3K&T#FN)qDh);<0RMT;ELrqeXm}jwZA;AUkBff{01B&2H0FsDxq3pK5r(T>p z=Mj_F!5PUf$AdYs_5<63ueXIqE8KwiO5t>#6LuO+_uTul)$MgwS|IxppKrp0>Q1Xu zr{Ze6yM06KP0K?(8oMB>Avv*^mzPou`n!Hu7C=Dk!#fu&$Hhw2h={jm10^(t<8Vlv zeSn-HyU~dgM-P6{@GH|gf;%mZ6)111nrd?pP8!jB2$Ms&4z$X zM=00MaYbFBoz1v%h2tYG<8#@f&VMNK#Cad=#=oyDEV0fIpdub8)os4(n+< zJTyM7-Kd=uI%Q>JLmQIu%?LTAhm|7FKV`vNLB~GsAi)4M5;{0JQPwyL60HKoG`v6lVEJIXjrjjOR`+> z7_)Up$zqrTz;(~ysJ^sp+o{I}nrH{NK}~?<9x6wa#m6bv(rf}^2MVl>*yav#hM8ky zQIQ8obyvzog4E9sRkb$qx!}d&GZACkg@0CQ9EscCy?=jBCx-nUo>8%SZ$S;iLWoJs z*I)9%iH7<7T(jJ^NUhZQ{D;2Q$#s8hYpY$Ju@oV*TNzmRom3lwApws>AJlis+YZU# zOs8f7$0GPZvHC{GH;L-Yq=PN5Ug{$W9Lnj3zyE$sEA0%O_4FPDXZ2xB5va6>NIy8> zD3ZW?Y;1){$fMGn zXl=a5_yP+!I3{uM)iV5SU2fmHwH1eqo971$_zose7#2=NP4j-Bw*3`H4%cc+Mu(tp z1$Qx#gD=rs9gPhG@~2pJ-C@sn|MG(i8hPWLwm=LKmIeNq?Qaws03E9JKq=-TeG`u) zvod*Z%Mj3<-xqh;!kElK9&!I0=#ywyD;gz4i!SuoOTHJZ;l2r876F(~F*XzmRshY> zaqbeOomV8#IUcr7GtLz~M7iLMOg6v*XsP7$GOV3tCbP4XRt9^-5YGD%8q%k0Voo-u zkzbX}53IzxkAebf-4B0j0g5})5Z@No&TB&*B_a2?3Z+6+R-k8*@%OD60nOxMCI14 zTT8Km03WB&KYuG+Yj|T{!Vr&AzAIP>&3P`q=2VX6zGYloh9=7wEs_O?howGKF(Lt? ze~a`b)Os9}M%aVr!xIT*@Ns|<-aDc(0{6XGaM*I}ha-A!RDeA}W$!+Idi2;(Ex#CZq`m#pGe=>gxKLH#9b~q0Qj{&gyUgHEM!;p(Jh~0e5h+VM-!o3s4le z8)idbC=bL8LyAX_zQ$=nS<{qlf+o_SAm{FZ5T%j3MWUL{kJCn*GqW9@zFuYes47&2 zxmiwITEVw0)I0M{grf0eby22_XXADC*yCz!EE&(GSmLC>>C)q^|MH?-?l8-HdT`c& zp^DY%;84YNT+K7L@(=Ev!}31WTN%o+-OgJsb(mG*zD$CD_>9_x3+G*oDwvka9W|mn zOE$}$O%fKc`^=Mg%jFo`WN;>;_gz8(+a{1F0pc_=w&80C=7aAI*$5k1dh#>&Ns~5$ zkEO(7B-*fK8<1Xbhjx>N#Ya?k(t0Z3;M84{Jqf@bE;5O=dItu0w{Q1H4iy$f=^Bce z$Lrpvtq9!`v`nL#ehGKLL#- zhP7#EBrz(!f}v!gD9Z~g$IY#iZfEifb4rCj&(9s)=XiWuHaluA;{nvlV)X#QUiI1T z+I6nz)N*?WHQC&`XU~N3XWO>gI3Y+Bp%F&QjAb@r$ej&U2z)dcrJe4B-l7kl8s>J6 zUUs5(Of8z%ujp6JS{2*ha6iB3NVofuUFXi#r@FbnD318BU*~MC#)+YV0n=^wx2b)r zf6J0Sleu6od)pYBT;`|ZS#HIddxKZC8Ab!(=wMaemsMMz_3-t@+@nQ@2UIF{w&!@5 z88me=-mG1qK7F*oq=?7;eov8GCH&?mscwZBesXR&YA{qPw=_(3dYyC5{Mg+*sN@h>k*|QAb(%B21b^bIunJ&OaD9tojK|W8Q3&Xql+;DzTVc|9G3CnuZ+0@j;86f*a zDeUjscs@)hkqXZI<3A=M(7eWQF(enrIXh|Hy8)e={MD(!cU8vIYxF+6id`GMyQXuw zb3IEv-@NZ+M(-2~&%+VwbMIC1$!0@z?xZoGV15MfxI_NVFH$OnZAUu^qF0Iue)1$9 z@B?H~dXDC_^d&$tRh4^1#_gDx4fy0j16n_<_FtXy+oLn&f2-bY#*D(lmJ$E-%z%g1 zCB`%uYGn}>hZ=|j$vEC4S5FT(5!$Gw{)hHKk_N8_+3JQ)TxUMWnL1gfYPqPDe|G7i z@wTGbh_RaVR5O0F)OhkVHgDNs?}~F(ti&Zqr9{pTCijaVz$+`gVdN=On&=4Kr|8-G zY<~HeYFHAFcFY4ajPuhGSh-M_T!C1F0BQ?TH;yiIX?2@3e&vtDGpihuTgsP$_bB+Q z!r5w~mf{QwQ_ha2Rd&J4g|UF}3``_DA(SSqBLL-xz_~s*WsWTK93I2pIF;khfv0U4 zofx5&9ZGFH1?2$t89?^2*(9zm8tgGCzXEIb8n3z6vV!HRn5<#_{)ji9nmWQhp>rc_21hb_ z1oY_j2WF2eLL4*!QHUqw59S{z#xt!N-h(eVu@qVqKXV&#|F+J^$Vj!zrm2V2!u7vT(LK)>|b&`;ua z8eTWViC09D=)S_5!mfHGaOlEkdZa^i-@aE$vMu)_~a_83JN)h7$h8;L0Oqdde3QW zTxxG`AK>_L5h8%}OtKNbv&`j(6>dB}87}V2j;Jm;&-X-Bz6BN;VHF=2cNgJYXqZu) zFT<2fCk?KK*$q+nMbM4jrS;EZek6^<7p;iWdWEH{SnRfc%f=`2D=y|dT+2MDM=Ps(q4c`1jC0#2nt0sPIJoe6>8yrDgoD#t$IJFVeD8q+SGa0~0iX(>{&eK<%WIm#UMGz>AjH^-m8c(7 zFg_FC+;T_66?>)McXrBKSVXstoPL7G2(9158~~wA&h%E*@3gi7)LkXZ@75$|-~!ly z8LB+~$Pn!WZoo^--9j&mz)Kk#9!OG_ku#nM4#DrI1p1EZ`cvb{k*<`BI%d=8e|u!+$^|)+W41lOFs% zG5NIyJS!x#LM8~N_Vdu-LYkQmM0*!9TxiA+uL9U20;ZV$I~qrH5_6y)$JBQj>?V*% zQtD#X;*TdJ68n@4(4L`c`2i9{Zn7*wApk^!yL{6TRrm{zq$F-2HTO1~JOeEVVXIK$ z)cc@0;qeTClm_YN?hu9|9gh^ocqv~Z%??d`?e=jhl_Mi$shvJ!2B3i!%uTd2ob-M1 z@)ypZhn!#w1_R2Wp+bkSZ`bC6S%3yA-+r`!feTk;BjIcHrtTV(5Al>Tho9~XR*D7g z!T`-8CoO&6KojT@W=?qBv1#iZcs$=x%#_yT&=&#pCtQF3{(V6yPaJQ@@jm)AU&UiX z5g=H~JSzuU1r6_V0VY9D!K}AFk~ksMI_y6~th_sDUHj#B7a9-0X+)_K3oCyLp?Kx^ zoOB49fSu>`>#?rNfQHT|25I^D9qeOcV`$H5-3n@E*ZKlG`-6=r-I`fqK=PV0YWuVb zMEL)hdcwOPXM}Sm2Ma^aj*26t_YsZ}U}H#y5Wv&@9O17iXGX*@ORd?qZBeGqVZ4QC z5;)y&dwa{^3(>mY&6_KfhBkpe!QDXg1w|)y4N}}eEO=Q$`0<#5t$ z$&)8-TLFFI1k^*oASUWk;7s@#R^m7gGMa9oaY1(hM8E?NtGtOTKz5}>2^?<)cqNH7 zVL-J`7$@e5qjeLprKGSsHA77~yk$?!d{1`*G%3OkraVcg88)*jt~_|KqN6(IFrGC! zFaYMM4vhkj`33?*DE>(g?#)J0DdIcRa+*Vj4uvW+B_$>4{Gn;2F7X=Pyzl@WMOpi* z$BBay&6uSMN2Fz7!7J+sP_@5SQ_>-~!PG?b*+oj`j!^QEYP10pV&i7)V2` z{~Uz&mpo-Y?fCpYF_@bLxtC(B!YmwCnzE+|L)=pnth9!{PYGmFVVBC_GBRjI>L_yk z(o&2W7#hZ5oCO@?+2JyjFfu&+1>t}T_ygJ!aS~y-w_rU`tYSEI*qD-w%^}-{k+J-d z3|1pc?#Ik!X=#}QLIamM8meKDMU3 z2T((*L#q#a0j?=VRN`#JS_ax^g4W~_1Puae(MLVtNx!Tb!Hdm-XhlIsoW~k<1}w_$ zKrb*BBBWv`Vn{7dosy1H{m|1xONTIK2I1ANh(e@G$ za55n1{h!9X2;Q}0uSt~z-S0EJ8{oy;ahi~B1%yg0G}`GRYYIi22hH%A@RV`@RstSD zSqAX6>$BC@e-zvdVyd9;J9soX?^|<+4&|M#d$Ig2tWYRq;a`~d z5nPAfJ;G-n?@#+rita3MpKnZ2+9&M{DnmW%5w1t@#IXk{K4y*w*4{SYIspW}a*s3& z1Qg05G;o}Rw26+3t@01lA>RvcVQ+u`^YZfB&=TStiCX&!R}S?Ny7&5n>nTgSV~mWa z?%bmBN&L6}&v>)>KvfTvOqw3`na=j8^^rd5PkDKHC%dBbLtu)?l_WEHdHL0lk6A_h5dWgtA?hvXh6%-B<+Bcj+I8Pg zw>#@Na>p_2T^y%c%vdnd1%YVKfhZo$bV>{^f=WRlc+=I6+mlXiL!h%qQ=-YOK7qhN=#j-}$W%U(k7pQ7Lq*5JUjm+?4W{EF-fI@%IEY-kgQ*cT-@Vh< z2R^9(?;v(^;zIR&X(RjU)QsDno^yav+|GXi|8N+zq`qP}Vq?=zs?0xx6OTcME7chs zDwssL@lOBG%gtpweE4wT^%}^fHeuVGa2M(#8dsn8s;1kK z=%qFcAldH&CY{U!>C0VylvzljG$C8CPU$3s1C@Y&%Z2N8W2*b1*-|z>@aUuL`Q#-? zFnR~~Z1k6kq2>#CmL67E`yW#KI15qc|2%ZeptSfphDB4xG!DM`as`Wz9*I-9D@1*N zdM039SOL`yV|~agi`8qSQbFzq63CTvZyr~_l7H`(l0Ddli;ext!pAqPUj3YPK6&j) zkM*)|OcOPTguip=j)5Oo5kTClFq6U-h1lDRO2OMM&h-`nK#%tx}(ea6v)Z#B@r>;ae~XkbYY-P%LgT0H*PR;l`|l5-L{|o$i;}YKmi%@gEr8a9e_Ju_)^WN;&r4@_RRA zmZLTC#k>G`|~qkZ!xbbIn62(|uF zbKFxUWgH_t+6Q)WNfUrhd(}{!v{FwI%5v1OtDYRqU!5|8z1nd%ShZr%2~GFhS0O3; z#V4qBjtiRWh2l1$&w|3V;T>5DlXRHnO3PnUP0Ag)`5wN$zNndgvgLT8(?@IMUpzZ` zjdmTgJ%xC2$H-?9yfMSDxXTIIC@%n5NUM?Yvg5qt=}Hd=MO=h#*0?SqtVqn>rxlK0 zf*MsS0OR2fobZ)FHo7audEkTyKT}^n!5h@!2BvrVH)MzJ1-}6OE4vS?DB z6d*uH*YfjE9TvK2648AUoFJlUV!l{4M6Ef7MFBLSMi3_3s6I&W)Eqd6Xj3GR8Fj-ZLu`41>Ws3Q8Bg*33$G{Ks`G{z zAztw7l)PlVS1(`sxI4BFx=)`yI|Stuhtq;3OWwdmtS76}oMw9shwCQODnWcV^xt7N zPYItK;;Ex3C)3ex3a>dBu^(HQ~QyM8AP{1ireVY0xyRZ8Cwv zkXm-b<(Tvcgojt@CQ6`BZ5AFo>ds15uU?HWI}5=Oxj3|GR|lGZvRg99@{8g^HGtrC zP=!8mvpEydbB*=g$);>V0PN>l7MJ8<8)X{XxR=XH8h zGOu-c`O}hPA+bZ^b-gOFl3-nPD;J20SFPI?KZq}MuaE4Fo&PYcgGngU-5K+ zuDFqeVbWZMGllF{;IRN?E&>w)I%ONu!cg7~44wY^n?sDtGlSgNCe7e6sQ++^YcKFil8$tTL zqD;=PE#BLD80S2+Qt$i5>^Cb(TWhh{OV)-hRQWHXjm!m$Ig|Uyvhk&A+bwV1q$y3A zw|tFq^prm?SJ>dcdW*HU#L$BlyK_+WDHyM6JJoh_chtJs#o|iQCz$i=!8(lE%G$ra>y6fSO{y8Lr_A>_v?g{P;2%?w~`(?!3hO6JdbxRs&>@d8* z!^j*FkW^jy;zB24SyqaPB~_S0RB>xESI>g~il$XFY5*H5ZeDqLd_xk`J6zQ;d2Alt zTL|!OVNh2I{jpn7aUL8dYj6zv+{=K;`*Y$bsE-?z3t{`&OA_<#8?P(0RUyGQ}bRCQV?J#{kq&hh8h zZJ&AU!l}yd|DLyBrca-KG{JZtF6ZQTcXZDlL#|>47tEM_*G6;pAbf{cx091!2<^#qvBvN*VI9Cv4)5h zsCQ042&DR|Ej*`%}g$s~JB^QOnS$Zup8oo&CV~@Y8F= z#C+gu_Nfc-_b&ojNSHOSP};=W(9kk@!K_QoTr5$)BFZ*0m>-FnMFuPMAec^ZaK<{0 z?Ut7QrP9Dsx4)pMqj4I8{4iGf0Gwv9YI{@s6Us7?Y*Nq-1JUTJjK1Px$b+HBEq7g#EVHbU@AyHhb0 zkRxIZA74;)Cj^bW;^Jx2R&W*w<~QQT0jRv1tGD8RL9e2^Bb34z4sgv-QNhxt1Cyh{;vR*@7Tqj-&%nGXD|!jd%{k5*U_iPCM?GtMq?a=mxF-}hNqCs;AlA# z(gU;2Q!w|`Lc+Una&+-(j4_)~V^osxu#qYc`VX`SK{)h(0LGG=^J~S?Lsvkuz+3l% zP7u1P3^s4v&1pkgf0ppb=W4pQ^ykv=fto#Sr&{N70XO#lj?NGZ0CIa}jME z$O=q3PXXg1*N$IMuoZ8(>hYI(c_`Wd6%1Qn-voerl#4$N5GK?+Yf-%c6=JM)189U< z8~g%kT;YR5+lM^LM%FkCLDXx}24??5>>PXv=+#RgVqn{fWp{4Hz5XD|A*&NcqeqBS zkGR&w8Lkg;vW^stsncZFZmUzJ317gUe4boCZ3k&{#9@L4d>FsU3r` zdSYJUiNfQ;zDJ>%QTQ=_B`E0lKa>CaTBE?k`hUfL<{&0^T0Mh8iIag!j*l@6pu3cn zXfQ|?)6`V;m&S!i;EU|mRbuKxM+Aghvn%`Y=NEVe0ivpoB&#e=2LH}bE!3_#qM$%9 z8Gf9CFMRrD<6CrZ=<5~?7u>pap(_dCK%`jy7`9SZ{OP;CBK7o^Z;(CHH)`?Rxq70z zLd%Sq4K8ra8^p%q)TlKx5-L0W1oyc9dS^$69OhNFt(XlMsD)TL{-t#H9B-B>(i34h zhk*kul}Ou-@$T=bymDOPo%P8vMQ5;U7b+4csel`pBpw7B6`7?|`N9lc6eN$xPGWKlaR%C3FLXAHH7LMCHqt-$C zvYMASxS|txn7%VG2zW|LFcdSl_O+~uO{`6KZ9DWD@j=hJ9htsM@87(+3u2K%vt+TL z)NpdR0E41!Gn9VoF@ROf1cj)1SwWP7w8R(i%6R`?S|xqd>wxgO4eDBrU9)HBjWfA9 zIoa~AR>B$9kDJQ&uDyL9EcJh37=o| z*UpKHjGV&48T>k>MS2@+4&3vpC{E1NS;a*_&J_0rsf_=P)a`mON5Cy~qj0ab;!;5R zQ)iY8JXk*NGyv8%pO=_f6e;*s5G?$2oPXz`fyCVhW{6LZ)wHQ^cmIwq{yBgnYKnG0 zP%=P7mmHT+ya8;dIEK{y^ZovBglj6pTe}B=sNcr6G)TYA*E+!FMAaO%0Hs4^o6p=w zr>6W6xbbXN{WZR-gl!Y+`krRjZ@J97GehE7dT>(cLmSIo9x*1TD|>q7 z3OkRk_n*IDP1_!L3Y9kPRG53h$ndPom*Y2H&-D9y!JwlyceP51wbalVsfn}Sv}XmD zTm}T!OD}vWa`xPee!Dt6Oc;0@Cgz|mC<>bpjjV5V3K4)QlA-fGg_GELS52n(Yd5e}NBi)l+~2`I}KDW6M7zs6nm$<`cKz8D2iV ziKHv+-&C6^V4+%@?S0#JVm6bdnH4jwjBDDzD~$oxcl;xgaD!%V9uA_wO! zSnwSE3Q;U@^|7qZV&KPe9lvoYG%|QD@iYSgZAZQ@b~s+bGWm%FSW$cx+{U!Q9rE3e z3A4M1_Mqghc+6ZhAHUogURE<~oT3`hhR>CU43FKTNx`26u3f)=0s?c=D$o`>Z6LAI zS32bULzkmC?Nw<(eS)f zoCmPa5-Em37;NvWB~v{R;RcHW&`@=u5bWW|0gXZ_KZsk}!fpW;Umk1guSwEej61Rb zq9#CEFlelS1Q+-htd7@!1%f|7`MBxhQ}wX%>A`ywQb<__T`7U%LvBT5HD6r zip?3FVtASEASNyz{SV%nQkM6K-ywL4+xNSwB@mK~rw$Q7JP2~WufttwYT6qs zsU6ZGKHJD&@r0Rcj!x5k$?D!$dg;&nM>Dqe6~^GlEj9nz;`^$2ov@wdU(0Ks$a5@O ztXK0uXG!snh}Si{c8w|fd3{^TKDXt=i!xpBZ@%{BCaKD%3ixg5BTj!=r5(5#Tgl>7 zx#K-j-w|*&*>cTc-)sRk<%Fd*_SV+VD+;7dkL*x01$bfDd-{mbUqpIl9KtBPcrmuM z2|{Xv{)|Rph#z_)XU(3SBp$st=oolJ;-y%A0vKLm(T72bt=F3Y|1j2*nOQYpmwM$$ z_AR;K7JzoG_{U7m*?44toqW+zNz_B*CL@P6p=PO;me%!{n3%jyGjsD=;BYuNu+5GZ z$0j-#OJ7<10pdc+wM1tQc~fc2FtoZ`0c47LQY(Wo4AA7}4aM3KroKUmBU!$(bYu6H zr|kX=>QV&SgdfNwA@BCb55JVXWh#=}w*ldiY>;Bh0XkR&(Uw7?f1-Al^p)l(Hv}K73zm4(JGAG&pSx)MFl?*YP#6+|%z3BZWSbnbA6aWQ?mbNzdx;D7|Ti^JOx0-=D z=AI+@1(WG)L~=nTvlmjVYiEHQT|>pXA<_MGtA(TEHsnvOT(bu42RnkP-rVAq4~>jW z5U;jw=jp#g6E&D9Xk=v2et{7}H%a6srXrJp?;Ra1=&O*7Hwj24q&2ia6QSjA99?2m zRa9g!d_d(gfyY_}Uw$5jZT$STK`g&Pp7pGsvoxuEA-PfQ>FlV^PDt>ghV!Qw2ff5< zB%NKl^l{q=w~)p~C~z?6F(B~*5P;jYCE29F+0nLa8@itC4fFr?R0FH?_6DU)odMuS zgz-s1VFpn6Qe2!chUWvAsL_uvM0JpapApGK`bI{t0FkL9`UclWE2T7Jr?u%f?)dn4 zu$>f&Nv5xR_ju5~5J*iHee|JR?KC~-06p_X93vblIJYks6v$DoC1?%6!I-nSssqGr zr(;SXSuA!_^9u+Bg@?Oi5CS!I2#%TI!0~T^T-7Sd%CssKLg`_oAx)h=T_2sQvWkjm z;T#iTUkZVz-S*_?1v!rYj(YbJ|EssJ40qL|51T+=^kEru}?g{#=xAd3p^8^D@6r`(lD8g zrXUG{hv)%PLZ8$%Zm60}qcJT%h1Yl-1PY zL8oIa{9QUiOp#^5ATJa~SOcgkyu7{3N=tWwg~6R9vwD#FUo|I$p&;31VzLemZgeAb;V}W*K^pwK@Thxw6>_qXFTASra+aQ+(C^JQM z^?WoaWErX%hfs-{e*9e&?Q{P81bnUR!N#X3#<1@F#spGT$oy5rrII`v~U3$>a(C{*MZlsA* z5A2IeP=g*vMqbB*g$zUqyu&XMxLyD(tA6_{)6^b6-$@QKPw@CKXy+&>b27R?ZKv#@ z`m4Org`zGErlgazAAg621Nh<6FF4*%IC<01Aw7+;SlD(1SfP236; z22)8*O^x2klO@f+GouLNnIdIbLep1fn!PbSrM+DRk1A|yaboD~x zq@Xk~Kopk^APXT(^j87>CNg`;PA=(&qt$UWl|JN8-hEB43L_`&?RJ7-%V}U0EI>bO z$cc>z;2?ZwoH!8@jwf5s*c+kR`1=F~&VeC`9UP_}(7@9pUCGl+eyu-v=!Gnranm5+FJOjc2p|I8NrtdZ59;z+M~8 zhUkmSv)N^Ql)+{HOx?QeMjG^-_n~pZ8;wVt5=4+kI1?WRphi)uliS=ahtve^)XU58 z){~_L;cdvGT7&K%UmSN5_v0&s7n+amZ3&}oUk@^WY>b@2idtFaK;(n zV_=7c&Zpn)Img=s>#uSL(`_eCn4l1$d3I8z@#e1X?8lE^+}E`N9HLsUK7F(9r?P#^ z6UC!(8Sv>hFu*1=;2J=9{7$G6{1QcZJhW0Q&%r`$3Ad(LyA=5CYp?vK`+F>vsOm_B z91o8f76?}I@j<#LxGec=T5=wYQY!VXsKzX9qmBxcs6h9FRj< zK{aJpoUv)YnaR+4z4ZZNr&?dD>OKk4HVF<6Za7saBvh<9-Off8`bpgBL?@kKrCwx` zQYIVKE_HQZNACE!E#Es{>sLdCDbe8K%$19KM_DH&B_%8=$b6=}!%rmDg_w*%6NK!0 zywE2TyXcGj(XFJpg*4`vPrep2kl}Ig!@jmlm!>?}^c1jzGI>83V01~%L(VmiQ+VEbQ}OhvcD!)N z6k}^tmwBSUPRy2Zd*JyI<}pJ*->ctEnGm$)43Ax|-@iLW>?%)Mw%9^w?u;)K*m~DK z1OYRB2v)^L@Em0E@5VVQE^1#A%h4l{nVfhfCH| z2sE3=IUUp7MwFi_zGioXOfw!-hJQsP_5(u#2?0KR-MVxW@*t41vI7INLE=F~v3$!u zbLPy+7YP^VCTM+*3yGr3kT%uu>fWGD?TxSyXH?o9T*u8oEiLOvsUFEn7x`ld=Yqfr zEHxXgs^_xz^xy7WrB(Cl9$FbP>I68q``g2uge!dwMhHehVIf=Oj`{Zy9uH+ldd~+I zK&s7TQO2QFtM7;G?m#Sk{QFXy_e?A;K=v3;C3SN|CiO5p`cHOQnXKGX-SN+j!Y3?( zPV?M&YfEA)PC*9MO#O$&0@^(z-NkEifP4LOs~*+gg{czU2S9F^2ev{wxAyilWbtF- zOT{m)uPlL~`xOAmHxefy?jj53^3z|~7+9J0@zpt`ny}|k%eZX?TSsRn&{_+zkKXO| z0tnXtf2F9TM0>uV92R4b*`S^F0vc&`Kn1YHY2{``Xs0gb=80&kudC}rAKV8#0^IvW zz!dNwU?2y3L<;N+@Q}m2p1t0BzVy*5m228nHa7F#+=Jbj(d5)A#AGrx?w>R^-pFlD z>gW2OuQ=X}XW=1x#>Ypp#|!bh4w{&RJrnr_;r=N5G~k3Y<|0ZJNnrrTpr&A*bqWd> z-s|@__boF?^u&}38vd8C6Dkf;_)`wruZ)V1gSatBRlgk&K)y71_8;P~LdBys0kFuu zMpMUz!-uv`EzOES3EK$15o7DrS+nx0s<=G%UVtly@N5i8q$KR=X?~xjS>L(jEQy^}VOzpXLQo7&}FTZCsw5 z(4n6n6(DZLp&?x=!Rjro7ZBO{?!=R0dvxt(UM3}1zH8i_>ResRN@-MUwtL>W(=U0m!9@IE(VWo7!%*a{u*(F=^bN)9hkA$W>xY_d=X*Es*#0T6 zV2zVZub=u6TRZt}dYESqzzPCJ3(^Z;U~l~xw9CqfGXta$;kX6|9Moo;bWitA#vl5a z(*^1fGCPx-MrtwD*1*xRz5$$K3&vQOd*%X|qCS3L0IkqPq}w4_LgVu#^Et?og|e{_ zern_%UB-Qo#Bx?M@aVi!4MwMqqXzh!Pd>5yO!Pl9j?L=o8R-GtBH@ zN?}*Tm~!i};ausJ2d`B@9Q&m7m&}NUru6ok{U~A!UaW zgsK@~Vb*f&i5li-OCWDr3-$qE`k8=?fS(<}QE$Z30>GjDQy?|S#etR;8qs>&(W~cA zy*;dxQXHRPX6Y)x=Pse!`c9*ck+2 z!UsDSq0@qhUOJ+(1>R}G>8Jkx4Wb-vSo#^i8+ZejU6k7B1hqn<~421 z`=68_#0Oo|ivqR$5d$C1EuyAXz@()V)YM);z?Aot1u;O8 zUH96xYsDfg_Np=a_A@R+D~v) z-+{pe@`Nqmgp{0^(pOY}C~~Kdg$|wJ{qM}2`^XJaJ=$vyPFer#4|N#hdpys#UHKO~ zvHw44dk=W7_x^AEE2TY@RA?`m4U!QJ8j6;YU5V_Ok=<63R1!jql1=t3Gb2e>W`rU# zl4RY_7oBsi>o@NEcmIdSqjO!SQ+&Ul?|Zyn&-MC0V<%np{{?nZnA!v-hfHX>1tQyz zb0wsvJ^+1+Z3*!*Gf*lTNFE;Sg_ezrfe)E(A&PH+?E^F;Be7xe`F z7hsOKJQ0Dg2`(th`i4+NMMVTYQ2vZduFzC~V&r1FbEoXFBm8cttFuZ<<|4EhS2Dy~ zm&=EefAGespOWaCf?fa?OItJv-B?cr46-mu{$*l99Efc}*n{iRKr zg1BIzdsQ+uFZJq@2{g=6Chm-KX8#|7&nW zWU9^X-Mf)!`#3#40H_<{TIA$Fi*8H*OA9a?&eS;DaM_?qji45FAZwwZa@2_&930%- z+z11j;Q~PDmanft`rH34Ofnvjs`BoqEG#)7Nt&TlL1Q6`v7V?gL;|&5>UkzTS1)r! zpGgIQw#W88Iy!3s#&I-Sz?Tr?5TnsBb>%4cZ+p=#51)-*as2v{Bd5!%KJ^?{5ViCw@ ztP~K}Tc2&PZS^@*w1Ew+Fr|y5m&dH1Dd9?n>2D#n1gAv~7VumUBxHjb%DIoia2AJ< zE9MpjRrfQXho!U+h#b(zef(wz4FXcBu-PC)S%9*De546qq+myd+J|g7eVe>wb0E?8 z0gDAK4BgiFQqtmFnXPCo$avCn*{@@j(2UxPCbhQ8AkbSiMjzXIG9tf3ft?F2H^OdI zP?|`dY?^BTVF3Tl*<9P^=?#aGABnvUI#=t5o4k$GfDpi8Gns;3TN}H)pwp%d(<(@# z%bjqeS;? z*)L`xixW@fHjW3tShz}F74Z!oETsv^P)JLoz8bG2b9+qWf?@A*NAS>nW$tiiV!AYgR1V^OwOu71WK4#!&@1 zn83>!-yyg*uu?~UMOWH@=HJaR627MM*%^B35S0WM6ve0p!dyj``m^xEX$iWtZk)A*|Y=lD!MA2DsSW~wc# z-Z0;LRfEL;IS|10QZ+oME`@=zoIzug%PT|lZOqVnSQtD zJ?;?RW^BYE#Umml#Be`fj?r?A|7Po_s^8F?Wu~;yH9vuXe z4y9@%+Fxp4mipU;B4(V93xp-%XFfeJ1fcDK?12M7t6zf$9zL7(T?Mc$zDN|AQ^x9V z)%$rr^7!&6xE#G_5jculuoE>lFJHTV)v^hA<khN8QJMsk>3XT>(_iCTLK@i^297NEjz;Midb)U5C{!Md&)e~<)fB9G`6cWfI zSBFeJa6EUs2ePj&2peM~mQx#?56X5t*HH=TiClceIN_xJ=Dk7E#75kueh3sEgbkm* zeJcXVx)*pAgjJlJoV4X|3eto%)lRZ@0U)PXG1Lq^UNb~QL@2|CW|!>8$(-Z}_!?$T z+`|<42h9Sej*@r;cxoR&tj#dCGpMJ=RHdum4FS@Ss2=6suHCz%%l z(XrMz5vG0?nJX+i&OCeM;rHZJv(^j!9U-P^Z4;>+Y@3;1TJDLIrDi46o14K$v zcry}HU}gla4^ZSN6|HRBy$gScZ}iW#vI2^Hx??Kf3DtAfckF z;P+4CQIQ7Hjbd@wev8iQ{`s>N*=J~wZ^F33inI|BWaj|u6wlndl!nnE)&Aw+Ej=;w*uR7y^SIWTEu5bHQ;xUoqldeaoGlmebUYW~ z?wkIyfnQACyMm+}_40D(+&7<}YGu4#U$hPE|B82&UU%B=hAehCuSOomh1rm77K)LEwWl=tV`sSaym0siE3JA3oJzlc7+nTm0Nk9< z2JH?&dNYxNNK=s!0gfpqi0Q$ynX`jJJI#eTW*-YaNGbuP8g<+N*DxoF)S7N>+a)Bn zK@RWMjA|~te#{GKCt}W4;Ma+ikGpFkr84R2jw?pN0HYQn1ztCGod6$=Rg{P7q8f>& zKqF{D;PeA`@<5>B2oT>ylzi8q0^-C(ZJZ(8f`TNw#)Q0XoMV;{Fnwrmo!b+L5HnnW zg{eM~`_Z1jTS-I_I3_ZiNkSGZiG@zmW&rQTO78%J-Tu2T2_Fo(@)JDy8VQM1nVup5 zF*oTKY*hZ}uGqhegfCPneEXIvVIVj6J)q&DsB98e!yWRmYtU-y?Z-P`)__w0Qhyrm ze@1J2++W~#x!6$&bz zeBNJGfXJR>JzS3-kg*Ky1Pan>#N;ASHv8?{n`o@a&k1t|5WKaY@d1L)fe;Q~G(zuQtrvj>uJQn-bO17$VRzvl}_#lM&EM$wk>CtH)kzjCHgd z_W-aMUC_G5EVl0dGz#o}bEi)5m|)d&m4@2o*$$ObIc$G4u@eV2R4f#NRD8%}m$s}6u`K@bSG~O#0s8hs_nFcfr9CbaHh(?Xjg2~<;JxuXUuKX{$B$y#o$@` zRs&vhw24J$h2w<*ZM3wXOycEvm4^_Dn$yg~d+kGYqYl9;(U&RjK z60U8nO<0|Aog&nrcm|WC;W#R0s#u43Nidu7jFofXJz7Y5Eg_ z7L@&DA|`g)@=*{7FA^BjbXXOYB>;5b4$0%+aR?v+x=15 zS5>ydhLKp@bY-InMEvj;!3%LZAW8t%!XJVD{DGuna=A4kKvTDUCW5lgOZZ_yL4m5V zJ(|BhVSrpY&f1645Dxo=OIrGj$UFk5x`+8 z+3@3dY)VSXpd^lH^5bH%%@f>65I-MNP&geuhE2caRQ5E)DkM4##w4xy2;TwIzWw`8 zf;(^h3BZ(sk&wR1rDhWzS~X91^3 ztO6Gg>@4>o#h^om9L%_FVK|Jpb5vu};q=QLd8#ZW`i{de#ht%6ZTrYe;k>sjInI$L z5h<)93K|+qp+iU;?0~*J_w?os+xh>TW0UY?Dajn_P7&wKpFKUFARU;(VPgPOq(3^< zzCi>*QPn@`WlGcU@*GRRtf(_y;q+CPcoxpsaqRp<3U69Ap72mK<$`aoxMW|^me!xj zi`Mk^_sfJUf$b`uat$hTh>#Hd@vezL7%*)35PT4LghjLIy8y3%Kr1XKd!LkI#Pt!_ z|1SIcFP(6OV11v1LOdiibjvfDMAd)vCR?Pgy*L`O7`{meiYGNf1=eZj{%F(QGblHF zJ0GOnesj8s=D)rBl^72rM+$miZeGaQ=)y+TIQo5T)C1=j1u@fyfN6!*trz65zCzoa z2U`}oZ0-AQAjDx=Ux$sRW^AK#-Iq6zD=IrHi&<~j|FrR|*(;=^GRmEjIj47DpMwEb zJDTGMaQ!q4TS157*C+XxEZUZ@MaZb2;YFz)O(Jyb1F0nb?*4&z{-qlN%6#KzOlE4G zw6i<#f;1L~Vcd!%WnAGZC=qiy{Eo`NvXdYa_d9sh@4Y-GwY(Yj`DQSV)->Z%m2$~B zyT~6^`c7CRVKJil9*C;4+MfY^q&5sgJG37r01sfVfsRWp&58K*hK@gt`a5f$sV*qt znaAGb7{0+0WJna9RicnzP&ZMrL%G)qrHv`G{G;08nISEL0fPif|g zKS+y-(>+OBkmJT5nWNdD26uk^nf(w$$39jop@KJ!pW=hs}yrAKOS2#P4CDGZh(M5&Nkz!fD8izmVnB1gY1qI zwE^5{J|M6IHxmOTkWfPGkMft=UG2L}<@h@Fx_D@kGjuWNzOF*gL9sR1?$xcUA!2O^ z#6``7?6p+gnR_6&1MFxCHG!{(irQg21m0t3dYyY_3N0O$U>k<;GFD(#g2p+ktgNi* zvu6jPw?p^j>E(5~R4*H|7BM{n%7T?J>S1UP;RU9ZBgL2_1lcEE9jFepqBF)v6*OXe zNpaVA-IGuL(X+b#{PLnnbSeM5(?T5Njf0(B^xZFo=Kly^bu0B9jc0cVfAL~cV?;{V zYZzb4lbGOYe_0(IN_;h*QQzuH3Istc(@oK}m*+hmy5{b_7EuJaJ`hxpghXhZBA-wW zGcbDR0)CPY#wHM`0D@FBoSD*`;UqW(y*Uc z_3RAXPW$ELa_Z~TH5}0^lLKh`Ky4QO&>8dfJ%1bsAIr6Du$2F*-|AlDFbkU^SHlxf zRyt{?GW(j}5bTGwhJ6der3N^-0MxGq(Xc0Ph9K{GUyDDY4Y|dfQ!ZZ{ki+-55t}sO4Ca?-BuMIsU2lW=z&F z-1#_O0t4tt(+7)uC{sOZKL|oSRKs;KNX~y*Xc~4D^oYbFfwJ)gJ7l9GptUkP4mfkx z>CFg2#(fl{diMQ)ZXh3)r~lJqcKVv)V^Z^vgwzs@A_XvNjO^5Ym=q`3|6ew$E?c!S zx}@v<{}uzy)KHXo_GHS12pouN0Z4v$*c1H~*SDI{c+4~`Y*ggRdz7(`!3+XchDO0a zWhQ+gWtXdo+<4=5YEDZt+F@qgCSA&&1!X z--0y?!2&*win;|PUMa&Q*xzi|w9>kN9zVXffCro>Es$v2OUlhX|@b!*o{fudT)$x)dgRliG9LV)G4P4wSm(mJbI3xIKZ}2{n>i63r37}w2d;$G<_PPc@(}pxLdPG z8~m9 zdKtNfbWopRdLT_ZM5&Bje-hLT`mxvpnkk`a*p0Lys0R1;#@`6SZH2N)VEF-86a5dn zHpU;EYFU>!wJtF_TW+_`?KW=Jeqg}e2^k~d)lbA8JIb>u9#MH#bah2qn)|6&It=%Z z(#9C{`O-*;hwZv0)59aXt^7AHh$?+N&065Hf)aH6ZAMSMjlV@cU@C{ zbQ4cbZe)na;mCJ$M~x-zJ*`O=GP&t8hK=ujMgqZV3`k)y>uxK% zextLiDgW}(mJ8bl+!NiIRWj&>gugzl6$uRM323AkCu5z;JNa zSZQHVax8J*gYyRvX0OHA+x$6ypVgJ0aW~gG4%8uhklGD2n_pll03@B9ECztO7~lUj z)NQ1-0Fe)zTBPF%el#%2UgQ{T6?X#ML^fc<$h19hfTOX~+vEfUW96kU2KMsbU+E>A z`|a=QO`j=ZpTN0QbML+r0|Ri1{prkBM!do04co2+1|U(|i~56Enf3JnsEo{UfYMQs;g`ZhFcPfZ)rDLA&)y2cnJqtj5Q2rPPsFgJv#+J_GtgTpTf zT>3RKSToo8NyTCNtXws51OC-^Hxo}bU-P?osqXLNP}SI&AMWR=jZmH&u-B$Rj#dUV zPC-fOw!gozq$V<9A$DgF1dDtqZlHfqre$PE0X)@3UM}v1Sg3|O?04fmNsFxh=N|M| z($Fv-H4TsNfBgi$O%KW6uFxY2BOMMvECV?XPTzq728NI?XOr2DVHjfUAhGE7O8gvX z?fFI5;9b@#d`|HFLu0tg)11prQ)lKAKuvypZwN$W5#rpdx+F1O;~eTD2GJ*=##=3g zg@tMUDe*CA_AuW2&{?~P3DRSnKUxU08d7gbEOPeuN9^S9VnqjE?g5ECC&}#7g>tDY zfMU$e%o1Pyr7Ps_g!>~HRVGE6Hf2x8@R>PU;oL4c1b zKpl)X%V-@vU48Ur4G1`d(qtgAd#g z^#eP^)p7;xBuXKa&s6&_o^^$t^Z_`~ipI25RSo8JO(G?Tntd}*^~{yo%RMJFLlk8v zd#EKi-mp@D;wzA_;{9ViYJL->STHy&jllK3{MAk|;&wj{+ur-LDT2To-T`?*DhRAi z+3zTXgIb|16&qtRxSBS+5*c)S9@ei*6wzpd)P)Fulo}Q&) z)BNylSj#Ia=0ipV40Sqzu(p^%1ehxa@t|}d0xG{>^BwR1Kf-GdWilXfGLFkv{qK!o zcty~|?*)Ym{uCjU*I^HaGzcj%XMhcWBZ?^>3Xh1;#X#hkte5Z511iwxBogMfjii-F@uLKvk@ zp!E8#AmLLGeY}8(zUU@08dP4go2NH|iH_l_DNVHlCDiaqkjby`N)`Cj`3Kw#5 z!x?rRcmc^UVakA+!>7!AtA2RCD!wB{A!C;UqJ#ctH*8ImR}TIJ^A^gR)CW3i_5yQ* z&4GkZ*g$xCyCJ24*$@T6JT^9IWC7%K90D#4qbu+od@|eN<~ag*65kvJ=`%Fg!zE+G zhhh!?z-)Nt!>G6LGNK)atl_WnU3eZ>A~k^GU5OWIXfKvKexHVKL6!j<6#D7X_6}#T zIym7}FsTp}8}~`pW(Y;`h|TFu4$vgwAIFD!0>)F4qk}~S=0qlTNQQnBE+Xr zJR*KPyoh)1-p$4(m*gMA|i{BEev!G(i@Y?ZAbyXv3S!3Am|`||D!C5q)^6j z9&q(sftoA^VQBc^;E97_+=WEnP`i|_+Gn)chi2GQH;f^Dp9q zmsk}LM-nxqnVMK0k7ol^W|0fo*}P<@WRgN0j(_9$vahl@JQ?`h%?tSx&X)f`->b&U z%c~922u_^(;Q+W5vmiv60YlsgaI<88FB!o72K;nhW_v_UDF44v5>N)_=H{|M^#?#K z2R4G!{Ua&+vF9Q6B*GkS1!i3H6Jn@Vj0a$FT+CGFK_�qfk(R*kUKQ&3Jq-47Rke zAQ}fPXm$xJh^A+O_M$BdHA6M_XUO73Q{hOm#r?k{#M+{d;He*>#z6Dka;-e z=#G#{;W9>uu}<;ljYzzZG16&DM-7;v0LP!zn-lb*XQh~5XdCA*TQqAkGwX2aO%0E0|}qiZg^x@JQBSz^yGATWnTI+w_fu9mOeUMX)9~>jLFNa(%V?#a zupyW*af-VX@a{1Rmve>kRYp0iM=LSyruVUQ|4c4;~l zQZVgp*2-wPr^YDY>UtbJrQB{Z>T!G}J)aG{4ytpo7FTLIb33iQ)#9-!6YER>vkXVV zO5BZij5(2V5oxs~CNsvs*VYFn^4d~YyjN+GAe_2IB+)GH)>jyD^drD3oHu94-E+g zqxQ8nX$z@@5l6&fuPps}Qn~c)=+mbPvB$@{S#&~-9!EjCkp8*_8Qq^C#UPxljlTva zc&Zgh&ktS|h|SX({DSiHyvywubsq|-08c%m;o0qgS9pUu>ud|#OVumyHhQTx_bid9 zzn-TR!hc!wVzI8A5hG=G@Aisp8@Mvg@dnmDjz@aLs(h2;)t2(&zZ@!z?aR#88~b@X zM~5nI<(zZX%7bUmWikDQ`la#Ac_r+PJ*r#U4?i!IZ$8{1@a2)bIE$gAeKY@STQ|OI zvm4KDGZPITlmBa`cGClo61zx&3d}Pi7zHz^u}zz^?A3e7+Vi5+Zmu<*rcoj^Pni# z9IiQ2a~F?gP%N&Fx5gd_g^-u~+{|{$vof;j7CO`(mzEAYVo@K#hrpedojY?Hgs)#8 z{k|-#tr^Ng+!*H=1x}dKgLKfg410qIo`7m7+gvCCl5MDSj0L29Zepwhl8zsfd z_nVcl1PnYjsW%S1@||s}p?7e*tMi5!hZOf$FNS04SR{GpZgXoMx)Cjq9&J~{f5SBD z$JDifn{4^TzRWs&`qNz5#o8JUfmYw`r-wG#pI_zXlqzsi(IK+(%-48MZ9X^C8?z&W zYD_wvY*uR51qTPeN7_9kdI!>+VCp9yF`z)I|5c(+oOeDN7uai;2I|=tTCHA8SZVAV zq$?8)Q|-Anf2-e#p{}lMhV`kUhb12Q|Dc#7&T+_&UlD6JaodHIO1Vo~UMAvjP9p%@L`+vS3l$oYOvs-0IC8twYS_)Hz(w-&+rVFm>wVWMF)1CTM~}zPj{^2pBEB3Y@T>XQy{0k6$()Za@Np9EPcxlxqGdY7VaSjdXp{ z>;mw zr&)JBiEb%Y(0px@umvq4Ci*BE%*vw>Tn1igoPtHdrLwP-?@?=>x0C?4_jxWd(oc0| z_Us|$Hm=H7kQg24kKx}0iIP&-@gpWnDSrTW{b%@wTkvbU=^#wcZwvR!-QReglJw5? z>0-a;!u26{`0zZy7~{rGhrVJFQnvvmFh`2rud7ziuiMn0yGrmBDyzFt6+Qf=s<`>? zrNWjbt+C&Wl-12;ygI_J-yRSIXNb&Tlm|XX-?YyRnjFa(6IpNqu?nyiD*5P8N)1Ke zdlzH62rH|noxrM9lb)4b%WEdN6@F;c>o@OkWxcfrglNoo3EZHzACe0OnBiB8Eq5-+ zyym*EU&DE%pBP?L;G{H%O#aiMOE;Hnxq>~Wc)!uOESPF)9gyj$J}U!XlJ^0R!pKMa z+a5eEc*JO;1BT+f2EVU|KTXexrd!}TY=yrZn}=jkGrL&TZf9aa9P&Y8CkBkRpfAB0 zOp*mM-YY14xSV!Gu^Yo6%yIhRk-vf`zrmeK58 z!uBmowlV~zB}O?9p?+(}PhKk{fWf2FZGU3W55@>VNI|chCXG7OM0mv1k zF4>y9QUCp#v9Y$#pFec7ySnCIj;S_6mpXVS<WjH(IH?XBa3f@8LCuVsdaN#7N2HUjyqa7a0rIz8+#qK!Q zcz)_OgsB{UP_-RXOfyFNBh6FlMtc=Iz3>JsHXOd7JgEW$K^Rm5%~>u<$)!+bMdpN$ zFIU!33Ti>82fXqidJ70aFcqU=tf~X>>0(ifH2`GLwPj{#f<9Kk{9XBHcj#vzeR}@Y ztn+myZP@Wmki9h_g7JrUWY_V_cx;OnxWD2puZYn(fJAv?t1aW@+tXz@QfR^eb`z#` zvf_?K?y?wki8TBWmK2ib4HjZZ#2q-9M}Or>QR9f0d=R%2g-n1_JQZ@SMrbs`^@GR)NWR5x>td1>$BLmP32Qk>LNay@E`lD#HC9_1l>axT-NXk6`i|Q9VmA8%e=$2 zPv9(IbHPBk-e*!H*QnS<P$g#WLXlA_UUP~YKrTZxN> z3}4W2ikLjexCsG10AZYrk8oC?I-jOJ3)uvzz-6g+Vi4%NntR{e$LQc598lg95(7K# z_!K8Sz2{@4Jb@)=bYjOpiw0D_%w2(XpL5ICT`;`*E&%snoYbEoco(IiFwB^73NYNu8-y z7kTr2f9eSL7-&F7yFNqu9 zTWV=7{wuZOn=rCYHs=~QvM(LikY z@(Q`0CE)l%T#mQY*kB3jI#-MvhRslp?lTZ5a8e5=>0_xZn!VOGr~vrxc=+$C)ovN; z4fv2?3n;@`x4FAwYU={j~3j^wyx^5O{-9EU{V!!i#nSTYV`W0 zB~)W5_A~l&-wEg5^7nVI>7*H#82aXd!|$F7DaXLo)BH0AVSICe_YKTtI)V`QpWRob zhR;K717GNFV1gu*<`iQ$*Zdq4JZU62nNxiS$gOgpKi~#RrvLIq4@A`Q)mBQ+ z{MUAXgC;d}W?3s^W`$)Mh_ot{hfx-}zVf_Md^x%emLu2u7BoD@-h!AsSg#X z?g(6LcSpF(@(oJqq<}-t>LCciZ?S(X0cF$(0K3zL|{F(5(oezqbn#psJR^a zMHHl;E*tj-BB&zIL+jU_WtcjD0#GSH+7NbCB})!j@$lfuk>eMq>*O$iiWCjfjr1dh zZEUa6S@pv67zVv8>f~*AHhv3-AbdyMZQR#w0G6!WQxXGCsGq_M*ic*YxFR`yx7{4me~i zjCTx@pP<%)4N5yCIRPoVfI{RU9Lil>?>y#+Qe!XDvJ;!G^ODO0L9bdnI)4s25Tb)O zg6ORU9Kr_DP%%*W0?Z^j5yv#e4^Y1fMgdGO6iY4m$!E~?e*S!1WM$04f9?`s3rGzW zWz^d?&juYvNF{*Y@H@XC1!sDQ|J!mesVljIfmDTK{xA1SKi!Ip@FoV(&Re)}O6F{l zT9BN~!-pi%3S5CxI0~EujzR+7NG<2=V8QL&8-u?>06H0DKu#@#aSrze2GWrQi$>r9 zl2u7G`!pp^6r&K4_D*VK%&snm%sv0jo0FgxD6LN2vAeOO6o%wD zV4zNnMaCH3)d8;|bl+d=QbeGn{|v^siR?HSU?96`nQbG}Xpe_8kvtIF%fQ5olL;v_ zOgVRSl!VV4-1rnqKpqYgr$dT7UT?8}&U=A-;c7#V)fuz~dBQ4Q_b<{tmhB7Qkfq=$DbpgUZ zu#po#UEu^481X(C?}@_BA?zzlG}lJE60RC|3UT|x8Dj%uE=_C96p_nv9_8c(IN_+l z2G1n_Yyps5;Y#%^fCDsFoK~Hn^WXumcF5*lMca`uVxnV_<`9J@wkv(eM0gw+tVbwK9lbNydmhN1T3r3eb1mc#n2yXVD;V1fS$Nl>WFy+UJA8- z3{0$4(Raip0691V-kuAa^R!TAjYH2tRvLUjBwgZg2Vq?W(pscnSmkJx!c6XsAEh6d z5x$6fs|WMNx*?r)1L4&N%Ac9cD$tV~tdU2>?9#MpeId}J?_)OS7DNL;x?zGR?^3}D zQfkiCCq+6~+JKN3xL{AjzfY!s0!CM2^G%DwvmF()T|m{|6+7eIf}V7A{|DI$-a;UU zyv8*-tMc1fgxF9*w!u6YoxCIttx#S2y75=GkNGS#91u1pwZ90}!wHhqg0)DdGOPw2 z2-|78G3uI=3CfWTN6=&M8@cEG@VG7 zr$qonSn2rNj{e_Q-y;=Yar}Faj7cJQ>$1+F0Ew?!&mON_FT2h^g^l}_+BJyv7&)=8 z(gBgMCj|ctSBcI2`&Dj6+!0mpMH=RJTq*n) za4)b*_tBVJ6y80UU4bLYAZI?S{=OG|*}HV4(x*&W_>9f%`t=v;XA}c}M;Lvpy=}*1 zsBPuE!)V{##_(*2o>d^<#)Y2p-1+MWwms!)0=u|eE;mu8vpj`sh`2|a9cl#y9_}*)+&v&eeU$#Dmg z=S|dUcpDgET&1^>Ob;FnI5sJv5E+2XZG$!G#k$(i3ouA6>VO=@QJwYj4`^<+ZJH*4 zAWYq`a?fUCO{&5elY+74szd*dOe*VZ;Kpa9qMp%_cU4hP_&nD09W!V`UP}He#@V`& z6%Z#gJV;&@R?%ql$2%kG7dqfu=pzNDF*%_|4i_@wyr&?G1oylpc1$1AcYQTdtV=N} z5dzVpozXTW<$xPtPdNx;Or-AY0yF_MX{Jyh(rqHZaMZ5V=Kq?#GNM70`orER3H0HRSx>$F7K8H)=im3w6gacESa=w!9kQ}IBeRXN7aP*q^ zSMS7PGSLZ~l%MJ?BH;Y<{YUHJu<%)jhi}E)|+N(@6KDZ=*$3x60X~@8X|>3{!L~ zCQnt3H$w6?nm3Ud=B!*?zn(5EU$~_G@sa1kdFs-x7lTmWc9CSc57I@dL7uLn@5IrHul~`9O7rd+QAWZSqc#+vJ zd{(wwHhcqLucz9VxHZ=I3(qIykN0TeQ72a+x^|^`}nRojckq8AK!NTvHG6td0MDP$kS#LW}9s)GtB1RJ;f1LZSsvPA`y zzb-!p{gE-0Ms}Km7@_&=s@ptl^0XiC5707h*E(!zGdq ziOwS^`y>Khj2&0EU>3whKraTv(hwc{@rRG+pmeRD_aX~%uQoHX~?Qa+&Ghy3J| zgj%+9{`DHyoLCzhnl-51GJ1ES-Gg?mu)#io2T{x=)I6i7NW?2+HUR;cpR@08oDh`g zWE7Vkd080KL_-#=Q_^aC@s1WLI3vdn#Rt;7u0T!_l3cuyHEBhsq_n$xs+7*5Kk^#5MS8Z!NDMR>T$E`K{r zr2v?C@Uqm0{Uc8%M=HD_lOGTR5EA_*(!UTle1ry7V=zjJ;k>+1OG;)g=Z`z5;ZfGmdI9Kcyc955GNe zgR+Gh_MLHbC0e~(HPQVDPC(wRHW@=pX%G#Fshm#hKOF$>HO5PmI$ts(kVNik))DH35?b?(@M5aXi83@g-~AfdJsxP`F=c;IXc z7gCrW#(!sCU&w2gQb*nkAU%|a1DynV2Z4kLWZQOwJlX_81WaLpSnUjOI#*<-Ylhsu z9UXyy9LgNxGlA3rUmt8HDrSlcL(jGgnlKWHf%gHXu^Ci=Cf>6}r8B~N7(&s$;KbGn zJ-;&kS6wH6!`>rY1gF2!@xL%?q_0nL!C~-;_l)jukZM=(8JRb`i@XP|!(kdrOH2Ci zr9}|*m-j(4Q4fV29mMWnZtStmFDVg>Em}U>J(WR2bGNv&K@Q>y%yXikVZx!p$-tnG z?8V3Q2hq|n#%0H7o!<4+-du0d1~{`jKx|Ezv|?Ay5JP|G4_WpG(%=FFKR z+8rp+*!_yFHGK$wd51YtfB+QwX0zib=Kl+vfjb1O41?Gj45f>P z1o1f0PGdAl;^q$CuW3+t3{+Ha#lsRhy;DhK$3%I<5sx-(K8A@R{Q#d}VqKR-p>_L* z>8Nxd5k6O#swqgxNsVn%W9P!-P!oMV^>}jR2acp`pPzbH~(XL-1c+2KAuUa z(O<}V>d4usnibpfeMbapmPnT*-lNMYY(F`7HJAl+_ zgzQbUjl>JW<7)NFIPz^WZ5VW^M-AV8USz&5BmZ`ld)BNeG8OJS=6{azRBOZ?Zg$Im zSEQB5N`b5RUttxct95%s2WD8Us%*xkJn6uxny8-L)&Y2Lr#P;ftx5T&64mkg{GBPb zd>_Ay#T!Xqxm>es{^!Pn=Y`uo4#!@02(bQu>sX}PpR1@SZp}}tQdXmS%ObkAwW=?@ zT>Xsy+R{a3_eXpxI{W-jt*ZX%cyDdApy}zhjGA-;z&+-8_q4>1+{-qp*mmQfTZB17 zDkGXd(7Ep-YA$Q>`Ul7G;JeWT@dFEtOW{hCH>y`Ks#{b%$is#Pgj;MPMz2#|95%|Wz{o#_FQpJ zyfRbK-wN<32ghIg=6{NkLhhhb(b8{MjXd#;UpayTiA&2>=p{Wm3Z}hDE0KwW#}M6E z*EfudBXRtO83m7@Bp9-ZwITXixUxAf@e30 zfW=ooxTODZDcTRtbz8S~t=FI(0uE614ve7_7{a(o4X=-fC!VSpBp6OKn%C0y3iT#X zg@*b~Tvz?KPz;mzh zC#YUaI}11;@p(|1=m1IGVZQ!0DC1k;Uhx|At7C$4`0>P&e&JkW;zY)(W@N$#LlR3Y zfd)#3e}YZrg@z4I(_#Vv2|I*R#jU1u9Xe(dae&~@Hzi4FI`qg85XUv=YEC#EmD}iB zZpmeI`!x)+_!aNL4VHmSJ${pkS9cua5Pe~KMeB%J=BI!n6MBVmve7z4)Z+6rh`|AN z`{3f5$Hir2b%z$91Oabb{bsvBM#akZRAc}6={b4`k_dDMe=r_U9>w@n$c7DGniSBu zN{icdLB9#v`kt1XIB_Rg1A3vMYmgN2@-4y$Nf@k(;8&lN37D&U(7~!y8ds#7@BBY| zXMPlljdwu@7D0`0G^iH^4ol_)C+a7+0B?8AKR3f)chQfMvLl}V+(m|Q##kiYlm6O8 zYfk*<+lQi28H>fO!<;qeqMVri;GZ840RgrLOD4b;c*&O2%nr0t0A23*`5geD4FftP z4|nd}+XJ5|nw!|f7W}wHS675`u9&_1%@ZZSnWRtR>&K0aFZGY8>19C%LAR9EX^l3Z zkiQ1qGtL$W6RfIs(cAZ?QiPJIX?WWS3{(la=Oxl->{>Wy>)!B$a6W;nOOeMiHyT+L&L9-iK&Ie+dF`3v@%27KTTu8Mz1x7MmGJ7DUbg zs8S5{U^VvS7%%=H$a;m|6QABn2?;J22z941>_w*wAM#uo`S9CkQ)A1ITx=)m` zrpRa>IF<6iT0+yX-o|BP^EjQja}Fnat4)usHd!3OUHa!t`$OI-_B;*6pTy172T4@(*?R%pTP6ey5MAs55eQ6K&a253 zDef+ixnTmDvaSzV8C@V^zU||q5@biG?F_KDbgfNLcbQ+$Hucz&umn{$pUo;=7bwj) zYk9zOgM(#stRcf$3N&-5&?wM+CQ>PZ*g+3FmVu-F01$Sb@bQ};m)3Zn#5(={e|fo; zid~Zet_gH4&(wLS#-b34iu|$fxEaF)d~t;zJ@etB@(W|=c2Kw@ltix~J*~WW0u~nA ziaiVlCA&a^f+D zJzbVMeDn5|n1q^?!ihfc) zp}1pp`!6L-Qj%T&CSiJ5@$nNr7T_(2vZFMG6==JOw}VEgLY361p>z)qAx2aVCmUHO zvAEG-@W@?2`Xjy;Wq@mea*u)(f5CW=gLOmxRi=G%aylSDZ?14B=@7cCmc|~J2bZm-|d6QKL`h){he^WVRG$$uY$SDBo=co+p`h@C3`+%QpP{p>TTh(_~ zoSi?{!lmvAA$6Fax2tjsr&bGTZ3^9jqczL|Ho1me z)h#C#n)f`qbY-CmAg{W+MhXFOSC z|N8v@Km0cyaDlE0Yk<#Dgrs+24kGhzmVFH?`<1&G^J4cxI;am)1GtqHM}{ORVZNT7 z&!!;$%ngb$5*fefz z8g5t4cyXsh;4mrJP^{xfc%ORC^1#Q#HF@ePVUm^iqE6LxWc9FA_?xz)-SlhkunLZN zE3&rcuAiUVCKm5P8T<%;rwa7mZ0zil8qbO$oGGGb@$43{V~g55Bn9#4;__XOH-d`a z3d(p~AR#aYaLf>p(yYd@*qY8(kSd#@_!O?V2^ryitVchzr~wIlYuD!Bg!48)aO{QZ zbVqyloP^tz9m1&D*NKW&lU$Q*>A0lFdZG64!$CQikcRy#oZN|Ml_X@Z@b`~`E=ybJ zl#XDZ(U`d6w!U)Ju;1wo<+<_V{_@QC!Lr}SX;g7MZP6+bkxHa6)&i|5B`$lNlvG0o zAGp|BkOV>X0}%1`0U#?s?!bF9>9<8hT(85i1`iQ!gSPvjf`MsXVX1GAJEm{Sy$_wb z5A=CUybBe1l-_9JCMnuIcl+sDlLWYbF|`%XS_Ff2HsLB2*pi<0X(J74fSOVWuTgk@ ztfcyxFr|hJHNbfLI!nFO`Hu9ib->Br#*bi)4Sjo_eilUXV^P1r2h8ldfxqqo6~WFB z9mx5@qh^~Vq{-LzLm2 zRG)LJ(RkXB21Xelh;rNJGb)2F1wd>b;`kmtS%W|O@xev(B7oorw4FhPy z6vWdN^VA);RjQs#*PoW>w<*rPNM*2E?M*?)jq)}>7&Nv(u0KPnIdBvQV37mR*z%hi zNDM>CXR|Y!sShNM4_sLWIq|>6wBxRH*P&jLHt>k}eCk@SiG;^e@z$|ZPMGcFgD1t| zk*A%i8A&p&BHUqmj55fkEbP}R%3%I?bWJDAMl}0;{XsS;)J6r9(R*)&EPtzHUw2qlvrh+w?-U9qr_1NmIed>@TrOc7^Vd;KMf>CpwEulO6s?{le& zL*7#g3P#?x8w-lIikQ^up)&q@$QD2;3)tn0EhQZb!c_Da}|m zLOkgX)OQm+0Gpsu_kkiNfvE@+QZQaF89+-Y*o6Q<7#E%WaC35)89`qPk&%G22ITxH zD(MbMSpB9&@VH?hVDOuwA|Z%0HUXLtAyLs_v8hwDl)PzLzfyC*9rI1o7OPwXrLI0~ z^rKQ=WCiYVf6wiMDRZMs%-E;(e`x`hNZ6W%$TI#&o1 zq%-5IU?I5hStoD=v70&YVpcR~CdCF}Sr2Lrz!k$;(rd@+Wi$lNhxw+I)37b`eXQo* zR2|L8%2|syW-?kaq*=`LoRujQD!T*{m5-=6pO3M~h_$P6wkt}hGjYCciaxI8C*Osh*68UhshcOj_gQB1AAsSi|r(}{+-ZuE#y2$H!Xi2@SlIEE( z$p$!}J~DzKsB2r>=O7tKQIIzZTQ=hc4!V~{!uag5L*9zzuwo2L%|RSUNnwQY81%Bhb!x!b+=$JF04sZXaKQqexx)sWGkWuvKCf36TaN0(8C#>3?l zr}psn%ZPPSZSBP}<@7Gp;hK|oF0Ji_{el?hF{d(|s?JNH1$hh_O~uC+ z^zl<=HJQL3+)XBoEwG*(jjYU;+lRqv=b-eP#Wt`RdNwtm76a{r2YCm?wZrOuUe9H& z!!rw+eihf(L0Q@Bq7ZVqXU~~CSI{QV6jj9K@Ahx(Kb;k$jj`!We^Nz(al&ugEx}I9 zEaOJ1)g0Zo-&ymzk0;Z=#l_dX=qL(G zFF{|rZ{)<@r^_IsV#(BvEjM@ol9geG0=n;BPF^1K;p4}Tw?d{m)deT|WHxc2W*GQK z{s9Prm=Y18Sd9a8%Gi|Gi;uNuv{@vn2aOILTN`-bjr}}Va;1YMEa2}0{r5ghWy>gP z1;{&C&B9_J+8q7yOsa<@QGk>ocVeL|1P4hi_uLI`UPDWdr*tkvL$Vq-GH}?N=&L-T zm_m|=-iPO`B=4dLK#)}sw=s9>K4MDfM(dB5znQvq9)%UF2xjx~T$=KJsfPUUjOC{CT9r#9x^ zhk<5ECSH9+k(Jco=LO6;9)pUNpxSVxgXK|5iFmuT81)7q0)Awgi= zR))-HHB7KVOsTi?wsc=6D^6?)OQ|EGC$ekaB!erS6)zdG#1)~ez!Rx8Yt|u*RPc5M ztH&O{N4iic)T`C-#h-^24xq9(GD8vFHS_I<=7XuGz&4|@*)JEt_UxmWfN;(8KZv?& z8AUi*1)ex#UgybJdeb4C z-JbFfY@MEhL4Ax{lQouR=*k$`-7@(L2K$6_QQjX2v_fJ&&TDjJr0rAL&F8NEY`2Go zULk~i@`pp@elhcvdvZ-X;-Pef{yX24UgAVao@&G->CQ0`LMS-->Wl@euefbdROF(C zub48!Fbpg&P?6VCEbY~5U-xqphGHAhm(n?p0nryZU}JLUVab)ug?+Aw3gVZaTqU&k ziu;V@kDqU*C14|JANjt5>+rKz%M=($^p8l3?6u7#3vJUdQ__V&pe1XTdD)}wxl!F~ zAn-nzy@yPM1UCuL(Hq>XaZ_Ouo({X~pHgusJra+%o^*E=Nf>p07!A@f{F0;dD&%5K zQ&+#Jp;)s@Czjd=Z>)ZafPHvID9pyywVH9|HERC=qBJdE{zW0D-;Y?Z#K#FzgSGct zjJcEVe^FvRc_)pcq(EY8j~l2+&U%IErCYom?E}PVi166_+i!UorzgUJjPP*bUj##g zAC5SiHlE3A=~DC9{Khw)Yf|#G^^UZY7tiPsObB*w>~pt{%oMVO?F6PLBP@*o1ab#9 z7knlI_N`>h5529U4tfOR<$)PT(Q)Vh>l zRJVN7D*u5^*Y~Hv8i-i#hTftb#3fcCZ)^PgjZ?z2iy;GML znxs0Nb-;G&8T)`EQ>B+^{W2^4z^~=(*^5j!oy?tieLwe1%8JBLhq$U6rSaOo*r~j% zm^oYZ{9H!j!t;~l_4R%;oxWyDs_Kf2nS14{i~9O@Ul{&5&D-Kc_UTTK9JAheB^x=< zl|r|O_P>9BExHk-R1yQBI+~y`N80o9$5$xy6xj~KG~X`tI*0Jb>+O*JhHJtr_1*Q` zr=@~+v4h6j)c%`aJArRhqMsz#o=2HsB);0yStn1`({F9T%N|cq;I?JqQotvCd8+^oWkmO?3Yl0Vcfw zDs{quCWd$RLquE3Zu(;kF$q#_fw;x!W20z1ZLtsG%W%Ui_erpA599InJ}_`_NP(L> ziN9443S|L~%SCMp+)oq|2fQW1!98!#cF#m;G*KalwQuxA@vd z8HecDil=+>lQ|VFq)S##UcLoJYDdFrb@?ghwgKmDhoe0NwO&y4d%%A%M0$h7TcDY5 zc^Q2Ht@byu<62x)^rlLx=35!(fXcxdt&ib2-a^iBu?qXIGU+I>L#4uDe zodB^~(QR0Xu~WVGabEE!uBAw5=VVNxs6-zDDfdUhWi8I`yB$+>_Z0{qH#M#D6h}kx z94l1(ZkvH9r5WPFEH|YZCb2ksM>&s%^A%rmj}FS1I~rMYI1=%lA@4Q}j%IBrQSI$h z$W<})D4tAtSLAsMQT&hlB~8K0oxajDFFbm$7|c+tJLMcH;f4_O9$HGDXAJ{p#~~*C zs>JPaXK{=!w!QOha}U#RpG#3SYt)mvXX)>v&6fuE#F@1c5)5|IjT?E`DMoWJZz47f zBb%?uI%apQpDf9!{ncI@3LAnXxcM7TR50UEP|JRPYD-;yJKJA|-NiU@Uy-8hg;*Be za`01S2q2umL?oe~c>pCV)jK}<#-ZzuoyC;)t50ORbs2iAz#O+bdtMr&iQ7ImlO{Yn z0hD`RKEsP!!8EfT7S_aqfG-gZxP&p-%EF>Uo88(k>CF1H+}x&#`~HM8Mb&TME-=d^ zjn%uD0jB80wLtC2wYrB8xB46N3{yI01K$t+!9A7T*6wW$vb>0|`#jz} zK_=9L)#jF6RLl5&U8H*9T&`VLy{-^ICyUm?j zi_K6@us&W%O`Zqk@xsb#4f{+zd($GCG0p5K`M=*|y-kilra2Uc83XXI)I8whbqFDT zcT6i7UsusVEcfl(WBQ{sVx(Ji>bY&T(7XYlm4ch(9Z4>ptf4oi)3}^1J9LLRo&A4qvF$m1+yGoiP}0kw_{>gqbOBCEz;QBFAo@gy|a8Vkk5)~@Z}p8Vk^|9-#PpCKwUVO-drh;V>Q&i*>J^+b5?j!!wbPJ?8=n-C!d%A|9;j(_Er|j!?oWWQ? zn!xU92c)W=v9GK5m1l}+ZeCW2>OGjuyo~(({34n+qI!AjbDF_(=Np`V-&7FKwr$%P zaDai7F%Bgzg~J)BgV9S-gboS_7%J+5tTSWC(1rW*<3wGDHJ~ygGG@Nm?3L4D-M^N5 zN~yNZDQ6ArHe#Ae_v=N$!rj%+pujt+B)o4RI4emoT7A%DgX12j+LR{{d*zUAh_T^3jvW*7>O9@yO=Ws&lQIY z`9CQ}H>)2l5PX!|Z~QcNu8Nci1lXKL`olH`eZM~6GEgSI$8u+hV|*v%>z{*V{+N50 zt!Br?6_80fGt?a~GSI8Hb=>|W!Jw^{ktus@EPXQ-?;)P|9>(ltuD4JHR>*~-gH7&> zpA(!hkYYSme5LCCWn;cNunE-JpC)lDE!b45n@;t z2>+fNWxwGLG;fWlsAzMs6oQ~Qqv009uT>6u>1Yf&cXGG#R4=(eI2v^lGv~>6twgoo zJg5dcSt&4y_4)0;Il;KSI-wy!G>}8Iyd;NN@un{G^_EveEyPn~bpQ9#1Cx$e<534gf0OgDT?oP)hWWy)SS5Zd-$*fth~<5b zkH&E?lXGo6ee>Qj+eILE2W+F->*;0)^VBL-q7TY=4tZrZz_c1%DplQXs|abR%7=5?oC?4Ec%BwUVPw&5m-T4? zfYuSYRgz;u(H<+eZvVdplE$ zTjx@E%9%^lS4l97sy_oavtarZUmC{IpT;;lBL9&bU`p2Zn7VHGMIJ3B^2}!_$a(}Z z6eHSuABc9Lb!K(*5>uViU$@|(Ssc#FMSTi}DYdnylwhgnxcAMZmbtt=FXT(>%AGuq zW?*#qaEP$j|1j0rFb3+*r)vYj)v18U>S5!BI{wLuYdCnlTg0tpG{M1_zZhbtQr?R* zFy2Kk#iV{KFGTnF5so9LnE$|+v|iV_5iJ$#(YGnuXI6g z80F0dXgr1O=URU()?D#o$k`el-#P$7*!m`m(!W{jqqlca158E_A%vjLbnK<5Y+k0r zU?hTb{L1y~iI^uy-?KmAI4At`i9Ytzd4pjU#@}wV;T+!ji|F0+=o(xx)va<~QAKVY$YXojGdqVpi}v&ZMtGX>8{ zgj*}}-c^QEd{&MngU#WVOv9qUGXheSOMQb}JHUHrA{U8TnkC}or~jyWT6V(((3xbH z&$m0Vh}zr&zndP|@{Ln;(|Q2rlCwH5VPyvo#4=X%1!9FZ1mfW=9+$l&&B88~n zOLIhSUG6Z71I38j{b+>c-JrK0EHIV$9{`LuI^P^NC?*v!w6mW141H6@h|~6MUZ#M- zL^Jf%7YLjD{r2wRRMU$ArdU+94+qQh7WX+n3J(kwwfU#H7ZyzZlWbhT3PVC9FN58~ zzZa^m&pUdzx(iVV3D9tzv^2Ff3p=%8W*%@`!=I5l|KrON%lt)yjW$_uK4Jrj4D%V8 zQmiv4ugzH}reUN&{D+ey?Hw1Fvz3N*Q633oSX)^=1G6Fn$>!@-X6R_j=6QtEwaSUu z&Y`*cu{Chr?}NnE6Vd*_sP0Fu;etoYg_S z3WjO?w{us#AA10)L}L^WYEn!t;8?MMClUq87zHJaA^2c&I}$~QS~Qbm*G$j&EwEY% z1{bCjy*KTbxCO@2`R^P)ynjE2uYbG=@IR%C7Pv%Y(~6RouRH1;4w6B67T==mEd@bF z4{Gw(=-EIoeCMK!+6=o0S~KB;8hfv|HI8|i_>7s`Uj?{!0R5S7K@4z%W{D|4h&ZcO za^Xx8v@l~ZVKK;mR(Nm9@M!KVirOrV{tawsFv7;^mb#oAG|WZ8rmk7$4~o`3SpMUN zA*i5;h-9?#wxGNHMP+uc+}NAOMRI2mp&P`YA*CQ}(v8vE+qZ6gyu=0VfPo&`V6~G& zT39@bgLr~UmxpDgavh<%dTC~U2oqvZ*14UXZHS?e7Z~r9#axiz5}7zPGoC2nS0eAN ztDj0y;UG`fq|HC*>6zVRu3AG732~E@w~%lLA}Mu!=UOL3(F5q5NKAJBAYNkn?E<;8 zUYpLLC>LV@8fFa4_9g-XifRS$+fw#|QWVwk7;Tq?x}v9ztAm~c4TLZYs*{>HuYbkA z>6m2By8}3;j-dE*5SR=TcIimDsH_Z-kNDTM0Q`j#4Ik>ExL*qJ!_s{N)PlH9zt(6m-rW(7y0cXoi6$Bz7*MN zYHCJ<$wlR@z3xkkbhYtgiC}YYUSv-A8Ii?Np?e12yAyySA0lQBS2fo;5 zHphk0=;$DD2>gH+=>cxtNQKRyg=|7+=ZT401fYa-%iCzeFbOEs#pM zcpPQeUcMRS$mcr7INU#+hTL*1zZNmz`N&Qx9V`6o9 zAEkUbJT>o=dy|BL5QjKqyqe(xAqYA^2Iv!)!|RQ`)CyU|^8OD2Y(ELwnNIs-!!2p7o92r(?St8bJcg z%S`bMypd+|+_(A;RQ^U=C?P+na|+km3oIXM`qC(00CZzQi0XNngQ! zXdpmJ%4Ddi`9Zeg5P`OU#q0<1B?iDH3I*^7ppuVzc?&!S$qzjA^g{6mXt~D(b>l%i zs{T(*YV2ihzwtslW6p&~%otGo_5aH!e0jHgRF~O}jJ2T?7Zorl#ku7}xf7oEziLls z;eF`J+mt<{LMHO%k90L^8~iOLKT=4p|sD3;x@PN=?^#M zO3*E|@NzyR8Anz9%{Nvz4ya=C8_tf17$W*WTOC8gq%hkDbYwSC9S9&}?ndL<^3DG> zU=8Cd6d&##-tefJq6FvCcW%>y!7G|uO^Zj3rUskcX_m<1CnP5WF_9D+-^uXrinNs$ z)(9d|5CmGTe1=KN)%EK~oL9wTfe&e%kRNvnW4PiaYO{#h;Upjb)OG^-$0?KW-=$sA z*a6}JS=TIii62MDhy(upvFy^fJS`WsD8)eF7aHqwe%{%HdZ-Ot2yyrlW$la9?3S=5dTmw~r z!z@QXqSY>XLcAT+s`~{BvxE*E~IZfM2j2OEE9#41MNI?)-*BimI~iOwn-ECi++#rToEI{VKV3*% zM|F@jcYvU=5M5pphiCHZr;aEQoEU|`IY4!%yk~|D$%^vQtlzM53P^o`?y;G$HvaoX ze|v~d)_)KK z!EF%#&`C24=!}w(iJ@yCn>Oi;_~^ESCMMAnl=S@Uv6u&y-%|9dg#LjV!lis;#-{Ht zuYNY~6p>3qvyo9(7qqy&b;2FLoBHw~DJ4Ok^de((c!HYo;12o07`*2Fn}~^6W&#%f ue!Yd{{qa5>Yl$`Ced;y;zg@Uxl={z~Rm@d?3^|f-NLSgvGim$Lv;PfkL+=Lw diff --git a/search.json b/search.json index 3a349c9..79bea97 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"/SUPPORT.html","id":null,"dir":"","previous_headings":"","what":"Getting help with HybridExpress","title":"Getting help with HybridExpress","text":"Thank using HybridExpress! filing issue, things know make process smooth possible parties.","code":""},{"path":"/SUPPORT.html","id":"make-a-reprex","dir":"","previous_headings":"","what":"Make a reprex","title":"Getting help with HybridExpress","text":"Start making minimally reproducible example, also known ‘reprex’. may use reprex R package create one, though necessary help. make R-question-asking endeavors easier. Learning use takes 5 10 minutes. tips make minimally reproducible example, see StackOverflow link.","code":""},{"path":"/SUPPORT.html","id":"where-to-post-it","dir":"","previous_headings":"","what":"Where to post it?","title":"Getting help with HybridExpress","text":"Bioconductor help web page gives overview places may help answer question. Bioconductor software related questions, bug reports feature requests, addressed appropriate Bioconductor/HybridExpress GitHub repository. Follow bug report feature request templates GitHub. package GitHub repository, see next bullet point. Bioconductor software usage questions addressed Bioconductor Support Website. Make sure use appropriate package tag, otherwise package authors get notification. General R questions can posed StackOverflow RStudio Community website especially pertain tidyverse RStudio GUI related products.","code":""},{"path":"/SUPPORT.html","id":"issues-or-feature-requests","dir":"","previous_headings":"","what":"Issues or Feature Requests","title":"Getting help with HybridExpress","text":"opening new issue feature request, sure search issues pull requests ensure one already exist implemented development version. Note. can remove :open search term issues page search open closed issues. See link learn modifying search.","code":""},{"path":"/SUPPORT.html","id":"what-happens-next","dir":"","previous_headings":"","what":"What happens next?","title":"Getting help with HybridExpress","text":"Bioconductor maintainers limited resources strive responsive possible. Please forget tag appropriate maintainer issue GitHub username (e.g., @username). order make easy possible Bioconductor core developers remediate issue. Provide accurate, brief, reproducible report outlined issue templates. Thank trusting Bioconductor.","code":""},{"path":"/articles/HybridExpress.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"formation hybrids fusion distinct genomes subsequent genome duplication cases allopolyploidy represents significant evolutionary event complex effects cellular biology, particularly gene expression. impact genome mergings duplications transcription remain incompletely understood. bridge gap, introduce HybridExpress, comprehensive package designed facilitate comparative transcriptomic analysis hybrids progenitor species. HybridExpress tailored RNA-Seq data derived ‘experimental trio’: hybrid organism two parental species. package offers suite intuitive functions enabling researchers perform differential expression analysis ease, generate principal component analysis (PCA) plots visualizing gene expression trends, categorize genes 12 distinct expression pattern groups (Rapp, Udall, Wendel (2009)), conduct -depth functional analyses. Acknowledging potential variability cell transcriptome size across species ploidy levels, HybridExpress incorporates features rigorous normalization count data. Specifically, allows integration spike-standards directly normalization process, ensuring accurate transcriptome size adjustments standards present RNA-Seq count data (see full methodology Coate (2023)). offering capabilities, HybridExpress provides robust toolset unraveling intricate effects genome doubling merging hybrid gene expression, paving way novel insights cellular biology hybrid organisms.","code":""},{"path":"/articles/HybridExpress.html","id":"installation","dir":"Articles","previous_headings":"","what":"Installation","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"HybridExpress can installed Bioconductor following code:","code":"if(!requireNamespace('BiocManager', quietly = TRUE)) install.packages('BiocManager') BiocManager::install(\"HybridExpress\") # Load package after installation library(HybridExpress) set.seed(123) # for reproducibility"},{"path":"/articles/HybridExpress.html","id":"data-description","dir":"Articles","previous_headings":"","what":"Data description","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"vignette, use example data set comprises (unpublished) gene expression data (counts) Chlamydomonas reinhardtii. lab, crossed diploid line C. reinhardtii (hereafter “P1”) haploid line (hereafter “P2”), thus generating triploid line merging two parental genomes. count matrix sample metadata stored SummarizedExperiment objects, standard Bioconductor data structure required HybridExpress. instructions create SummarizedExperiment object, check FAQ section vignette. Let’s load example data take quick look : can see, count matrix contains 13058 genes 18 samples, 6 replicates parent 1 (P1, diploid), 6 replicates parent 2 (P2, haploid), 6 replicates progeny (F1, triploid).","code":"library(SummarizedExperiment) # Load data data(se_chlamy) # Inspect the `SummarizedExperiment` object se_chlamy #> class: SummarizedExperiment #> dim: 13058 18 #> metadata(0): #> assays(1): counts #> rownames(13058): Cre01.g000050 Cre01.g000150 ... ERCC-00170 ERCC-00171 #> rowData names(0): #> colnames(18): S1 S2 ... S17 S18 #> colData names(2): Ploidy Generation ## Take a look at the colData and count matrix colData(se_chlamy) #> DataFrame with 18 rows and 2 columns #> Ploidy Generation #> #> S1 diploid P1 #> S2 diploid P1 #> S3 diploid P1 #> S4 diploid P1 #> S5 diploid P1 #> ... ... ... #> S14 triploid F1 #> S15 triploid F1 #> S16 triploid F1 #> S17 triploid F1 #> S18 triploid F1 assay(se_chlamy) |> head() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 #> Cre01.g000050 29 22 21 16 #> Cre01.g000150 37 17 24 21 #> Cre01.g000200 24 26 18 21 #> Cre01.g000250 358 339 340 332 #> Cre01.g000300 1524 1720 1517 1243 #> Cre01.g000350 276 324 246 275 table(se_chlamy$Ploidy, se_chlamy$Generation) #> #> F1 P1 P2 #> diploid 0 6 0 #> haploid 0 0 6 #> triploid 6 0 0"},{"path":"/articles/HybridExpress.html","id":"adding-midparent-expression-values","dir":"Articles","previous_headings":"","what":"Adding midparent expression values","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"First , ’d want add count matrix silico samples contain expression values midparent. can done function add_midparent_expression(), takes random sample pair (one sample parent, sampling without replacement) calculates midparent expression value one three ways: Mean (default): get mean expression two samples. Sum: get sum two samples. Weighted mean: get weighted mean two samples multiplying expression value parent weight. Typically, can used two parents different ploidy levels, weights correspond ploidy level parent. function, besides specifying method obtain midparent expression values (.e., “mean”, “sum”, “weightedmean”), users must also specify name column colData contains information generations (default: “Generation”), well levels corresponding parent (default: “P1” “P2” parents 1 2, respectively). proceed analyses midparent expression values obtained mean counts, stored se object.","code":"# Add midparent expression using the mean of the counts se <- add_midparent_expression(se_chlamy) head(assay(se)) #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> Cre01.g000050 29 22 21 16 18 27 14 20 #> Cre01.g000150 37 17 24 21 32 46 38 56 #> Cre01.g000200 24 26 18 21 19 22 20 18 #> Cre01.g000250 358 339 340 332 310 372 273 284 #> Cre01.g000300 1524 1720 1517 1243 1030 1331 1072 1166 #> Cre01.g000350 276 324 246 275 242 316 242 268 #> midparent5 midparent6 #> Cre01.g000050 18 22 #> Cre01.g000150 31 46 #> Cre01.g000200 16 24 #> Cre01.g000250 278 348 #> Cre01.g000300 1076 1182 #> Cre01.g000350 242 304 # Alternative 1: using the sum of the counts add_midparent_expression(se_chlamy, method = \"sum\") |> assay() |> head() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> Cre01.g000050 29 22 21 16 43 26 58 46 #> Cre01.g000150 37 17 24 21 86 25 86 140 #> Cre01.g000200 24 26 18 21 38 24 50 41 #> Cre01.g000250 358 339 340 332 666 518 810 587 #> Cre01.g000300 1524 1720 1517 1243 2557 1893 2629 2373 #> Cre01.g000350 276 324 246 275 527 453 668 531 #> midparent5 midparent6 #> Cre01.g000050 37 27 #> Cre01.g000150 96 62 #> Cre01.g000200 51 34 #> Cre01.g000250 714 432 #> Cre01.g000300 2548 1716 #> Cre01.g000350 633 419 # Alternative 2: using the weighted mean of the counts (weights = ploidy) w <- c(2, 1) # P1 = diploid; P2 = haploid add_midparent_expression(se_chlamy, method = \"weightedmean\", weights = w) |> assay() |> head() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> Cre01.g000050 29 22 21 16 25 29 39 22 #> Cre01.g000150 37 17 24 21 27 30 29 16 #> Cre01.g000200 24 26 18 21 27 32 33 21 #> Cre01.g000250 358 339 340 332 181 232 270 210 #> Cre01.g000300 1524 1720 1517 1243 1453 1576 1753 1532 #> Cre01.g000350 276 324 246 275 166 202 223 165 #> midparent5 midparent6 #> Cre01.g000050 26 17 #> Cre01.g000150 48 15 #> Cre01.g000200 29 17 #> Cre01.g000250 202 148 #> Cre01.g000300 1705 1125 #> Cre01.g000350 186 136"},{"path":"/articles/HybridExpress.html","id":"exploratory-data-analyses","dir":"Articles","previous_headings":"","what":"Exploratory data analyses","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"Next, can perform exploratory analyses sample clustering verify samples group expected. HybridExpress, can performed using two functions: pca_plot(): creates principal component analysis (PCA) plots, colors shapes (optional) mapped levels colData variables; plot_samplecor(): plots heatmap hierarchically clustered pairwise sample correlations. Let’s start PCA plot: plot , data point corresponds sample, colors shapes mapped levels variables specified arguments color_by shape_by, respectively. Besides, specifying add_mean = TRUE, added diamond shape indicating mean PC coordinates based variable color_by (, “Generation”). Now, let’s plot heatmap sample correlations: can see samples group well together PCA plot correlation heatmap. note, pca_plot() plot_samplecor() use top 500 genes highest variances create plot. genes low variances (.e., genes vary much across samples) uninformative typically add noise. can change number (use less genes) ntop argument functions.","code":"# For colData rows with missing values (midparent samples), add \"midparent\" se$Ploidy[is.na(se$Ploidy)] <- \"midparent\" se$Generation[is.na(se$Generation)] <- \"midparent\" # Create PCA plot pca_plot(se, color_by = \"Generation\", shape_by = \"Ploidy\", add_mean = TRUE) #> converting counts to integer mode # Plot a heatmap of sample correlations plot_samplecor(se) #> converting counts to integer mode"},{"path":"/articles/HybridExpress.html","id":"identifying-differentially-expressed-genes-between-hybrids-and-their-parents","dir":"Articles","previous_headings":"","what":"Identifying differentially expressed genes between hybrids and their parents","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"compare gene expression levels hybrids progenitor species, can use function get_deg_list(). function performs differential expression analyses using DESeq2 returns list data frames gene-wise test statistics following contrasts: P2_vs_P1: parent 2 (numerator) versus parent 1 (denominator). F1_vs_P1: hybrid (numerator) versus parent 1 (denominator). F1_vs_P2: hybrid (numerator) versus parent 2 (denominator). F1_vs_midparent: hybrid (numerator) vs midparent (denominator). default, count data normalized library size using standard normalization process DESeq2. However, spike-standards included count matrix, can use normalization setting spikein_norm = TRUE specifying pattern used indicate rows contain spike-ins (usually start ERCC)1. example data set, spike-standards available last rows count matrix. Now, use get_deg_list() get differentially expressed genes (DEGs) contrast using spike-normalization. summarize frequencies - -regulated genes per contrast single data frame, use function get_deg_counts(). important note columns perc_up, perc_down, perc_total show percentages -regulated, -regulated, differentially expressed genes relative total number genes count matrix. total number genes count matrix stored ngenes attribute list returned get_deg_list(): However, since count matrix usually include genes genome (e.g., lowly expressed genes genes low variance usually filtered ), percentages perc_up, perc_down, perc_total relative total number genes genome. use total number genes genome reference, need update ngenes attribute DEG list appropriate number follows: , can run get_deg_counts() get percentages relative total number genes genome. Finally, can summarize everything single publication-ready figure using plot plot_expression_triangle(), shows ‘experimental trio’ (.e., hybrid progenitors) triangle, frequencies DEGs indicated. figure commonly used publications, inspired Rapp, Udall, Wendel (2009). edge (line), numbers middle (bold) indicate frequency DEGs, numbers ends (close boxes) indicate frequency -regulated genes generation. instance, figure shows , contrast F1 P1, 5476 DEGs (32.4% genome), 1471 -regulated F1, 4005 -regulated P1. custom figure, can also specify color palette labels boxes. example:","code":"# Show last rows of the count matrix assay(se) |> tail() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 #> ERCC-00163 74 75 55 77 51 84 132 127 93 108 79 102 66 #> ERCC-00164 0 4 0 1 4 1 6 4 1 4 3 2 5 #> ERCC-00165 147 139 87 165 118 179 236 246 139 218 176 145 118 #> ERCC-00168 2 5 2 2 2 6 5 1 1 5 0 3 4 #> ERCC-00170 97 95 73 101 70 118 186 148 110 167 110 103 72 #> ERCC-00171 4644 4959 3554 5357 4170 5946 8207 7915 4992 7843 6455 5884 4537 #> S14 S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> ERCC-00163 67 62 80 88 47 67 96 101 90 #> ERCC-00164 4 3 5 4 2 2 2 4 2 #> ERCC-00165 143 115 185 192 136 132 198 192 155 #> ERCC-00168 6 2 11 5 2 1 6 3 2 #> ERCC-00170 99 64 121 103 84 92 142 122 102 #> ERCC-00171 5665 4598 6168 5771 4747 5004 6894 6437 5620 #> midparent5 midparent6 #> ERCC-00163 92 84 #> ERCC-00164 5 0 #> ERCC-00165 177 143 #> ERCC-00168 4 2 #> ERCC-00170 128 104 #> ERCC-00171 6188 4818 # Get a list of differentially expressed genes for each contrast deg_list <- get_deg_list(se, spikein_norm = TRUE, spikein_pattern = \"ERCC\") #> converting counts to integer mode #> using pre-existing size factors #> estimating dispersions #> gene-wise dispersion estimates #> mean-dispersion relationship #> final dispersion estimates #> fitting model and testing # Inspecting the output ## Getting contrast names names(deg_list) #> [1] \"P2_vs_P1\" \"F1_vs_P1\" \"F1_vs_P2\" \"F1_vs_midparent\" ## Accessing gene-wise test statistics for contrast `F1_vs_P1` head(deg_list$F1_vs_P1) #> baseMean log2FoldChange lfcSE stat pvalue #> Cre01.g000450 39.59273 -1.1632346 0.2165407 -5.371898 7.791211e-08 #> Cre01.g000750 103.10296 0.8807307 0.1842856 4.779162 1.760270e-06 #> Cre01.g000900 471.44084 0.6807925 0.1980730 3.437079 5.880239e-04 #> Cre01.g001000 10.34574 -6.6304915 0.9631384 -6.884256 5.809030e-12 #> Cre01.g001100 453.87151 -0.6457115 0.1506903 -4.285025 1.827187e-05 #> Cre01.g001200 159.03643 0.7231060 0.1946090 3.715685 2.026536e-04 #> padj #> Cre01.g000450 4.653531e-07 #> Cre01.g000750 8.329159e-06 #> Cre01.g000900 1.707442e-03 #> Cre01.g001000 6.659069e-11 #> Cre01.g001100 7.200448e-05 #> Cre01.g001200 6.453951e-04 ## Counting the number of DEGs per contrast sapply(deg_list, nrow) #> P2_vs_P1 F1_vs_P1 F1_vs_P2 F1_vs_midparent #> 8698 5476 7350 4348 # Get a data frame with DEG frequencies for each contrast deg_counts <- get_deg_counts(deg_list) deg_counts #> contrast up down total perc_up perc_down perc_total #> 1 P2_vs_P1 828 7870 8698 6.4 60.7 67.1 #> 2 F1_vs_P1 1471 4005 5476 11.3 30.9 42.2 #> 3 F1_vs_P2 6487 863 7350 50.0 6.7 56.7 #> 4 F1_vs_midparent 2620 1728 4348 20.2 13.3 33.5 attributes(deg_list)$ngenes #> [1] 12966 # Total number of genes in the C. reinhardtii genome (v6.1): 16883 attributes(deg_list)$ngenes <- 16883 deg_counts <- get_deg_counts(deg_list) deg_counts #> contrast up down total perc_up perc_down perc_total #> 1 P2_vs_P1 828 7870 8698 4.9 46.6 51.5 #> 2 F1_vs_P1 1471 4005 5476 8.7 23.7 32.4 #> 3 F1_vs_P2 6487 863 7350 38.4 5.1 43.5 #> 4 F1_vs_midparent 2620 1728 4348 15.5 10.2 25.8 # Plot expression triangle plot_expression_triangle(deg_counts) # Create vectors (length 4) of colors and box labels pal <- c(\"springgreen4\", \"darkorange3\", \"mediumpurple4\", \"mediumpurple3\") labels <- c(\"Parent 1\\n(2n)\", \"Parent 2\\n(n)\", \"Progeny\\n(3n)\", \"Midparent\") plot_expression_triangle(deg_counts, palette = pal, box_labels = labels)"},{"path":"/articles/HybridExpress.html","id":"expression-based-gene-classification","dir":"Articles","previous_headings":"","what":"Expression-based gene classification","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"identifying DEGs different contrasts, ’d typically want classify genes expression partitions based expression patterns. can performed function expression_partitioning(), classifies genes one 12 categories Rapp, Udall, Wendel (2009), 5 major classes summarize 12 categories. five classes : Transgressive -regulation (): gene -regulated hybrid compared parents. Transgressive -regulation (): gene -regulated hybrid compared parents. Additivity (ADD): gene expression hybrid mean parents (additive effect). Expression-level dominance toward parent 1 (ELD_P1): gene expression hybrid parent 1, different parent 2. Expression-level dominance toward parent 2 (ELD_P2): gene expression hybrid parent 2, different parent 1. visualize expression partitions scatter plot expression divergences, can use function plot_expression_partitions(). default, genes grouped Category. However, can also group genes Class follows: can also visualize frequencies genes partition function plot_partition_frequencies().","code":"# Classify genes in expression partitions exp_partitions <- expression_partitioning(deg_list) # Inspect the output head(exp_partitions) #> Gene Category Class lFC_F1_vs_P1 lFC_F1_vs_P2 #> 1 Cre01.g003650 1 ADD 0.7838125 -1.0484464 #> 2 Cre01.g005150 1 ADD 1.0473362 -0.5041601 #> 3 Cre01.g008600 1 ADD 5.0518384 -1.4840829 #> 4 Cre01.g013500 1 ADD 2.1099265 -1.5329846 #> 5 Cre01.g034850 1 ADD 1.5838851 -0.7611868 #> 6 Cre01.g800005 1 ADD 1.4928449 -0.9315119 # Count number of genes per category table(exp_partitions$Category) #> #> 1 2 3 4 5 6 7 8 9 10 11 12 #> 70 262 66 3283 77 287 214 651 280 147 1760 1666 # Count number of genes per class table(exp_partitions$Class) #> #> UP DOWN ADD ELD_P1 ELD_P2 #> 1015 427 1736 3563 2022 # Plot partitions as a scatter plot of divergences plot_expression_partitions(exp_partitions, group_by = \"Category\") # Group by `Class` plot_expression_partitions(exp_partitions, group_by = \"Class\") # Visualize frequency of genes in each partition ## By `Category` (default) plot_partition_frequencies(exp_partitions) ## By `Class` plot_partition_frequencies(exp_partitions, group_by = \"Class\")"},{"path":"/articles/HybridExpress.html","id":"overrepresentation-analysis-of-functional-terms","dir":"Articles","previous_headings":"","what":"Overrepresentation analysis of functional terms","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"Lastly, ’d want explore whether gene sets interest (e.g., -regulated genes contrast) enriched particular GO term, pathway, protein domain, etc. , use function ora(), performs overrepresentation analysis gene set given data frame functional annotation gene. , use example data set GO annotation C. reinhardtii genes. data set illustrates annotation data frame must shaped: gene ID first column, functional annotations columns. demonstrate usage ora(), let’s check can find enrichment GO term among genes assigned class “ADD”.","code":"# Load example functional annotation (GO terms) data(go_chlamy) head(go_chlamy) #> gene GO #> 1 Cre01.g000050 #> 2 Cre01.g000100 #> 3 Cre01.g000150 membrane #> 4 Cre01.g000150 metal ion transport #> 5 Cre01.g000150 metal ion transmembrane transporter activity #> 6 Cre01.g000150 transmembrane transport # Get a vector of genes in class \"ADD\" genes_add <- exp_partitions$Gene[exp_partitions$Class == \"ADD\"] head(genes_add) #> [1] \"Cre01.g003650\" \"Cre01.g005150\" \"Cre01.g008600\" \"Cre01.g013500\" #> [5] \"Cre01.g034850\" \"Cre01.g800005\" # Get background genes - genes in the count matrix bg <- rownames(se) # Perform overrepresentation analysis ora_add <- ora(genes_add, go_chlamy, background = bg) # Inspect results head(ora_add) #> term genes all pval #> 20 aminoacyl-tRNA ligase activity 14 33 3.517366e-05 #> 84 cytoplasm 43 151 6.083978e-07 #> 97 DNA replication 17 37 1.331552e-06 #> 114 endopeptidase activity 6 10 7.118363e-04 #> 115 endoplasmic reticulum 9 17 1.128774e-04 #> 118 eukaryotic translation initiation factor 3 complex 7 9 2.044325e-05 #> padj category #> 20 1.629713e-03 GO #> 84 6.342547e-05 GO #> 97 1.110515e-04 GO #> 114 2.120255e-02 GO #> 115 4.706990e-03 GO #> 118 1.217834e-03 GO"},{"path":"/articles/HybridExpress.html","id":"example-1-overrepresentation-analyses-for-all-expression-based-classes","dir":"Articles","previous_headings":"Overrepresentation analysis of functional terms","what":"Example 1: overrepresentation analyses for all expression-based classes","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"example , performed overrepresentation analysis genes associated class “ADD”. wanted classes? case, run ora() multiple times looping class. details, following: class, create vector genes associated ; Run ora() get data frame ORA results. can find example using lapply(). Results class stored elements list object. expression-based category (class), ’d need replace Class Category split() function (see example ).","code":"# Create a list of genes in each class genes_by_class <- split(exp_partitions$Gene, exp_partitions$Class) names(genes_by_class) #> [1] \"UP\" \"DOWN\" \"ADD\" \"ELD_P1\" \"ELD_P2\" head(genes_by_class$UP) #> [1] \"Cre01.g029250\" \"Cre01.g034380\" \"Cre01.g036700\" \"Cre01.g049400\" #> [5] \"Cre02.g085500\" \"Cre02.g087150\" # Iterate through each class and perform ORA ora_classes <- lapply( genes_by_class, # list through which we will iterate ora, # function we will apply to each element of the list annotation = go_chlamy, background = bg # additional arguments to function ) # Inspect output ora_classes #> $UP #> term genes all pval padj #> 29 ATP hydrolysis activity 21 119 3.074727e-04 0.0427387078 #> 109 dynein complex 8 13 1.172717e-06 0.0004890231 #> 127 flavin adenine dinucleotide binding 11 42 2.687071e-04 0.0427387078 #> category #> 29 GO #> 109 GO #> 127 GO #> #> $DOWN #> term genes all pval padj #> 242 oxidoreductase activity 21 274 2.668754e-04 2.225741e-02 #> 271 photosynthesis 13 58 3.367873e-08 7.022015e-06 #> 272 photosynthesis, light harvesting 18 24 1.444312e-22 6.022782e-20 #> 276 photosystem I 5 15 8.360388e-05 8.715704e-03 #> 376 tetrapyrrole biosynthetic process 5 8 1.885876e-06 2.621368e-04 #> category #> 242 GO #> 271 GO #> 272 GO #> 276 GO #> 376 GO #> #> $ADD #> term #> 20 aminoacyl-tRNA ligase activity #> 84 cytoplasm #> 97 DNA replication #> 114 endopeptidase activity #> 115 endoplasmic reticulum #> 118 eukaryotic translation initiation factor 3 complex #> 165 intracellular protein transport #> 227 nuclear pore #> 250 oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor #> 284 prefoldin complex #> 287 proteasome core complex #> 293 protein folding #> 294 protein glycosylation #> 304 protein refolding #> 390 translation initiation factor activity #> 410 unfolded protein binding #> 414 vesicle-mediated transport #> genes all pval padj category #> 20 14 33 3.517366e-05 1.629713e-03 GO #> 84 43 151 6.083978e-07 6.342547e-05 GO #> 97 17 37 1.331552e-06 1.110515e-04 GO #> 114 6 10 7.118363e-04 2.120255e-02 GO #> 115 9 17 1.128774e-04 4.706990e-03 GO #> 118 7 9 2.044325e-05 1.217834e-03 GO #> 165 25 73 3.907713e-06 2.715861e-04 GO #> 227 6 9 3.209008e-04 1.115130e-02 GO #> 250 10 27 1.647170e-03 4.292937e-02 GO #> 284 4 4 3.114510e-04 1.115130e-02 GO #> 287 9 15 2.987692e-05 1.557334e-03 GO #> 293 29 81 2.288079e-07 3.180430e-05 GO #> 294 6 10 7.118363e-04 2.120255e-02 GO #> 304 10 10 1.686356e-09 7.032106e-07 GO #> 390 9 21 8.277887e-04 2.301252e-02 GO #> 410 19 38 5.773438e-08 1.203762e-05 GO #> 414 13 41 1.832917e-03 4.496037e-02 GO #> #> $ELD_P1 #> term genes all pval padj category #> 38 binding 88 208 1.818832e-06 0.0007584527 GO #> 239 nucleus 77 193 8.891683e-05 0.0185391599 GO #> 345 rRNA processing 15 24 3.183647e-04 0.0442526890 GO #> #> $ELD_P2 #> term genes all #> 28 aspartic-type endopeptidase activity 6 8 #> 170 iron ion binding 30 93 #> 242 oxidoreductase activity 71 274 #> 271 photosynthesis 26 58 #> 278 photosystem II 17 32 #> 320 proton-transporting two-sector ATPase complex, catalytic domain 6 8 #> pval padj category #> 28 2.888758e-04 2.007687e-02 GO #> 170 3.997247e-05 4.167130e-03 GO #> 242 4.722014e-06 6.563600e-04 GO #> 271 1.031130e-07 4.299811e-05 GO #> 278 8.669007e-07 1.807488e-04 GO #> 320 2.888758e-04 2.007687e-02 GO"},{"path":"/articles/HybridExpress.html","id":"example-2-overrepresentation-analyses-for-differentially-expressed-genes","dir":"Articles","previous_headings":"Overrepresentation analysis of functional terms","what":"Example 2: overrepresentation analyses for differentially expressed genes","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"can use lapply() loop expression class, can also loop contrast list returned get_deg_list(), perform ORA - -regulated genes. can find example: Likewise, -regulated genes, need replace > symbol < symbol anonymous function subset rows.","code":"# Get up-regulated genes for each contrast up_genes <- lapply(deg_list, function(x) rownames(x[x$log2FoldChange > 0, ])) names(up_genes) #> [1] \"P2_vs_P1\" \"F1_vs_P1\" \"F1_vs_P2\" \"F1_vs_midparent\" head(up_genes$F1_vs_P1) #> [1] \"Cre01.g000750\" \"Cre01.g000900\" \"Cre01.g001200\" \"Cre01.g002750\" #> [5] \"Cre01.g003524\" \"Cre01.g003650\" # Perform ORA ora_up <- lapply( up_genes, ora, annotation = go_chlamy, background = bg ) ora_up #> $P2_vs_P1 #> [1] term genes all pval padj category #> <0 rows> (or 0-length row.names) #> #> $F1_vs_P1 #> term genes all pval padj category #> 109 dynein complex 8 13 1.944536e-05 0.008108715 GO #> #> $F1_vs_P2 #> term genes all pval #> 38 binding 138 208 7.344020e-07 #> 96 DNA repair 56 83 7.655167e-04 #> 144 GTP binding 72 111 8.525066e-04 #> 169 ion transport 33 45 1.048368e-03 #> 209 microtubule-based process 10 10 9.123368e-04 #> 239 nucleus 125 193 1.471530e-05 #> 303 protein polymerization 10 10 9.123368e-04 #> 304 protein refolding 10 10 9.123368e-04 #> 307 protein serine/threonine phosphatase activity 20 24 6.876258e-04 #> 338 RNA binding 101 157 1.388743e-04 #> 384 transcription, DNA-templated 28 36 5.139935e-04 #> padj category #> 38 0.0003062456 GO #> 96 0.0380444450 GO #> 144 0.0380444450 GO #> 169 0.0397426775 GO #> 209 0.0380444450 GO #> 239 0.0030681409 GO #> 303 0.0380444450 GO #> 304 0.0380444450 GO #> 307 0.0380444450 GO #> 338 0.0193035210 GO #> 384 0.0380444450 GO #> #> $F1_vs_midparent #> term genes all pval #> 80 cyclic nucleotide biosynthetic process 38 108 1.704386e-04 #> 109 dynein complex 9 13 1.689230e-04 #> 166 intracellular signal transduction 38 110 2.618073e-04 #> 168 ion channel activity 20 48 5.098878e-04 #> 169 ion transport 21 45 5.169533e-05 #> 290 protein dephosphorylation 21 44 3.395214e-05 #> 307 protein serine/threonine phosphatase activity 15 24 6.787504e-06 #> padj category #> 80 0.014214579 GO #> 109 0.014214579 GO #> 166 0.018195605 GO #> 168 0.030374745 GO #> 169 0.007185651 GO #> 290 0.007079020 GO #> 307 0.002830389 GO"},{"path":"/articles/HybridExpress.html","id":"faq","dir":"Articles","previous_headings":"","what":"FAQ","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"create SummarizedExperiment object? SummarizedExperiment data structure (S4 class) can used store, single object, following elements: assay: quantitative matrix features rows samples columns. context HybridExpress, gene expression matrix (counts) genes rows samples columns. colData: data frame sample metadata samples rows variables describe samples (e.g., tissue, treatment, covariates) columns. rowData: data frame gene metadata genes rows variables describe genes (e.g., chromosome name, alternative IDs, functional information, etc) columns. package, must assay containing count matrix colData slot sample metadata. rowData can present, required. demonstrate create SummarizedExperiment object, extract assay colData example object se_chlamy comes package. two objects, can create SummarizedExperiment object : details data structure, read vignette SummarizedExperiment package.","code":"# Get count matrix count_matrix <- assay(se_chlamy) head(count_matrix) #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 #> Cre01.g000050 29 22 21 16 #> Cre01.g000150 37 17 24 21 #> Cre01.g000200 24 26 18 21 #> Cre01.g000250 358 339 340 332 #> Cre01.g000300 1524 1720 1517 1243 #> Cre01.g000350 276 324 246 275 # Get colData (data frame of sample metadata) coldata <- colData(se_chlamy) head(coldata) #> DataFrame with 6 rows and 2 columns #> Ploidy Generation #> #> S1 diploid P1 #> S2 diploid P1 #> S3 diploid P1 #> S4 diploid P1 #> S5 diploid P1 #> S6 diploid P1 # Create a SummarizedExperiment object new_se <- SummarizedExperiment( assays = list(counts = count_matrix), colData = coldata ) new_se #> class: SummarizedExperiment #> dim: 13058 18 #> metadata(0): #> assays(1): counts #> rownames(13058): Cre01.g000050 Cre01.g000150 ... ERCC-00170 ERCC-00171 #> rowData names(0): #> colnames(18): S1 S2 ... S17 S18 #> colData names(2): Ploidy Generation"},{"path":"/articles/HybridExpress.html","id":"session-information","dir":"Articles","previous_headings":"","what":"Session information","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"document created following conditions:","code":"#> ─ Session info ─────────────────────────────────────────────────────────────── #> setting value #> version R Under development (unstable) (2023-11-22 r85609) #> os Ubuntu 22.04.3 LTS #> system x86_64, linux-gnu #> ui X11 #> language en #> collate en_US.UTF-8 #> ctype en_US.UTF-8 #> tz UTC #> date 2023-11-28 #> pandoc 3.1.1 @ /usr/local/bin/ (via rmarkdown) #> #> ─ Packages ─────────────────────────────────────────────────────────────────── #> package * version date (UTC) lib source #> abind 1.4-5 2016-07-21 [1] CRAN (R 4.4.0) #> Biobase * 2.63.0 2023-10-24 [1] Bioconductor #> BiocGenerics * 0.49.1 2023-11-01 [1] Bioconductor #> BiocManager 1.30.22 2023-08-08 [1] CRAN (R 4.4.0) #> BiocParallel 1.37.0 2023-10-24 [1] Bioconductor #> BiocStyle * 2.31.0 2023-10-24 [1] Bioconductor #> bitops 1.0-7 2021-04-24 [1] CRAN (R 4.4.0) #> bookdown 0.36 2023-10-16 [1] CRAN (R 4.4.0) #> bslib 0.6.0 2023-11-21 [2] CRAN (R 4.4.0) #> cachem 1.0.8 2023-05-01 [2] CRAN (R 4.4.0) #> circlize 0.4.15 2022-05-10 [1] CRAN (R 4.4.0) #> cli 3.6.1 2023-03-23 [2] CRAN (R 4.4.0) #> clue 0.3-65 2023-09-23 [1] CRAN (R 4.4.0) #> cluster 2.1.4 2022-08-22 [3] CRAN (R 4.4.0) #> codetools 0.2-19 2023-02-01 [3] CRAN (R 4.4.0) #> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.4.0) #> ComplexHeatmap 2.19.0 2023-10-24 [1] Bioconductor #> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.4.0) #> DelayedArray 0.29.0 2023-10-24 [1] Bioconductor #> desc 1.4.2 2022-09-08 [2] CRAN (R 4.4.0) #> DESeq2 1.43.1 2023-11-14 [1] Bioconductor #> digest 0.6.33 2023-07-07 [2] CRAN (R 4.4.0) #> doParallel 1.0.17 2022-02-07 [1] CRAN (R 4.4.0) #> dplyr 1.1.4 2023-11-17 [1] CRAN (R 4.4.0) #> evaluate 0.23 2023-11-01 [2] CRAN (R 4.4.0) #> fansi 1.0.5 2023-10-08 [2] CRAN (R 4.4.0) #> farver 2.1.1 2022-07-06 [1] CRAN (R 4.4.0) #> fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.4.0) #> foreach 1.5.2 2022-02-02 [1] CRAN (R 4.4.0) #> fs 1.6.3 2023-07-20 [2] CRAN (R 4.4.0) #> generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0) #> GenomeInfoDb * 1.39.1 2023-11-08 [1] Bioconductor #> GenomeInfoDbData 1.2.11 2023-11-28 [1] Bioconductor #> GenomicRanges * 1.55.1 2023-10-29 [1] Bioconductor #> GetoptLong 1.0.5 2020-12-15 [1] CRAN (R 4.4.0) #> ggplot2 3.4.4 2023-10-12 [1] CRAN (R 4.4.0) #> GlobalOptions 0.1.2 2020-06-10 [1] CRAN (R 4.4.0) #> glue 1.6.2 2022-02-24 [2] CRAN (R 4.4.0) #> gtable 0.3.4 2023-08-21 [1] CRAN (R 4.4.0) #> highr 0.10 2022-12-22 [2] CRAN (R 4.4.0) #> htmltools 0.5.7 2023-11-03 [2] CRAN (R 4.4.0) #> HybridExpress * 0.99.0 2023-11-28 [1] Bioconductor #> IRanges * 2.37.0 2023-10-24 [1] Bioconductor #> iterators 1.0.14 2022-02-05 [1] CRAN (R 4.4.0) #> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.4.0) #> jsonlite 1.8.7 2023-06-29 [2] CRAN (R 4.4.0) #> knitr 1.45 2023-10-30 [2] CRAN (R 4.4.0) #> labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0) #> lattice 0.22-5 2023-10-24 [3] CRAN (R 4.4.0) #> lifecycle 1.0.4 2023-11-07 [2] CRAN (R 4.4.0) #> locfit 1.5-9.8 2023-06-11 [1] CRAN (R 4.4.0) #> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.4.0) #> Matrix 1.6-3 2023-11-14 [3] CRAN (R 4.4.0) #> MatrixGenerics * 1.15.0 2023-10-24 [1] Bioconductor #> matrixStats * 1.1.0 2023-11-07 [1] CRAN (R 4.4.0) #> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.4.0) #> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.4.0) #> patchwork 1.1.3 2023-08-14 [1] CRAN (R 4.4.0) #> pillar 1.9.0 2023-03-22 [2] CRAN (R 4.4.0) #> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.4.0) #> pkgdown 2.0.7 2022-12-14 [1] CRAN (R 4.4.0) #> png 0.1-8 2022-11-29 [1] CRAN (R 4.4.0) #> purrr 1.0.2 2023-08-10 [2] CRAN (R 4.4.0) #> R6 2.5.1 2021-08-19 [2] CRAN (R 4.4.0) #> ragg 1.2.6 2023-10-10 [2] CRAN (R 4.4.0) #> RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.4.0) #> Rcpp 1.0.11 2023-07-06 [2] CRAN (R 4.4.0) #> RCurl 1.98-1.13 2023-11-02 [1] CRAN (R 4.4.0) #> rjson 0.2.21 2022-01-09 [1] CRAN (R 4.4.0) #> rlang 1.1.2 2023-11-04 [2] CRAN (R 4.4.0) #> rmarkdown 2.25 2023-09-18 [1] CRAN (R 4.4.0) #> rprojroot 2.0.4 2023-11-05 [2] CRAN (R 4.4.0) #> S4Arrays 1.3.0 2023-10-24 [1] Bioconductor #> S4Vectors * 0.41.2 2023-11-23 [1] Bioconductor 3.19 (R 4.4.0) #> sass 0.4.7 2023-07-15 [2] CRAN (R 4.4.0) #> scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0) #> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.4.0) #> shape 1.4.6 2021-05-19 [1] CRAN (R 4.4.0) #> SparseArray 1.3.1 2023-11-07 [1] Bioconductor #> stringi 1.8.2 2023-11-23 [2] CRAN (R 4.4.0) #> stringr 1.5.1 2023-11-14 [2] CRAN (R 4.4.0) #> SummarizedExperiment * 1.33.0 2023-10-24 [1] Bioconductor #> systemfonts 1.0.5 2023-10-09 [2] CRAN (R 4.4.0) #> textshaping 0.3.7 2023-10-09 [2] CRAN (R 4.4.0) #> tibble 3.2.1 2023-03-20 [2] CRAN (R 4.4.0) #> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.4.0) #> utf8 1.2.4 2023-10-22 [2] CRAN (R 4.4.0) #> vctrs 0.6.4 2023-10-12 [2] CRAN (R 4.4.0) #> withr 2.5.2 2023-10-30 [2] CRAN (R 4.4.0) #> xfun 0.41 2023-11-01 [2] CRAN (R 4.4.0) #> XVector 0.43.0 2023-10-24 [1] Bioconductor #> yaml 2.3.7 2023-01-23 [2] CRAN (R 4.4.0) #> zlibbioc 1.49.0 2023-10-24 [1] Bioconductor #> #> [1] /__w/_temp/Library #> [2] /usr/local/lib/R/site-library #> [3] /usr/local/lib/R/library #> #> ──────────────────────────────────────────────────────────────────────────────"},{"path":[]},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Fabricio Almeida-Silva. Author, maintainer. Lucas Prost-Boxoen. Author. Yves Van de Peer. Author.","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Almeida-Silva F, Prost-Boxoen L, Van de Peer Y (2023). HybridExpress: Comparative analysis RNA-seq data hybrids progenitors. R package version 0.99.0, https://github.com/almeidasilvaf/HybridExpress.","code":"@Manual{, title = {HybridExpress: Comparative analysis of RNA-seq data for hybrids and their progenitors}, author = {Fabricio Almeida-Silva and Lucas Prost-Boxoen and Yves {Van de Peer}}, year = {2023}, note = {R package version 0.99.0}, url = {https://github.com/almeidasilvaf/HybridExpress}, }"},{"path":"/index.html","id":"hybridexpress-","dir":"","previous_headings":"","what":"Comparative analysis of RNA-seq data for hybrids and their progenitors","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"goal HybridExpress perform comparative transcriptomic analyses hybrids relative progenitor species (.k.. experimental trios). package features: Calculation midparent expression values, silico samples obtained mean, sum, weighted mean random sample pairs parent; Exploratory analyses sample grouping PCA plots heatmaps hierarchically-clustered pairwise sample correlations; Identification differentially expressed genes hybrids progenitor species, hybrids midparent values, two parents. spike-standards available, HybridExpress uses normalize count data transcriptome size; Classification genes expression-based categories classes based Rapp et al. (2009). 12 expression categories proposed Rapp et al. (2009) grouped 5 major classes (transgressive -regulation, transgressive -regulation, additivity, expression-level dominance toward parent 1, expression-level dominance toward parent 2); Functional analyses identification overrepresented functional terms gene sets interest.","code":""},{"path":"/index.html","id":"installation-instructions","dir":"","previous_headings":"","what":"Installation instructions","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"Get latest stable R release CRAN. install HybridExpress Bioconductor using following code: development version GitHub :","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HybridExpress\") BiocManager::install(\"almeidasilvaf/HybridExpress\")"},{"path":"/index.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"citation output using citation('HybridExpress') R. Please run check updates cite HybridExpress. Please note HybridExpress made possible thanks many R bioinformatics software authors, cited either vignettes /paper(s) describing package.","code":"print(citation('HybridExpress'), bibtex = TRUE) #> To cite package 'HybridExpress' in publications use: #> #> Almeida-Silva F, Prost-Boxoen L, Van de Peer Y (2023). #> _HybridExpress: Comparative analysis of RNA-seq data for hybrids and #> their progenitors_. R package version 0.99.0, #> . #> #> A BibTeX entry for LaTeX users is #> #> @Manual{, #> title = {HybridExpress: Comparative analysis of RNA-seq data for hybrids and their progenitors}, #> author = {Fabricio Almeida-Silva and Lucas Prost-Boxoen and Yves {Van de Peer}}, #> year = {2023}, #> note = {R package version 0.99.0}, #> url = {https://github.com/almeidasilvaf/HybridExpress}, #> }"},{"path":"/index.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"Please note HybridExpress project released Contributor Code Conduct. contributing project, agree abide terms.","code":""},{"path":"/index.html","id":"development-tools","dir":"","previous_headings":"","what":"Development tools","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"Continuous code testing possible thanks GitHub actions usethis, remotes, rcmdcheck customized use Bioconductor’s docker containers BiocCheck. Code coverage assessment possible thanks codecov covr. documentation website automatically updated thanks pkgdown. code styled automatically thanks styler. documentation formatted thanks devtools roxygen2. package developed using biocthis.","code":""},{"path":"/reference/add_midparent_expression.html","id":null,"dir":"Reference","previous_headings":"","what":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"Add midparent expression SummarizedExperiment object","code":""},{"path":"/reference/add_midparent_expression.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"","code":"add_midparent_expression( se, coldata_column = \"Generation\", parent1 = \"P1\", parent2 = \"P2\", method = \"mean\", weights = c(1, 1) )"},{"path":"/reference/add_midparent_expression.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"se SummarizedExperiment object count matrix sample metadata. coldata_column Character indicating name column colData(se) information generation stored. Default: \"Generation\". parent1 Character indicating level variable coldata_column represents parent 1. Default: \"P1\". parent2 Character indicating level variable coldata_column represents parent 2. Default: \"P2\". method Character indicating method use create midparent values. One 'mean' (default), 'sum', 'weightedmean'. weights Numeric vector length 2 indicating weights give parents 1 2 (respectively) method == \"weightedmean\". Setting method == \"weightedmean\" used sometimes parents different ploidy levels. cases, ploidy levels parents 1 2 can passed vector. Default: c(1, 2).","code":""},{"path":"/reference/add_midparent_expression.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"SummarizedExperiment object.","code":""},{"path":"/reference/add_midparent_expression.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"","code":"data(se_chlamy) new_se <- add_midparent_expression(se_chlamy)"},{"path":"/reference/deg_counts.html","id":null,"dir":"Reference","previous_headings":"","what":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"object obtained get_deg_counts() using example data set deg_list.","code":""},{"path":"/reference/deg_counts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"","code":"data(deg_counts)"},{"path":"/reference/deg_counts.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"data frame frequencies (absolute relative) - -regulated genes contrast. Relative frequencies calculated relative total number genes count matrix used differential expression analysis.","code":""},{"path":"/reference/deg_counts.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"","code":"data(deg_counts)"},{"path":"/reference/deg_list.html","id":null,"dir":"Reference","previous_headings":"","what":"List of differentially expressed genes for all contrasts — deg_list","title":"List of differentially expressed genes for all contrasts — deg_list","text":"object obtained get_deg_list() using example data set se_chlamy.","code":""},{"path":"/reference/deg_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"List of differentially expressed genes for all contrasts — deg_list","text":"","code":"data(deg_list)"},{"path":"/reference/deg_list.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"List of differentially expressed genes for all contrasts — deg_list","text":"list data frames gene-wise test statistics differentially expressed genes contrast. Contrasts \"P2_vs_P1\", \"F1_vs_P1\", \"F1_vs_P2\", \"F1_vs_midparent\", ID 'vs' represents numerator, ID 'vs' represents denominator.","code":""},{"path":"/reference/deg_list.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"List of differentially expressed genes for all contrasts — deg_list","text":"","code":"data(deg_list)"},{"path":"/reference/expression_partitioning.html","id":null,"dir":"Reference","previous_headings":"","what":"Partition genes in groups based on their expression patterns — expression_partitioning","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"Partition genes groups based expression patterns","code":""},{"path":"/reference/expression_partitioning.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"","code":"expression_partitioning(deg_list)"},{"path":"/reference/expression_partitioning.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"deg_list list data frames gene-wise test statistics differentially expressed genes returned get_deg_list().","code":""},{"path":"/reference/expression_partitioning.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"data following variables: Gene Character, gene ID. Category Factor, expression group. Category names numbers 1 12. Class Factor, expression group class. One \"\" (transgressive -regulation), \"\" (transgressive -regulation), \"ADD\" (additivity), \"ELD_P1\" (expression-level dominance toward parent 1), \"ELD_P2\" (expression-level dominance toward parent 2).","code":""},{"path":"/reference/expression_partitioning.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"","code":"data(deg_list) exp_partitions <- expression_partitioning(deg_list)"},{"path":"/reference/get_deg_counts.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a count table of differentially expressed genes per contrast — get_deg_counts","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"Get count table differentially expressed genes per contrast","code":""},{"path":"/reference/get_deg_counts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"","code":"get_deg_counts(deg_list)"},{"path":"/reference/get_deg_counts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"deg_list list data frames gene-wise test statistics differentially expressed genes returned get_deg_list().","code":""},{"path":"/reference/get_deg_counts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"data frame following variables: contrast Character, contrast name. Numeric, number -regulated genes. Numeric, number -regulated genes. total Numeric, total number differentially expressed genes. perc_up Numeric, percentage -regulated genes. perc_down Numeric, percentage -regulated genes. perc_total Numeric, percentage diffferentially expressed genes.","code":""},{"path":"/reference/get_deg_counts.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"","code":"data(deg_list) deg_counts <- get_deg_counts(deg_list)"},{"path":"/reference/get_deg_list.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"Get table differential expression expression statistics DESeq2","code":""},{"path":"/reference/get_deg_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"","code":"get_deg_list( se, coldata_column = \"Generation\", parent1 = \"P1\", parent2 = \"P2\", offspring = \"F1\", midparent = \"midparent\", spikein_norm = FALSE, spikein_pattern = \"ERCC\", lfcThreshold = 0, alpha = 0.01, ... )"},{"path":"/reference/get_deg_list.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"se SummarizedExperiment object count matrix sample metadata. coldata_column Character indicating name column colData(se) information generation stored. Default: \"Generation\". parent1 Character indicating level variable coldata_column represents parent 1. Default: \"P1\". parent2 Character indicating level variable coldata_column represents parent 2. Default: \"P2\". offspring Character indicating level variable coldata_column represents offspring (hybrid allopolyploid). Default: \"F1\" midparent Character indicating level variable coldata_column represents midparent value. Default: \"midparent\", returned add_midparent_expression(). spikein_norm Logical indicating whether normalize data using spike-ins. Default: FALSE. spikein_pattern Character pattern (regex) use identify spike-features count matrix. valid spikein_norm = TRUE. lfcThreshold Numeric indicating log2 fold-change threshold use consider differentially expressed genes. Default: 0. alpha Numeric indicating adjusted P-value threshold use consider differentially expressed genes. Default: 0.01. ... Additional arguments passed DESeq2::results().","code":""},{"path":"/reference/get_deg_list.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"list data frames DESeq2's gene-wise tests statistics contrast. data frame contains columns output DESeq2::results(). Contrasts (list names) : P2_vs_P1 Parent 2 (numerator) versus parent 1 (denominator). F1_vs_P1 Offspring (numerator) versus parent 1 (denominator). F1_vs_P2 Offspring (numerator) versus parent 2 (denominator). F1_vs_midparent Offspring (numerator) versus midparent (denominator). data frame gene-wise test statistics list element contains following variables: baseMean Numeric, base mean. log2FoldChange Numeric, log2-transformed fold changes. lfcSE Numeric, standard error log2-transformed fold changes. stat Numeric, observed test statistic. pvalue Numeric, p-value. padj Numeric, P-value adjusted multiple testing. list contains two additional attributes named ngenes (numeric, total number genes), plotdata, 3-column data frame variables \"gene\" (character, gene ID), \"lFC_F1_vs_P1\" (numeric, log2 fold change F1 P1), \"lFC_F1_vs_P2\" (numeric, log2 fold change F1 P2).","code":""},{"path":"/reference/get_deg_list.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"","code":"data(se_chlamy) se <- add_midparent_expression(se_chlamy) deg_list <- get_deg_list(se, spikein_norm = TRUE) #> converting counts to integer mode #> using pre-existing size factors #> estimating dispersions #> gene-wise dispersion estimates #> mean-dispersion relationship #> final dispersion estimates #> fitting model and testing"},{"path":"/reference/go_chlamy.html","id":null,"dir":"Reference","previous_headings":"","what":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"Data obtained Phytozome processed row contains one GO term (long format).","code":""},{"path":"/reference/go_chlamy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"","code":"data(go_chlamy)"},{"path":"/reference/go_chlamy.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"2-column data frame columns gene (character, gene ID), GO (character, name GO term.)","code":""},{"path":"/reference/go_chlamy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"","code":"data(go_chlamy)"},{"path":"/reference/ora.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform overrepresentation analysis for a set of genes — ora","title":"Perform overrepresentation analysis for a set of genes — ora","text":"Perform overrepresentation analysis set genes","code":""},{"path":"/reference/ora.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform overrepresentation analysis for a set of genes — ora","text":"","code":"ora( genes, annotation, column = NULL, background, correction = \"BH\", alpha = 0.05, min_setsize = 5, max_setsize = 500, bp_param = BiocParallel::SerialParam() )"},{"path":"/reference/ora.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform overrepresentation analysis for a set of genes — ora","text":"genes Character vector containing genes overrepresentation analysis. annotation Annotation data frame genes first column functional annotation columns. data frame can exported Biomart similar databases. column Column columns annotation used enrichment. character numeric values column indices can used. users want supply one column, input character numeric vector. Default: columns annotation. background Character vector genes used background overrepresentation analysis. correction Multiple testing correction method. One \"holm\", \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\" \"none\". Default \"BH\". alpha Numeric indicating adjusted P-value threshold significance. Default: 0.05. min_setsize Numeric indicating minimum gene set size considered. Gene sets correspond levels variable annotation). Default: 5. max_setsize Numeric indicating maximum gene set size considered. Gene sets correspond levels variable annotation). Default: 500. bp_param BiocParallel back-end used. Default: BiocParallel::SerialParam()","code":""},{"path":"/reference/ora.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform overrepresentation analysis for a set of genes — ora","text":"data frame overrepresentation results following variables: term Character, functional term ID/name. genes Numeric, intersection length input genes genes particular functional term. Numeric, number genes particular functional term. pval Numeric, P-value hypergeometric test. padj Numeric, P-value adjusted multiple comparisons using method specified parameter adj. category Character, name grouping variable (.e., column name annotation).","code":""},{"path":"/reference/ora.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform overrepresentation analysis for a set of genes — ora","text":"","code":"data(se_chlamy) data(go_chlamy) data(deg_list) # Perform ORA for up-regulated genes in contrast F1_vs_P1 up_genes <- deg_list$F1_vs_P1 up_genes <- rownames(up_genes[up_genes$log2FoldChange > 0, ]) background <- rownames(se_chlamy) ora(up_genes, go_chlamy, background = background) #> term genes all pval padj category #> 133 dynein complex 8 13 1.924882e-05 0.00802676 GO"},{"path":"/reference/pca_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"Perform principal component analysis (PCA) plot PCs","code":""},{"path":"/reference/pca_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"","code":"pca_plot( se, PCs = c(1, 2), ntop = 500, color_by = NULL, shape_by = NULL, add_mean = FALSE, palette = NULL )"},{"path":"/reference/pca_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"se SummarizedExperiment object count matrix sample metadata. PCs Numeric vector indicating principal components show x-axis y-axis, respectively. Default: c(1,2). ntop Numeric indicating number top genes highest variances use PCA. Default: 500. color_by Character name column colData(se) use group samples color. Default: NULL. shape_by Character name column colData(se) use group samples shape. Default: NULL. add_mean Logical indicating whether add diamond symbol mean value level variable indicated color_by. Default: FALSE palette Character vector colors use level variable indicated color_by. NULL, default color palette used.","code":""},{"path":"/reference/pca_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"ggplot object PCA plot showing 2 principal components axis along % variance explained.","code":""},{"path":"/reference/pca_plot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"","code":"data(se_chlamy) se <- add_midparent_expression(se_chlamy) se$Ploidy[is.na(se$Ploidy)] <- \"midparent\" se$Generation[is.na(se$Generation)] <- \"midparent\" pca_plot(se, color_by = \"Generation\", shape_by = \"Ploidy\", add_mean = TRUE) #> converting counts to integer mode"},{"path":"/reference/plot_expression_partitions.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot expression partitions — plot_expression_partitions","title":"Plot expression partitions — plot_expression_partitions","text":"Plot expression partitions","code":""},{"path":"/reference/plot_expression_partitions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot expression partitions — plot_expression_partitions","text":"","code":"plot_expression_partitions( partition_table, group_by = \"Category\", palette = NULL )"},{"path":"/reference/plot_expression_partitions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot expression partitions — plot_expression_partitions","text":"partition_table data frame genes per expression partition returned expression_partitioning(). group_by Character indicating name variable partition_table use group genes. One \"Category\" \"Class\". Default: \"Category\". palette Character vector color names used level variable specified group_by. group_by = \"Category\", must vector length 12. group_by = \"Class\", must vector length 5. NULL, default color palette used.","code":""},{"path":"/reference/plot_expression_partitions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot expression partitions — plot_expression_partitions","text":"ggplot object plot showing genes expression partition.","code":""},{"path":"/reference/plot_expression_partitions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot expression partitions — plot_expression_partitions","text":"","code":"data(deg_list) partition_table <- expression_partitioning(deg_list) plot_expression_partitions(partition_table)"},{"path":"/reference/plot_expression_triangle.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"Plot triangle comparisons DEG sets among generations","code":""},{"path":"/reference/plot_expression_triangle.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"","code":"plot_expression_triangle(deg_counts, palette = NULL, box_labels = NULL)"},{"path":"/reference/plot_expression_triangle.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"deg_counts Data frame number differentially expressed genes per contrast returned get_deg_counts. palette Character vector length 4 indicating colors boxes P1, P2, F1, midparent, respectively. NULL, default color palette used. box_labels Character vector length 4 indicating labels boxes P1, P2, F1, midparent, respectively. Default: NULL, lead labels \"P1\", \"P2\", \"F1\", \"Midparent\", respectively.","code":""},{"path":"/reference/plot_expression_triangle.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"ggplot object expression triangle.","code":""},{"path":"/reference/plot_expression_triangle.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"expression triangle plot shows number differentially expressed genes (DEGs) contrast. Numbers center lines (bold) indicate total number DEGs, numbers near boxes indicate number -regulated genes generation triangle.","code":""},{"path":"/reference/plot_expression_triangle.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"","code":"data(deg_counts) plot_expression_triangle(deg_counts)"},{"path":"/reference/plot_partition_frequencies.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"Plot barplot gene frequencies per expression partition","code":""},{"path":"/reference/plot_partition_frequencies.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"","code":"plot_partition_frequencies( partition_table, group_by = \"Category\", palette = NULL )"},{"path":"/reference/plot_partition_frequencies.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"partition_table data frame genes per expression partition returned expression_partitioning(). group_by Character indicating name variable partition_table use group genes. One \"Category\" \"Class\". Default: \"Category\". palette Character vector color names used level variable specified group_by. group_by = \"Category\", must vector length 12. group_by = \"Class\", must vector length 5. NULL, default color palette used.","code":""},{"path":"/reference/plot_partition_frequencies.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"ggplot object barplot showing gene frequencies per partition next explanatory line plots depicting partition.","code":""},{"path":"/reference/plot_partition_frequencies.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"","code":"data(deg_list) partition_table <- expression_partitioning(deg_list) plot_partition_frequencies(partition_table)"},{"path":"/reference/plot_samplecor.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"Plot heatmap pairwise sample correlations hierarchical clustering","code":""},{"path":"/reference/plot_samplecor.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"","code":"plot_samplecor( se, coldata_cols = NULL, rowdata_cols = NULL, ntop = 500, cor_method = \"pearson\", palette = \"Blues\", ... )"},{"path":"/reference/plot_samplecor.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"se SummarizedExperiment object count matrix sample metadata colData slot. rowData slot available, can also used clustering rows. coldata_cols vector (either numeric character) indicating columns extracted colData(se). rowdata_cols vector (either numeric character) indicating columns extracted rowData(se). ntop Numeric indicating number top genes highest variances use PCA. Default: 500. cor_method Character indicating correlation method use. One \"pearson\" \"spearman\". Default: \"pearson\". palette Character indicating name color palette RColorBrewer package use. Default: \"Blues\". ... Additional arguments passed ComplexHeatmap::pheatmap(). arguments can used control heatmap aesthetics, show/hide row column names, change font size, activate/deactivate hierarchical clustering, etc. complete list options, see ?ComplexHeatmap::pheatmap().","code":""},{"path":"/reference/plot_samplecor.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"heatmap hierarchically clustered pairwise sample correlations.","code":""},{"path":"/reference/plot_samplecor.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"","code":"data(se_chlamy) se <- add_midparent_expression(se_chlamy) se$Ploidy[is.na(se$Ploidy)] <- \"midparent\" se$Generation[is.na(se$Generation)] <- \"midparent\" plot_samplecor(se, ntop = 500) #> converting counts to integer mode"},{"path":"/reference/se_chlamy.html","id":null,"dir":"Reference","previous_headings":"","what":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"Two lines (referred parent 1 parent 2) different ploidy levels crossed generate allopolyploid (F1).","code":""},{"path":"/reference/se_chlamy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"","code":"data(se_chlamy)"},{"path":"/reference/se_chlamy.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"SummarizedExperiment object assay (count) colData.","code":""},{"path":"/reference/se_chlamy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"","code":"data(se_chlamy)"},{"path":"/news/index.html","id":"hybridexpress-0990","dir":"Changelog","previous_headings":"","what":"HybridExpress 0.99.0","title":"HybridExpress 0.99.0","text":"NEW FEATURES Added NEWS.md file track changes package.","code":""}] +[{"path":"/SUPPORT.html","id":null,"dir":"","previous_headings":"","what":"Getting help with HybridExpress","title":"Getting help with HybridExpress","text":"Thank using HybridExpress! filing issue, things know make process smooth possible parties.","code":""},{"path":"/SUPPORT.html","id":"make-a-reprex","dir":"","previous_headings":"","what":"Make a reprex","title":"Getting help with HybridExpress","text":"Start making minimally reproducible example, also known ‘reprex’. may use reprex R package create one, though necessary help. make R-question-asking endeavors easier. Learning use takes 5 10 minutes. tips make minimally reproducible example, see StackOverflow link.","code":""},{"path":"/SUPPORT.html","id":"where-to-post-it","dir":"","previous_headings":"","what":"Where to post it?","title":"Getting help with HybridExpress","text":"Bioconductor help web page gives overview places may help answer question. Bioconductor software related questions, bug reports feature requests, addressed appropriate Bioconductor/HybridExpress GitHub repository. Follow bug report feature request templates GitHub. package GitHub repository, see next bullet point. Bioconductor software usage questions addressed Bioconductor Support Website. Make sure use appropriate package tag, otherwise package authors get notification. General R questions can posed StackOverflow RStudio Community website especially pertain tidyverse RStudio GUI related products.","code":""},{"path":"/SUPPORT.html","id":"issues-or-feature-requests","dir":"","previous_headings":"","what":"Issues or Feature Requests","title":"Getting help with HybridExpress","text":"opening new issue feature request, sure search issues pull requests ensure one already exist implemented development version. Note. can remove :open search term issues page search open closed issues. See link learn modifying search.","code":""},{"path":"/SUPPORT.html","id":"what-happens-next","dir":"","previous_headings":"","what":"What happens next?","title":"Getting help with HybridExpress","text":"Bioconductor maintainers limited resources strive responsive possible. Please forget tag appropriate maintainer issue GitHub username (e.g., @username). order make easy possible Bioconductor core developers remediate issue. Provide accurate, brief, reproducible report outlined issue templates. Thank trusting Bioconductor.","code":""},{"path":"/articles/HybridExpress.html","id":"introduction","dir":"Articles","previous_headings":"","what":"Introduction","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"formation hybrids fusion distinct genomes subsequent genome duplication cases allopolyploidy represents significant evolutionary event complex effects cellular biology, particularly gene expression. impact genome mergings duplications transcription remain incompletely understood. bridge gap, introduce HybridExpress, comprehensive package designed facilitate comparative transcriptomic analysis hybrids progenitor species. HybridExpress tailored RNA-Seq data derived ‘experimental trio’: hybrid organism two parental species. package offers suite intuitive functions enabling researchers perform differential expression analysis ease, generate principal component analysis (PCA) plots visualizing gene expression trends, categorize genes 12 distinct expression pattern groups (Rapp, Udall, Wendel (2009)), conduct -depth functional analyses. Acknowledging potential variability cell transcriptome size across species ploidy levels, HybridExpress incorporates features rigorous normalization count data. Specifically, allows integration spike-standards directly normalization process, ensuring accurate transcriptome size adjustments standards present RNA-Seq count data (see full methodology Coate (2023)). offering capabilities, HybridExpress provides robust toolset unraveling intricate effects genome doubling merging hybrid gene expression, paving way novel insights cellular biology hybrid organisms.","code":""},{"path":"/articles/HybridExpress.html","id":"installation","dir":"Articles","previous_headings":"","what":"Installation","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"HybridExpress can installed Bioconductor following code:","code":"if(!requireNamespace('BiocManager', quietly = TRUE)) install.packages('BiocManager') BiocManager::install(\"HybridExpress\") # Load package after installation library(HybridExpress) set.seed(123) # for reproducibility"},{"path":"/articles/HybridExpress.html","id":"data-description","dir":"Articles","previous_headings":"","what":"Data description","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"vignette, use example data set comprises (unpublished) gene expression data (counts) Chlamydomonas reinhardtii. lab, crossed diploid line C. reinhardtii (hereafter “P1”) haploid line (hereafter “P2”), thus generating triploid line merging two parental genomes. count matrix sample metadata stored SummarizedExperiment objects, standard Bioconductor data structure required HybridExpress. instructions create SummarizedExperiment object, check FAQ section vignette. Let’s load example data take quick look : can see, count matrix contains 13058 genes 18 samples, 6 replicates parent 1 (P1, diploid), 6 replicates parent 2 (P2, haploid), 6 replicates progeny (F1, triploid).","code":"library(SummarizedExperiment) # Load data data(se_chlamy) # Inspect the `SummarizedExperiment` object se_chlamy #> class: SummarizedExperiment #> dim: 13058 18 #> metadata(0): #> assays(1): counts #> rownames(13058): Cre01.g000050 Cre01.g000150 ... ERCC-00170 ERCC-00171 #> rowData names(0): #> colnames(18): S1 S2 ... S17 S18 #> colData names(2): Ploidy Generation ## Take a look at the colData and count matrix colData(se_chlamy) #> DataFrame with 18 rows and 2 columns #> Ploidy Generation #> #> S1 diploid P1 #> S2 diploid P1 #> S3 diploid P1 #> S4 diploid P1 #> S5 diploid P1 #> ... ... ... #> S14 triploid F1 #> S15 triploid F1 #> S16 triploid F1 #> S17 triploid F1 #> S18 triploid F1 assay(se_chlamy) |> head() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 #> Cre01.g000050 29 22 21 16 #> Cre01.g000150 37 17 24 21 #> Cre01.g000200 24 26 18 21 #> Cre01.g000250 358 339 340 332 #> Cre01.g000300 1524 1720 1517 1243 #> Cre01.g000350 276 324 246 275 table(se_chlamy$Ploidy, se_chlamy$Generation) #> #> F1 P1 P2 #> diploid 0 6 0 #> haploid 0 0 6 #> triploid 6 0 0"},{"path":"/articles/HybridExpress.html","id":"adding-midparent-expression-values","dir":"Articles","previous_headings":"","what":"Adding midparent expression values","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"First , ’d want add count matrix silico samples contain expression values midparent. can done function add_midparent_expression(), takes random sample pair (one sample parent, sampling without replacement) calculates midparent expression value one three ways: Mean (default): get mean expression two samples. Sum: get sum two samples. Weighted mean: get weighted mean two samples multiplying expression value parent weight. Typically, can used two parents different ploidy levels, weights correspond ploidy level parent. function, besides specifying method obtain midparent expression values (.e., “mean”, “sum”, “weightedmean”), users must also specify name column colData contains information generations (default: “Generation”), well levels corresponding parent (default: “P1” “P2” parents 1 2, respectively). proceed analyses midparent expression values obtained mean counts, stored se object.","code":"# Add midparent expression using the mean of the counts se <- add_midparent_expression(se_chlamy) head(assay(se)) #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> Cre01.g000050 29 22 21 16 18 27 14 20 #> Cre01.g000150 37 17 24 21 32 46 38 56 #> Cre01.g000200 24 26 18 21 19 22 20 18 #> Cre01.g000250 358 339 340 332 310 372 273 284 #> Cre01.g000300 1524 1720 1517 1243 1030 1331 1072 1166 #> Cre01.g000350 276 324 246 275 242 316 242 268 #> midparent5 midparent6 #> Cre01.g000050 18 22 #> Cre01.g000150 31 46 #> Cre01.g000200 16 24 #> Cre01.g000250 278 348 #> Cre01.g000300 1076 1182 #> Cre01.g000350 242 304 # Alternative 1: using the sum of the counts add_midparent_expression(se_chlamy, method = \"sum\") |> assay() |> head() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> Cre01.g000050 29 22 21 16 43 26 58 46 #> Cre01.g000150 37 17 24 21 86 25 86 140 #> Cre01.g000200 24 26 18 21 38 24 50 41 #> Cre01.g000250 358 339 340 332 666 518 810 587 #> Cre01.g000300 1524 1720 1517 1243 2557 1893 2629 2373 #> Cre01.g000350 276 324 246 275 527 453 668 531 #> midparent5 midparent6 #> Cre01.g000050 37 27 #> Cre01.g000150 96 62 #> Cre01.g000200 51 34 #> Cre01.g000250 714 432 #> Cre01.g000300 2548 1716 #> Cre01.g000350 633 419 # Alternative 2: using the weighted mean of the counts (weights = ploidy) w <- c(2, 1) # P1 = diploid; P2 = haploid add_midparent_expression(se_chlamy, method = \"weightedmean\", weights = w) |> assay() |> head() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> Cre01.g000050 29 22 21 16 25 29 39 22 #> Cre01.g000150 37 17 24 21 27 30 29 16 #> Cre01.g000200 24 26 18 21 27 32 33 21 #> Cre01.g000250 358 339 340 332 181 232 270 210 #> Cre01.g000300 1524 1720 1517 1243 1453 1576 1753 1532 #> Cre01.g000350 276 324 246 275 166 202 223 165 #> midparent5 midparent6 #> Cre01.g000050 26 17 #> Cre01.g000150 48 15 #> Cre01.g000200 29 17 #> Cre01.g000250 202 148 #> Cre01.g000300 1705 1125 #> Cre01.g000350 186 136"},{"path":"/articles/HybridExpress.html","id":"exploratory-data-analyses","dir":"Articles","previous_headings":"","what":"Exploratory data analyses","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"Next, can perform exploratory analyses sample clustering verify samples group expected. HybridExpress, can performed using two functions: pca_plot(): creates principal component analysis (PCA) plots, colors shapes (optional) mapped levels colData variables; plot_samplecor(): plots heatmap hierarchically clustered pairwise sample correlations. Let’s start PCA plot: plot , data point corresponds sample, colors shapes mapped levels variables specified arguments color_by shape_by, respectively. Besides, specifying add_mean = TRUE, added diamond shape indicating mean PC coordinates based variable color_by (, “Generation”). Now, let’s plot heatmap sample correlations: can see samples group well together PCA plot correlation heatmap. note, pca_plot() plot_samplecor() use top 500 genes highest variances create plot. genes low variances (.e., genes vary much across samples) uninformative typically add noise. can change number (use less genes) ntop argument functions.","code":"# For colData rows with missing values (midparent samples), add \"midparent\" se$Ploidy[is.na(se$Ploidy)] <- \"midparent\" se$Generation[is.na(se$Generation)] <- \"midparent\" # Create PCA plot pca_plot(se, color_by = \"Generation\", shape_by = \"Ploidy\", add_mean = TRUE) #> converting counts to integer mode # Plot a heatmap of sample correlations plot_samplecor(se) #> converting counts to integer mode"},{"path":"/articles/HybridExpress.html","id":"identifying-differentially-expressed-genes-between-hybrids-and-their-parents","dir":"Articles","previous_headings":"","what":"Identifying differentially expressed genes between hybrids and their parents","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"compare gene expression levels hybrids progenitor species, can use function get_deg_list(). function performs differential expression analyses using DESeq2 returns list data frames gene-wise test statistics following contrasts: P2_vs_P1: parent 2 (numerator) versus parent 1 (denominator). F1_vs_P1: hybrid (numerator) versus parent 1 (denominator). F1_vs_P2: hybrid (numerator) versus parent 2 (denominator). F1_vs_midparent: hybrid (numerator) vs midparent (denominator). default, count data normalized library size using standard normalization process DESeq2. However, spike-standards included count matrix, can use normalization setting spikein_norm = TRUE specifying pattern used indicate rows contain spike-ins (usually start ERCC)1. example data set, spike-standards available last rows count matrix. Now, use get_deg_list() get differentially expressed genes (DEGs) contrast using spike-normalization. summarize frequencies - -regulated genes per contrast single data frame, use function get_deg_counts(). important note columns perc_up, perc_down, perc_total show percentages -regulated, -regulated, differentially expressed genes relative total number genes count matrix. total number genes count matrix stored ngenes attribute list returned get_deg_list(): However, since count matrix usually include genes genome (e.g., lowly expressed genes genes low variance usually filtered ), percentages perc_up, perc_down, perc_total relative total number genes genome. use total number genes genome reference, need update ngenes attribute DEG list appropriate number follows: , can run get_deg_counts() get percentages relative total number genes genome. Finally, can summarize everything single publication-ready figure using plot plot_expression_triangle(), shows ‘experimental trio’ (.e., hybrid progenitors) triangle, frequencies DEGs indicated. figure commonly used publications, inspired Rapp, Udall, Wendel (2009). edge (line), numbers middle (bold) indicate frequency DEGs, numbers ends (close boxes) indicate frequency -regulated genes generation. instance, figure shows , contrast F1 P1, 5476 DEGs (32.4% genome), 1471 -regulated F1, 4005 -regulated P1. custom figure, can also specify color palette labels boxes. example:","code":"# Show last rows of the count matrix assay(se) |> tail() #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 #> ERCC-00163 74 75 55 77 51 84 132 127 93 108 79 102 66 #> ERCC-00164 0 4 0 1 4 1 6 4 1 4 3 2 5 #> ERCC-00165 147 139 87 165 118 179 236 246 139 218 176 145 118 #> ERCC-00168 2 5 2 2 2 6 5 1 1 5 0 3 4 #> ERCC-00170 97 95 73 101 70 118 186 148 110 167 110 103 72 #> ERCC-00171 4644 4959 3554 5357 4170 5946 8207 7915 4992 7843 6455 5884 4537 #> S14 S15 S16 S17 S18 midparent1 midparent2 midparent3 midparent4 #> ERCC-00163 67 62 80 88 47 67 96 101 90 #> ERCC-00164 4 3 5 4 2 2 2 4 2 #> ERCC-00165 143 115 185 192 136 132 198 192 155 #> ERCC-00168 6 2 11 5 2 1 6 3 2 #> ERCC-00170 99 64 121 103 84 92 142 122 102 #> ERCC-00171 5665 4598 6168 5771 4747 5004 6894 6437 5620 #> midparent5 midparent6 #> ERCC-00163 92 84 #> ERCC-00164 5 0 #> ERCC-00165 177 143 #> ERCC-00168 4 2 #> ERCC-00170 128 104 #> ERCC-00171 6188 4818 # Get a list of differentially expressed genes for each contrast deg_list <- get_deg_list(se, spikein_norm = TRUE, spikein_pattern = \"ERCC\") #> converting counts to integer mode #> using pre-existing size factors #> estimating dispersions #> gene-wise dispersion estimates #> mean-dispersion relationship #> final dispersion estimates #> fitting model and testing # Inspecting the output ## Getting contrast names names(deg_list) #> [1] \"P2_vs_P1\" \"F1_vs_P1\" \"F1_vs_P2\" \"F1_vs_midparent\" ## Accessing gene-wise test statistics for contrast `F1_vs_P1` head(deg_list$F1_vs_P1) #> baseMean log2FoldChange lfcSE stat pvalue #> Cre01.g000450 39.59273 -1.1632346 0.2165407 -5.371898 7.791211e-08 #> Cre01.g000750 103.10296 0.8807307 0.1842856 4.779162 1.760270e-06 #> Cre01.g000900 471.44084 0.6807925 0.1980730 3.437079 5.880239e-04 #> Cre01.g001000 10.34574 -6.6304915 0.9631384 -6.884256 5.809030e-12 #> Cre01.g001100 453.87151 -0.6457115 0.1506903 -4.285025 1.827187e-05 #> Cre01.g001200 159.03643 0.7231060 0.1946090 3.715685 2.026536e-04 #> padj #> Cre01.g000450 4.653531e-07 #> Cre01.g000750 8.329159e-06 #> Cre01.g000900 1.707442e-03 #> Cre01.g001000 6.659069e-11 #> Cre01.g001100 7.200448e-05 #> Cre01.g001200 6.453951e-04 ## Counting the number of DEGs per contrast sapply(deg_list, nrow) #> P2_vs_P1 F1_vs_P1 F1_vs_P2 F1_vs_midparent #> 8698 5476 7350 4348 # Get a data frame with DEG frequencies for each contrast deg_counts <- get_deg_counts(deg_list) deg_counts #> contrast up down total perc_up perc_down perc_total #> 1 P2_vs_P1 828 7870 8698 6.4 60.7 67.1 #> 2 F1_vs_P1 1471 4005 5476 11.3 30.9 42.2 #> 3 F1_vs_P2 6487 863 7350 50.0 6.7 56.7 #> 4 F1_vs_midparent 2620 1728 4348 20.2 13.3 33.5 attributes(deg_list)$ngenes #> [1] 12966 # Total number of genes in the C. reinhardtii genome (v6.1): 16883 attributes(deg_list)$ngenes <- 16883 deg_counts <- get_deg_counts(deg_list) deg_counts #> contrast up down total perc_up perc_down perc_total #> 1 P2_vs_P1 828 7870 8698 4.9 46.6 51.5 #> 2 F1_vs_P1 1471 4005 5476 8.7 23.7 32.4 #> 3 F1_vs_P2 6487 863 7350 38.4 5.1 43.5 #> 4 F1_vs_midparent 2620 1728 4348 15.5 10.2 25.8 # Plot expression triangle plot_expression_triangle(deg_counts) # Create vectors (length 4) of colors and box labels pal <- c(\"springgreen4\", \"darkorange3\", \"mediumpurple4\", \"mediumpurple3\") labels <- c(\"Parent 1\\n(2n)\", \"Parent 2\\n(n)\", \"Progeny\\n(3n)\", \"Midparent\") plot_expression_triangle(deg_counts, palette = pal, box_labels = labels)"},{"path":"/articles/HybridExpress.html","id":"expression-based-gene-classification","dir":"Articles","previous_headings":"","what":"Expression-based gene classification","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"identifying DEGs different contrasts, ’d typically want classify genes expression partitions based expression patterns. can performed function expression_partitioning(), classifies genes one 12 categories Rapp, Udall, Wendel (2009), 5 major classes summarize 12 categories. five classes : Transgressive -regulation (): gene -regulated hybrid compared parents. Transgressive -regulation (): gene -regulated hybrid compared parents. Additivity (ADD): gene expression hybrid mean parents (additive effect). Expression-level dominance toward parent 1 (ELD_P1): gene expression hybrid parent 1, different parent 2. Expression-level dominance toward parent 2 (ELD_P2): gene expression hybrid parent 2, different parent 1. visualize expression partitions scatter plot expression divergences, can use function plot_expression_partitions(). default, genes grouped Category. However, can also group genes Class follows: can also visualize frequencies genes partition function plot_partition_frequencies().","code":"# Classify genes in expression partitions exp_partitions <- expression_partitioning(deg_list) # Inspect the output head(exp_partitions) #> Gene Category Class lFC_F1_vs_P1 lFC_F1_vs_P2 #> 1 Cre01.g003650 1 ADD 0.7838125 -1.0484464 #> 2 Cre01.g005150 1 ADD 1.0473362 -0.5041601 #> 3 Cre01.g008600 1 ADD 5.0518384 -1.4840829 #> 4 Cre01.g013500 1 ADD 2.1099265 -1.5329846 #> 5 Cre01.g034850 1 ADD 1.5838851 -0.7611868 #> 6 Cre01.g800005 1 ADD 1.4928449 -0.9315119 # Count number of genes per category table(exp_partitions$Category) #> #> 1 2 3 4 5 6 7 8 9 10 11 12 #> 70 262 66 3283 77 287 214 651 280 147 1760 1666 # Count number of genes per class table(exp_partitions$Class) #> #> UP DOWN ADD ELD_P1 ELD_P2 #> 1015 427 1736 3563 2022 # Plot partitions as a scatter plot of divergences plot_expression_partitions(exp_partitions, group_by = \"Category\") # Group by `Class` plot_expression_partitions(exp_partitions, group_by = \"Class\") # Visualize frequency of genes in each partition ## By `Category` (default) plot_partition_frequencies(exp_partitions) ## By `Class` plot_partition_frequencies(exp_partitions, group_by = \"Class\")"},{"path":"/articles/HybridExpress.html","id":"overrepresentation-analysis-of-functional-terms","dir":"Articles","previous_headings":"","what":"Overrepresentation analysis of functional terms","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"Lastly, ’d want explore whether gene sets interest (e.g., -regulated genes contrast) enriched particular GO term, pathway, protein domain, etc. , use function ora(), performs overrepresentation analysis gene set given data frame functional annotation gene. , use example data set GO annotation C. reinhardtii genes. data set illustrates annotation data frame must shaped: gene ID first column, functional annotations columns. demonstrate usage ora(), let’s check can find enrichment GO term among genes assigned class “ADD”.","code":"# Load example functional annotation (GO terms) data(go_chlamy) head(go_chlamy) #> gene GO #> 1 Cre01.g000050 #> 2 Cre01.g000100 #> 3 Cre01.g000150 membrane #> 4 Cre01.g000150 metal ion transport #> 5 Cre01.g000150 metal ion transmembrane transporter activity #> 6 Cre01.g000150 transmembrane transport # Get a vector of genes in class \"ADD\" genes_add <- exp_partitions$Gene[exp_partitions$Class == \"ADD\"] head(genes_add) #> [1] \"Cre01.g003650\" \"Cre01.g005150\" \"Cre01.g008600\" \"Cre01.g013500\" #> [5] \"Cre01.g034850\" \"Cre01.g800005\" # Get background genes - genes in the count matrix bg <- rownames(se) # Perform overrepresentation analysis ora_add <- ora(genes_add, go_chlamy, background = bg) # Inspect results head(ora_add) #> term genes all pval #> 20 aminoacyl-tRNA ligase activity 14 33 3.517366e-05 #> 84 cytoplasm 43 151 6.083978e-07 #> 97 DNA replication 17 37 1.331552e-06 #> 114 endopeptidase activity 6 10 7.118363e-04 #> 115 endoplasmic reticulum 9 17 1.128774e-04 #> 118 eukaryotic translation initiation factor 3 complex 7 9 2.044325e-05 #> padj category #> 20 1.629713e-03 GO #> 84 6.342547e-05 GO #> 97 1.110515e-04 GO #> 114 2.120255e-02 GO #> 115 4.706990e-03 GO #> 118 1.217834e-03 GO"},{"path":"/articles/HybridExpress.html","id":"example-1-overrepresentation-analyses-for-all-expression-based-classes","dir":"Articles","previous_headings":"Overrepresentation analysis of functional terms","what":"Example 1: overrepresentation analyses for all expression-based classes","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"example , performed overrepresentation analysis genes associated class “ADD”. wanted classes? case, run ora() multiple times looping class. details, following: class, create vector genes associated ; Run ora() get data frame ORA results. can find example using lapply(). Results class stored elements list object. expression-based category (class), ’d need replace Class Category split() function (see example ).","code":"# Create a list of genes in each class genes_by_class <- split(exp_partitions$Gene, exp_partitions$Class) names(genes_by_class) #> [1] \"UP\" \"DOWN\" \"ADD\" \"ELD_P1\" \"ELD_P2\" head(genes_by_class$UP) #> [1] \"Cre01.g029250\" \"Cre01.g034380\" \"Cre01.g036700\" \"Cre01.g049400\" #> [5] \"Cre02.g085500\" \"Cre02.g087150\" # Iterate through each class and perform ORA ora_classes <- lapply( genes_by_class, # list through which we will iterate ora, # function we will apply to each element of the list annotation = go_chlamy, background = bg # additional arguments to function ) # Inspect output ora_classes #> $UP #> term genes all pval padj #> 29 ATP hydrolysis activity 21 119 3.074727e-04 0.0427387078 #> 109 dynein complex 8 13 1.172717e-06 0.0004890231 #> 127 flavin adenine dinucleotide binding 11 42 2.687071e-04 0.0427387078 #> category #> 29 GO #> 109 GO #> 127 GO #> #> $DOWN #> term genes all pval padj #> 242 oxidoreductase activity 21 274 2.668754e-04 2.225741e-02 #> 271 photosynthesis 13 58 3.367873e-08 7.022015e-06 #> 272 photosynthesis, light harvesting 18 24 1.444312e-22 6.022782e-20 #> 276 photosystem I 5 15 8.360388e-05 8.715704e-03 #> 376 tetrapyrrole biosynthetic process 5 8 1.885876e-06 2.621368e-04 #> category #> 242 GO #> 271 GO #> 272 GO #> 276 GO #> 376 GO #> #> $ADD #> term #> 20 aminoacyl-tRNA ligase activity #> 84 cytoplasm #> 97 DNA replication #> 114 endopeptidase activity #> 115 endoplasmic reticulum #> 118 eukaryotic translation initiation factor 3 complex #> 165 intracellular protein transport #> 227 nuclear pore #> 250 oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor #> 284 prefoldin complex #> 287 proteasome core complex #> 293 protein folding #> 294 protein glycosylation #> 304 protein refolding #> 390 translation initiation factor activity #> 410 unfolded protein binding #> 414 vesicle-mediated transport #> genes all pval padj category #> 20 14 33 3.517366e-05 1.629713e-03 GO #> 84 43 151 6.083978e-07 6.342547e-05 GO #> 97 17 37 1.331552e-06 1.110515e-04 GO #> 114 6 10 7.118363e-04 2.120255e-02 GO #> 115 9 17 1.128774e-04 4.706990e-03 GO #> 118 7 9 2.044325e-05 1.217834e-03 GO #> 165 25 73 3.907713e-06 2.715861e-04 GO #> 227 6 9 3.209008e-04 1.115130e-02 GO #> 250 10 27 1.647170e-03 4.292937e-02 GO #> 284 4 4 3.114510e-04 1.115130e-02 GO #> 287 9 15 2.987692e-05 1.557334e-03 GO #> 293 29 81 2.288079e-07 3.180430e-05 GO #> 294 6 10 7.118363e-04 2.120255e-02 GO #> 304 10 10 1.686356e-09 7.032106e-07 GO #> 390 9 21 8.277887e-04 2.301252e-02 GO #> 410 19 38 5.773438e-08 1.203762e-05 GO #> 414 13 41 1.832917e-03 4.496037e-02 GO #> #> $ELD_P1 #> term genes all pval padj category #> 38 binding 88 208 1.818832e-06 0.0007584527 GO #> 239 nucleus 77 193 8.891683e-05 0.0185391599 GO #> 345 rRNA processing 15 24 3.183647e-04 0.0442526890 GO #> #> $ELD_P2 #> term genes all #> 28 aspartic-type endopeptidase activity 6 8 #> 170 iron ion binding 30 93 #> 242 oxidoreductase activity 71 274 #> 271 photosynthesis 26 58 #> 278 photosystem II 17 32 #> 320 proton-transporting two-sector ATPase complex, catalytic domain 6 8 #> pval padj category #> 28 2.888758e-04 2.007687e-02 GO #> 170 3.997247e-05 4.167130e-03 GO #> 242 4.722014e-06 6.563600e-04 GO #> 271 1.031130e-07 4.299811e-05 GO #> 278 8.669007e-07 1.807488e-04 GO #> 320 2.888758e-04 2.007687e-02 GO"},{"path":"/articles/HybridExpress.html","id":"example-2-overrepresentation-analyses-for-differentially-expressed-genes","dir":"Articles","previous_headings":"Overrepresentation analysis of functional terms","what":"Example 2: overrepresentation analyses for differentially expressed genes","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"can use lapply() loop expression class, can also loop contrast list returned get_deg_list(), perform ORA - -regulated genes. can find example: Likewise, -regulated genes, need replace > symbol < symbol anonymous function subset rows.","code":"# Get up-regulated genes for each contrast up_genes <- lapply(deg_list, function(x) rownames(x[x$log2FoldChange > 0, ])) names(up_genes) #> [1] \"P2_vs_P1\" \"F1_vs_P1\" \"F1_vs_P2\" \"F1_vs_midparent\" head(up_genes$F1_vs_P1) #> [1] \"Cre01.g000750\" \"Cre01.g000900\" \"Cre01.g001200\" \"Cre01.g002750\" #> [5] \"Cre01.g003524\" \"Cre01.g003650\" # Perform ORA ora_up <- lapply( up_genes, ora, annotation = go_chlamy, background = bg ) ora_up #> $P2_vs_P1 #> [1] term genes all pval padj category #> <0 rows> (or 0-length row.names) #> #> $F1_vs_P1 #> term genes all pval padj category #> 109 dynein complex 8 13 1.944536e-05 0.008108715 GO #> #> $F1_vs_P2 #> term genes all pval #> 38 binding 138 208 7.344020e-07 #> 96 DNA repair 56 83 7.655167e-04 #> 144 GTP binding 72 111 8.525066e-04 #> 169 ion transport 33 45 1.048368e-03 #> 209 microtubule-based process 10 10 9.123368e-04 #> 239 nucleus 125 193 1.471530e-05 #> 303 protein polymerization 10 10 9.123368e-04 #> 304 protein refolding 10 10 9.123368e-04 #> 307 protein serine/threonine phosphatase activity 20 24 6.876258e-04 #> 338 RNA binding 101 157 1.388743e-04 #> 384 transcription, DNA-templated 28 36 5.139935e-04 #> padj category #> 38 0.0003062456 GO #> 96 0.0380444450 GO #> 144 0.0380444450 GO #> 169 0.0397426775 GO #> 209 0.0380444450 GO #> 239 0.0030681409 GO #> 303 0.0380444450 GO #> 304 0.0380444450 GO #> 307 0.0380444450 GO #> 338 0.0193035210 GO #> 384 0.0380444450 GO #> #> $F1_vs_midparent #> term genes all pval #> 80 cyclic nucleotide biosynthetic process 38 108 1.704386e-04 #> 109 dynein complex 9 13 1.689230e-04 #> 166 intracellular signal transduction 38 110 2.618073e-04 #> 168 ion channel activity 20 48 5.098878e-04 #> 169 ion transport 21 45 5.169533e-05 #> 290 protein dephosphorylation 21 44 3.395214e-05 #> 307 protein serine/threonine phosphatase activity 15 24 6.787504e-06 #> padj category #> 80 0.014214579 GO #> 109 0.014214579 GO #> 166 0.018195605 GO #> 168 0.030374745 GO #> 169 0.007185651 GO #> 290 0.007079020 GO #> 307 0.002830389 GO"},{"path":"/articles/HybridExpress.html","id":"faq","dir":"Articles","previous_headings":"","what":"FAQ","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"create SummarizedExperiment object? SummarizedExperiment data structure (S4 class) can used store, single object, following elements: assay: quantitative matrix features rows samples columns. context HybridExpress, gene expression matrix (counts) genes rows samples columns. colData: data frame sample metadata samples rows variables describe samples (e.g., tissue, treatment, covariates) columns. rowData: data frame gene metadata genes rows variables describe genes (e.g., chromosome name, alternative IDs, functional information, etc) columns. package, must assay containing count matrix colData slot sample metadata. rowData can present, required. demonstrate create SummarizedExperiment object, extract assay colData example object se_chlamy comes package. two objects, can create SummarizedExperiment object : details data structure, read vignette SummarizedExperiment package.","code":"# Get count matrix count_matrix <- assay(se_chlamy) head(count_matrix) #> S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 #> Cre01.g000050 31 21 26 33 19 48 17 6 13 6 10 7 31 22 #> Cre01.g000150 50 29 35 99 11 58 51 46 41 33 28 14 53 25 #> Cre01.g000200 36 26 24 29 17 36 14 15 12 8 14 7 25 24 #> Cre01.g000250 440 272 394 332 283 585 272 274 255 160 225 235 405 391 #> Cre01.g000300 1242 839 1216 1251 811 1785 1341 1306 1122 877 844 1082 1704 1739 #> Cre01.g000350 412 264 294 336 252 478 233 221 195 155 190 201 299 272 #> S15 S16 S17 S18 #> Cre01.g000050 29 22 21 16 #> Cre01.g000150 37 17 24 21 #> Cre01.g000200 24 26 18 21 #> Cre01.g000250 358 339 340 332 #> Cre01.g000300 1524 1720 1517 1243 #> Cre01.g000350 276 324 246 275 # Get colData (data frame of sample metadata) coldata <- colData(se_chlamy) head(coldata) #> DataFrame with 6 rows and 2 columns #> Ploidy Generation #> #> S1 diploid P1 #> S2 diploid P1 #> S3 diploid P1 #> S4 diploid P1 #> S5 diploid P1 #> S6 diploid P1 # Create a SummarizedExperiment object new_se <- SummarizedExperiment( assays = list(counts = count_matrix), colData = coldata ) new_se #> class: SummarizedExperiment #> dim: 13058 18 #> metadata(0): #> assays(1): counts #> rownames(13058): Cre01.g000050 Cre01.g000150 ... ERCC-00170 ERCC-00171 #> rowData names(0): #> colnames(18): S1 S2 ... S17 S18 #> colData names(2): Ploidy Generation"},{"path":"/articles/HybridExpress.html","id":"session-information","dir":"Articles","previous_headings":"","what":"Session information","title":"Comparative transcriptomic analysis of hybrids and their progenitors","text":"document created following conditions:","code":"#> ─ Session info ─────────────────────────────────────────────────────────────── #> setting value #> version R Under development (unstable) (2023-11-22 r85609) #> os Ubuntu 22.04.3 LTS #> system x86_64, linux-gnu #> ui X11 #> language en #> collate en_US.UTF-8 #> ctype en_US.UTF-8 #> tz UTC #> date 2023-11-28 #> pandoc 3.1.1 @ /usr/local/bin/ (via rmarkdown) #> #> ─ Packages ─────────────────────────────────────────────────────────────────── #> package * version date (UTC) lib source #> abind 1.4-5 2016-07-21 [1] CRAN (R 4.4.0) #> Biobase * 2.63.0 2023-10-24 [1] Bioconductor #> BiocGenerics * 0.49.1 2023-11-01 [1] Bioconductor #> BiocManager 1.30.22 2023-08-08 [1] CRAN (R 4.4.0) #> BiocParallel 1.37.0 2023-10-24 [1] Bioconductor #> BiocStyle * 2.31.0 2023-10-24 [1] Bioconductor #> bitops 1.0-7 2021-04-24 [1] CRAN (R 4.4.0) #> bookdown 0.36 2023-10-16 [1] CRAN (R 4.4.0) #> bslib 0.6.0 2023-11-21 [2] CRAN (R 4.4.0) #> cachem 1.0.8 2023-05-01 [2] CRAN (R 4.4.0) #> circlize 0.4.15 2022-05-10 [1] CRAN (R 4.4.0) #> cli 3.6.1 2023-03-23 [2] CRAN (R 4.4.0) #> clue 0.3-65 2023-09-23 [1] CRAN (R 4.4.0) #> cluster 2.1.4 2022-08-22 [3] CRAN (R 4.4.0) #> codetools 0.2-19 2023-02-01 [3] CRAN (R 4.4.0) #> colorspace 2.1-0 2023-01-23 [1] CRAN (R 4.4.0) #> ComplexHeatmap 2.19.0 2023-10-24 [1] Bioconductor #> crayon 1.5.2 2022-09-29 [2] CRAN (R 4.4.0) #> DelayedArray 0.29.0 2023-10-24 [1] Bioconductor #> desc 1.4.2 2022-09-08 [2] CRAN (R 4.4.0) #> DESeq2 1.43.1 2023-11-14 [1] Bioconductor #> digest 0.6.33 2023-07-07 [2] CRAN (R 4.4.0) #> doParallel 1.0.17 2022-02-07 [1] CRAN (R 4.4.0) #> dplyr 1.1.4 2023-11-17 [1] CRAN (R 4.4.0) #> evaluate 0.23 2023-11-01 [2] CRAN (R 4.4.0) #> fansi 1.0.5 2023-10-08 [2] CRAN (R 4.4.0) #> farver 2.1.1 2022-07-06 [1] CRAN (R 4.4.0) #> fastmap 1.1.1 2023-02-24 [2] CRAN (R 4.4.0) #> foreach 1.5.2 2022-02-02 [1] CRAN (R 4.4.0) #> fs 1.6.3 2023-07-20 [2] CRAN (R 4.4.0) #> generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.0) #> GenomeInfoDb * 1.39.1 2023-11-08 [1] Bioconductor #> GenomeInfoDbData 1.2.11 2023-11-28 [1] Bioconductor #> GenomicRanges * 1.55.1 2023-10-29 [1] Bioconductor #> GetoptLong 1.0.5 2020-12-15 [1] CRAN (R 4.4.0) #> ggplot2 3.4.4 2023-10-12 [1] CRAN (R 4.4.0) #> GlobalOptions 0.1.2 2020-06-10 [1] CRAN (R 4.4.0) #> glue 1.6.2 2022-02-24 [2] CRAN (R 4.4.0) #> gtable 0.3.4 2023-08-21 [1] CRAN (R 4.4.0) #> highr 0.10 2022-12-22 [2] CRAN (R 4.4.0) #> htmltools 0.5.7 2023-11-03 [2] CRAN (R 4.4.0) #> HybridExpress * 0.99.0 2023-11-28 [1] Bioconductor #> IRanges * 2.37.0 2023-10-24 [1] Bioconductor #> iterators 1.0.14 2022-02-05 [1] CRAN (R 4.4.0) #> jquerylib 0.1.4 2021-04-26 [2] CRAN (R 4.4.0) #> jsonlite 1.8.7 2023-06-29 [2] CRAN (R 4.4.0) #> knitr 1.45 2023-10-30 [2] CRAN (R 4.4.0) #> labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0) #> lattice 0.22-5 2023-10-24 [3] CRAN (R 4.4.0) #> lifecycle 1.0.4 2023-11-07 [2] CRAN (R 4.4.0) #> locfit 1.5-9.8 2023-06-11 [1] CRAN (R 4.4.0) #> magrittr 2.0.3 2022-03-30 [2] CRAN (R 4.4.0) #> Matrix 1.6-3 2023-11-14 [3] CRAN (R 4.4.0) #> MatrixGenerics * 1.15.0 2023-10-24 [1] Bioconductor #> matrixStats * 1.1.0 2023-11-07 [1] CRAN (R 4.4.0) #> memoise 2.0.1 2021-11-26 [2] CRAN (R 4.4.0) #> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.4.0) #> patchwork 1.1.3 2023-08-14 [1] CRAN (R 4.4.0) #> pillar 1.9.0 2023-03-22 [2] CRAN (R 4.4.0) #> pkgconfig 2.0.3 2019-09-22 [2] CRAN (R 4.4.0) #> pkgdown 2.0.7 2022-12-14 [1] CRAN (R 4.4.0) #> png 0.1-8 2022-11-29 [1] CRAN (R 4.4.0) #> purrr 1.0.2 2023-08-10 [2] CRAN (R 4.4.0) #> R6 2.5.1 2021-08-19 [2] CRAN (R 4.4.0) #> ragg 1.2.6 2023-10-10 [2] CRAN (R 4.4.0) #> RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.4.0) #> Rcpp 1.0.11 2023-07-06 [2] CRAN (R 4.4.0) #> RCurl 1.98-1.13 2023-11-02 [1] CRAN (R 4.4.0) #> rjson 0.2.21 2022-01-09 [1] CRAN (R 4.4.0) #> rlang 1.1.2 2023-11-04 [2] CRAN (R 4.4.0) #> rmarkdown 2.25 2023-09-18 [1] CRAN (R 4.4.0) #> rprojroot 2.0.4 2023-11-05 [2] CRAN (R 4.4.0) #> S4Arrays 1.3.0 2023-10-24 [1] Bioconductor #> S4Vectors * 0.41.2 2023-11-23 [1] Bioconductor 3.19 (R 4.4.0) #> sass 0.4.7 2023-07-15 [2] CRAN (R 4.4.0) #> scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.0) #> sessioninfo 1.2.2 2021-12-06 [2] CRAN (R 4.4.0) #> shape 1.4.6 2021-05-19 [1] CRAN (R 4.4.0) #> SparseArray 1.3.1 2023-11-07 [1] Bioconductor #> stringi 1.8.2 2023-11-23 [2] CRAN (R 4.4.0) #> stringr 1.5.1 2023-11-14 [2] CRAN (R 4.4.0) #> SummarizedExperiment * 1.33.0 2023-10-24 [1] Bioconductor #> systemfonts 1.0.5 2023-10-09 [2] CRAN (R 4.4.0) #> textshaping 0.3.7 2023-10-09 [2] CRAN (R 4.4.0) #> tibble 3.2.1 2023-03-20 [2] CRAN (R 4.4.0) #> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.4.0) #> utf8 1.2.4 2023-10-22 [2] CRAN (R 4.4.0) #> vctrs 0.6.4 2023-10-12 [2] CRAN (R 4.4.0) #> withr 2.5.2 2023-10-30 [2] CRAN (R 4.4.0) #> xfun 0.41 2023-11-01 [2] CRAN (R 4.4.0) #> XVector 0.43.0 2023-10-24 [1] Bioconductor #> yaml 2.3.7 2023-01-23 [2] CRAN (R 4.4.0) #> zlibbioc 1.49.0 2023-10-24 [1] Bioconductor #> #> [1] /__w/_temp/Library #> [2] /usr/local/lib/R/site-library #> [3] /usr/local/lib/R/library #> #> ──────────────────────────────────────────────────────────────────────────────"},{"path":[]},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Fabricio Almeida-Silva. Author, maintainer. Lucas Prost-Boxoen. Author. Yves Van de Peer. Author.","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Almeida-Silva F, Prost-Boxoen L, Van de Peer Y (2023). HybridExpress: Comparative analysis RNA-seq data hybrids progenitors. R package version 0.99.0, https://github.com/almeidasilvaf/HybridExpress.","code":"@Manual{, title = {HybridExpress: Comparative analysis of RNA-seq data for hybrids and their progenitors}, author = {Fabricio Almeida-Silva and Lucas Prost-Boxoen and Yves {Van de Peer}}, year = {2023}, note = {R package version 0.99.0}, url = {https://github.com/almeidasilvaf/HybridExpress}, }"},{"path":"/index.html","id":"hybridexpress-","dir":"","previous_headings":"","what":"Comparative analysis of RNA-seq data for hybrids and their progenitors","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"goal HybridExpress perform comparative transcriptomic analyses hybrids relative progenitor species (.k.. experimental trios). package features: Calculation midparent expression values, silico samples obtained mean, sum, weighted mean random sample pairs parent; Exploratory analyses sample grouping PCA plots heatmaps hierarchically-clustered pairwise sample correlations; Identification differentially expressed genes hybrids progenitor species, hybrids midparent values, two parents. spike-standards available, HybridExpress uses normalize count data transcriptome size; Classification genes expression-based categories classes based Rapp et al. (2009). 12 expression categories proposed Rapp et al. (2009) grouped 5 major classes (transgressive -regulation, transgressive -regulation, additivity, expression-level dominance toward parent 1, expression-level dominance toward parent 2); Functional analyses identification overrepresented functional terms gene sets interest.","code":""},{"path":"/index.html","id":"installation-instructions","dir":"","previous_headings":"","what":"Installation instructions","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"Get latest stable R release CRAN. install HybridExpress Bioconductor using following code: development version GitHub :","code":"if (!requireNamespace(\"BiocManager\", quietly = TRUE)) { install.packages(\"BiocManager\") } BiocManager::install(\"HybridExpress\") BiocManager::install(\"almeidasilvaf/HybridExpress\")"},{"path":"/index.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"citation output using citation('HybridExpress') R. Please run check updates cite HybridExpress. Please note HybridExpress made possible thanks many R bioinformatics software authors, cited either vignettes /paper(s) describing package.","code":"print(citation('HybridExpress'), bibtex = TRUE) #> To cite package 'HybridExpress' in publications use: #> #> Almeida-Silva F, Prost-Boxoen L, Van de Peer Y (2023). #> _HybridExpress: Comparative analysis of RNA-seq data for hybrids and #> their progenitors_. R package version 0.99.0, #> . #> #> A BibTeX entry for LaTeX users is #> #> @Manual{, #> title = {HybridExpress: Comparative analysis of RNA-seq data for hybrids and their progenitors}, #> author = {Fabricio Almeida-Silva and Lucas Prost-Boxoen and Yves {Van de Peer}}, #> year = {2023}, #> note = {R package version 0.99.0}, #> url = {https://github.com/almeidasilvaf/HybridExpress}, #> }"},{"path":"/index.html","id":"code-of-conduct","dir":"","previous_headings":"","what":"Code of Conduct","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"Please note HybridExpress project released Contributor Code Conduct. contributing project, agree abide terms.","code":""},{"path":"/index.html","id":"development-tools","dir":"","previous_headings":"","what":"Development tools","title":"Comparative analysis of RNA-seq data for hybrids and their progenitors","text":"Continuous code testing possible thanks GitHub actions usethis, remotes, rcmdcheck customized use Bioconductor’s docker containers BiocCheck. Code coverage assessment possible thanks codecov covr. documentation website automatically updated thanks pkgdown. code styled automatically thanks styler. documentation formatted thanks devtools roxygen2. package developed using biocthis.","code":""},{"path":"/reference/add_midparent_expression.html","id":null,"dir":"Reference","previous_headings":"","what":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"Add midparent expression SummarizedExperiment object","code":""},{"path":"/reference/add_midparent_expression.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"","code":"add_midparent_expression( se, coldata_column = \"Generation\", parent1 = \"P1\", parent2 = \"P2\", method = \"mean\", weights = c(1, 1) )"},{"path":"/reference/add_midparent_expression.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"se SummarizedExperiment object count matrix sample metadata. coldata_column Character indicating name column colData(se) information generation stored. Default: \"Generation\". parent1 Character indicating level variable coldata_column represents parent 1. Default: \"P1\". parent2 Character indicating level variable coldata_column represents parent 2. Default: \"P2\". method Character indicating method use create midparent values. One 'mean' (default), 'sum', 'weightedmean'. weights Numeric vector length 2 indicating weights give parents 1 2 (respectively) method == \"weightedmean\". Setting method == \"weightedmean\" used sometimes parents different ploidy levels. cases, ploidy levels parents 1 2 can passed vector. Default: c(1, 2).","code":""},{"path":"/reference/add_midparent_expression.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"SummarizedExperiment object.","code":""},{"path":"/reference/add_midparent_expression.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Add midparent expression to SummarizedExperiment object — add_midparent_expression","text":"","code":"data(se_chlamy) new_se <- add_midparent_expression(se_chlamy)"},{"path":"/reference/deg_counts.html","id":null,"dir":"Reference","previous_headings":"","what":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"object obtained get_deg_counts() using example data set deg_list.","code":""},{"path":"/reference/deg_counts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"","code":"data(deg_counts)"},{"path":"/reference/deg_counts.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"data frame frequencies (absolute relative) - -regulated genes contrast. Relative frequencies calculated relative total number genes count matrix used differential expression analysis.","code":""},{"path":"/reference/deg_counts.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data frame with frequencies (absolute and relative) of DEGs per contrast — deg_counts","text":"","code":"data(deg_counts)"},{"path":"/reference/deg_list.html","id":null,"dir":"Reference","previous_headings":"","what":"List of differentially expressed genes for all contrasts — deg_list","title":"List of differentially expressed genes for all contrasts — deg_list","text":"object obtained get_deg_list() using example data set se_chlamy.","code":""},{"path":"/reference/deg_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"List of differentially expressed genes for all contrasts — deg_list","text":"","code":"data(deg_list)"},{"path":"/reference/deg_list.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"List of differentially expressed genes for all contrasts — deg_list","text":"list data frames gene-wise test statistics differentially expressed genes contrast. Contrasts \"P2_vs_P1\", \"F1_vs_P1\", \"F1_vs_P2\", \"F1_vs_midparent\", ID 'vs' represents numerator, ID 'vs' represents denominator.","code":""},{"path":"/reference/deg_list.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"List of differentially expressed genes for all contrasts — deg_list","text":"","code":"data(deg_list)"},{"path":"/reference/expression_partitioning.html","id":null,"dir":"Reference","previous_headings":"","what":"Partition genes in groups based on their expression patterns — expression_partitioning","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"Partition genes groups based expression patterns","code":""},{"path":"/reference/expression_partitioning.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"","code":"expression_partitioning(deg_list)"},{"path":"/reference/expression_partitioning.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"deg_list list data frames gene-wise test statistics differentially expressed genes returned get_deg_list().","code":""},{"path":"/reference/expression_partitioning.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"data following variables: Gene Character, gene ID. Category Factor, expression group. Category names numbers 1 12. Class Factor, expression group class. One \"\" (transgressive -regulation), \"\" (transgressive -regulation), \"ADD\" (additivity), \"ELD_P1\" (expression-level dominance toward parent 1), \"ELD_P2\" (expression-level dominance toward parent 2).","code":""},{"path":"/reference/expression_partitioning.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Partition genes in groups based on their expression patterns — expression_partitioning","text":"","code":"data(deg_list) exp_partitions <- expression_partitioning(deg_list)"},{"path":"/reference/get_deg_counts.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a count table of differentially expressed genes per contrast — get_deg_counts","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"Get count table differentially expressed genes per contrast","code":""},{"path":"/reference/get_deg_counts.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"","code":"get_deg_counts(deg_list)"},{"path":"/reference/get_deg_counts.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"deg_list list data frames gene-wise test statistics differentially expressed genes returned get_deg_list().","code":""},{"path":"/reference/get_deg_counts.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"data frame following variables: contrast Character, contrast name. Numeric, number -regulated genes. Numeric, number -regulated genes. total Numeric, total number differentially expressed genes. perc_up Numeric, percentage -regulated genes. perc_down Numeric, percentage -regulated genes. perc_total Numeric, percentage diffferentially expressed genes.","code":""},{"path":"/reference/get_deg_counts.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a count table of differentially expressed genes per contrast — get_deg_counts","text":"","code":"data(deg_list) deg_counts <- get_deg_counts(deg_list)"},{"path":"/reference/get_deg_list.html","id":null,"dir":"Reference","previous_headings":"","what":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"Get table differential expression expression statistics DESeq2","code":""},{"path":"/reference/get_deg_list.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"","code":"get_deg_list( se, coldata_column = \"Generation\", parent1 = \"P1\", parent2 = \"P2\", offspring = \"F1\", midparent = \"midparent\", spikein_norm = FALSE, spikein_pattern = \"ERCC\", lfcThreshold = 0, alpha = 0.01, ... )"},{"path":"/reference/get_deg_list.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"se SummarizedExperiment object count matrix sample metadata. coldata_column Character indicating name column colData(se) information generation stored. Default: \"Generation\". parent1 Character indicating level variable coldata_column represents parent 1. Default: \"P1\". parent2 Character indicating level variable coldata_column represents parent 2. Default: \"P2\". offspring Character indicating level variable coldata_column represents offspring (hybrid allopolyploid). Default: \"F1\" midparent Character indicating level variable coldata_column represents midparent value. Default: \"midparent\", returned add_midparent_expression(). spikein_norm Logical indicating whether normalize data using spike-ins. Default: FALSE. spikein_pattern Character pattern (regex) use identify spike-features count matrix. valid spikein_norm = TRUE. lfcThreshold Numeric indicating log2 fold-change threshold use consider differentially expressed genes. Default: 0. alpha Numeric indicating adjusted P-value threshold use consider differentially expressed genes. Default: 0.01. ... Additional arguments passed DESeq2::results().","code":""},{"path":"/reference/get_deg_list.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"list data frames DESeq2's gene-wise tests statistics contrast. data frame contains columns output DESeq2::results(). Contrasts (list names) : P2_vs_P1 Parent 2 (numerator) versus parent 1 (denominator). F1_vs_P1 Offspring (numerator) versus parent 1 (denominator). F1_vs_P2 Offspring (numerator) versus parent 2 (denominator). F1_vs_midparent Offspring (numerator) versus midparent (denominator). data frame gene-wise test statistics list element contains following variables: baseMean Numeric, base mean. log2FoldChange Numeric, log2-transformed fold changes. lfcSE Numeric, standard error log2-transformed fold changes. stat Numeric, observed test statistic. pvalue Numeric, p-value. padj Numeric, P-value adjusted multiple testing. list contains two additional attributes named ngenes (numeric, total number genes), plotdata, 3-column data frame variables \"gene\" (character, gene ID), \"lFC_F1_vs_P1\" (numeric, log2 fold change F1 P1), \"lFC_F1_vs_P2\" (numeric, log2 fold change F1 P2).","code":""},{"path":"/reference/get_deg_list.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Get a table of differential expression expression statistics with DESeq2 — get_deg_list","text":"","code":"data(se_chlamy) se <- add_midparent_expression(se_chlamy) deg_list <- get_deg_list(se, spikein_norm = TRUE) #> converting counts to integer mode #> using pre-existing size factors #> estimating dispersions #> gene-wise dispersion estimates #> mean-dispersion relationship #> final dispersion estimates #> fitting model and testing"},{"path":"/reference/go_chlamy.html","id":null,"dir":"Reference","previous_headings":"","what":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"Data obtained Phytozome processed row contains one GO term (long format).","code":""},{"path":"/reference/go_chlamy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"","code":"data(go_chlamy)"},{"path":"/reference/go_chlamy.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"2-column data frame columns gene (character, gene ID), GO (character, name GO term.)","code":""},{"path":"/reference/go_chlamy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Data frame with GO terms annotated to each gene of Chlamydomonas reinhardtii — go_chlamy","text":"","code":"data(go_chlamy)"},{"path":"/reference/ora.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform overrepresentation analysis for a set of genes — ora","title":"Perform overrepresentation analysis for a set of genes — ora","text":"Perform overrepresentation analysis set genes","code":""},{"path":"/reference/ora.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform overrepresentation analysis for a set of genes — ora","text":"","code":"ora( genes, annotation, column = NULL, background, correction = \"BH\", alpha = 0.05, min_setsize = 5, max_setsize = 500, bp_param = BiocParallel::SerialParam() )"},{"path":"/reference/ora.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform overrepresentation analysis for a set of genes — ora","text":"genes Character vector containing genes overrepresentation analysis. annotation Annotation data frame genes first column functional annotation columns. data frame can exported Biomart similar databases. column Column columns annotation used enrichment. character numeric values column indices can used. users want supply one column, input character numeric vector. Default: columns annotation. background Character vector genes used background overrepresentation analysis. correction Multiple testing correction method. One \"holm\", \"hochberg\", \"hommel\", \"bonferroni\", \"BH\", \"\", \"fdr\" \"none\". Default \"BH\". alpha Numeric indicating adjusted P-value threshold significance. Default: 0.05. min_setsize Numeric indicating minimum gene set size considered. Gene sets correspond levels variable annotation). Default: 5. max_setsize Numeric indicating maximum gene set size considered. Gene sets correspond levels variable annotation). Default: 500. bp_param BiocParallel back-end used. Default: BiocParallel::SerialParam()","code":""},{"path":"/reference/ora.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform overrepresentation analysis for a set of genes — ora","text":"data frame overrepresentation results following variables: term Character, functional term ID/name. genes Numeric, intersection length input genes genes particular functional term. Numeric, number genes particular functional term. pval Numeric, P-value hypergeometric test. padj Numeric, P-value adjusted multiple comparisons using method specified parameter adj. category Character, name grouping variable (.e., column name annotation).","code":""},{"path":"/reference/ora.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform overrepresentation analysis for a set of genes — ora","text":"","code":"data(se_chlamy) data(go_chlamy) data(deg_list) # Perform ORA for up-regulated genes in contrast F1_vs_P1 up_genes <- deg_list$F1_vs_P1 up_genes <- rownames(up_genes[up_genes$log2FoldChange > 0, ]) background <- rownames(se_chlamy) ora(up_genes, go_chlamy, background = background) #> term genes all pval padj category #> 133 dynein complex 8 13 1.924882e-05 0.00802676 GO"},{"path":"/reference/pca_plot.html","id":null,"dir":"Reference","previous_headings":"","what":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"Perform principal component analysis (PCA) plot PCs","code":""},{"path":"/reference/pca_plot.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"","code":"pca_plot( se, PCs = c(1, 2), ntop = 500, color_by = NULL, shape_by = NULL, add_mean = FALSE, palette = NULL )"},{"path":"/reference/pca_plot.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"se SummarizedExperiment object count matrix sample metadata. PCs Numeric vector indicating principal components show x-axis y-axis, respectively. Default: c(1,2). ntop Numeric indicating number top genes highest variances use PCA. Default: 500. color_by Character name column colData(se) use group samples color. Default: NULL. shape_by Character name column colData(se) use group samples shape. Default: NULL. add_mean Logical indicating whether add diamond symbol mean value level variable indicated color_by. Default: FALSE palette Character vector colors use level variable indicated color_by. NULL, default color palette used.","code":""},{"path":"/reference/pca_plot.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"ggplot object PCA plot showing 2 principal components axis along % variance explained.","code":""},{"path":"/reference/pca_plot.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Perform a principal component analysis (PCA) and plot PCs — pca_plot","text":"","code":"data(se_chlamy) se <- add_midparent_expression(se_chlamy) se$Ploidy[is.na(se$Ploidy)] <- \"midparent\" se$Generation[is.na(se$Generation)] <- \"midparent\" pca_plot(se, color_by = \"Generation\", shape_by = \"Ploidy\", add_mean = TRUE) #> converting counts to integer mode"},{"path":"/reference/plot_expression_partitions.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot expression partitions — plot_expression_partitions","title":"Plot expression partitions — plot_expression_partitions","text":"Plot expression partitions","code":""},{"path":"/reference/plot_expression_partitions.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot expression partitions — plot_expression_partitions","text":"","code":"plot_expression_partitions( partition_table, group_by = \"Category\", palette = NULL, labels = c(\"P1\", \"F1\", \"P2\") )"},{"path":"/reference/plot_expression_partitions.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot expression partitions — plot_expression_partitions","text":"partition_table data frame genes per expression partition returned expression_partitioning(). group_by Character indicating name variable partition_table use group genes. One \"Category\" \"Class\". Default: \"Category\". palette Character vector color names used level variable specified group_by. group_by = \"Category\", must vector length 12. group_by = \"Class\", must vector length 5. NULL, default color palette used. labels character vector length 3 indicating labels given parent 1, offspring, parent 2. Default: c(\"P1\", \"F1\", \"P2\").","code":""},{"path":"/reference/plot_expression_partitions.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot expression partitions — plot_expression_partitions","text":"ggplot object plot showing genes expression partition.","code":""},{"path":"/reference/plot_expression_partitions.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot expression partitions — plot_expression_partitions","text":"","code":"data(deg_list) partition_table <- expression_partitioning(deg_list) plot_expression_partitions(partition_table)"},{"path":"/reference/plot_expression_triangle.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"Plot triangle comparisons DEG sets among generations","code":""},{"path":"/reference/plot_expression_triangle.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"","code":"plot_expression_triangle(deg_counts, palette = NULL, box_labels = NULL)"},{"path":"/reference/plot_expression_triangle.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"deg_counts Data frame number differentially expressed genes per contrast returned get_deg_counts. palette Character vector length 4 indicating colors boxes P1, P2, F1, midparent, respectively. NULL, default color palette used. box_labels Character vector length 4 indicating labels boxes P1, P2, F1, midparent, respectively. Default: NULL, lead labels \"P1\", \"P2\", \"F1\", \"Midparent\", respectively.","code":""},{"path":"/reference/plot_expression_triangle.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"ggplot object expression triangle.","code":""},{"path":"/reference/plot_expression_triangle.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"expression triangle plot shows number differentially expressed genes (DEGs) contrast. Numbers center lines (bold) indicate total number DEGs, numbers near boxes indicate number -regulated genes generation triangle.","code":""},{"path":"/reference/plot_expression_triangle.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a triangle of comparisons of DEG sets among generations — plot_expression_triangle","text":"","code":"data(deg_counts) plot_expression_triangle(deg_counts)"},{"path":"/reference/plot_partition_frequencies.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"Plot barplot gene frequencies per expression partition","code":""},{"path":"/reference/plot_partition_frequencies.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"","code":"plot_partition_frequencies( partition_table, group_by = \"Category\", palette = NULL, labels = c(\"P1\", \"F1\", \"P2\") )"},{"path":"/reference/plot_partition_frequencies.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"partition_table data frame genes per expression partition returned expression_partitioning(). group_by Character indicating name variable partition_table use group genes. One \"Category\" \"Class\". Default: \"Category\". palette Character vector color names used level variable specified group_by. group_by = \"Category\", must vector length 12. group_by = \"Class\", must vector length 5. NULL, default color palette used. labels character vector length 3 indicating labels given parent 1, offspring, parent 2. Default: c(\"P1\", \"F1\", \"P2\").","code":""},{"path":"/reference/plot_partition_frequencies.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"ggplot object barplot showing gene frequencies per partition next explanatory line plots depicting partition.","code":""},{"path":"/reference/plot_partition_frequencies.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a barplot of gene frequencies per expression partition — plot_partition_frequencies","text":"","code":"data(deg_list) partition_table <- expression_partitioning(deg_list) plot_partition_frequencies(partition_table)"},{"path":"/reference/plot_samplecor.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"Plot heatmap pairwise sample correlations hierarchical clustering","code":""},{"path":"/reference/plot_samplecor.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"","code":"plot_samplecor( se, coldata_cols = NULL, rowdata_cols = NULL, ntop = 500, cor_method = \"pearson\", palette = \"Blues\", ... )"},{"path":"/reference/plot_samplecor.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"se SummarizedExperiment object count matrix sample metadata colData slot. rowData slot available, can also used clustering rows. coldata_cols vector (either numeric character) indicating columns extracted colData(se). rowdata_cols vector (either numeric character) indicating columns extracted rowData(se). ntop Numeric indicating number top genes highest variances use PCA. Default: 500. cor_method Character indicating correlation method use. One \"pearson\" \"spearman\". Default: \"pearson\". palette Character indicating name color palette RColorBrewer package use. Default: \"Blues\". ... Additional arguments passed ComplexHeatmap::pheatmap(). arguments can used control heatmap aesthetics, show/hide row column names, change font size, activate/deactivate hierarchical clustering, etc. complete list options, see ?ComplexHeatmap::pheatmap().","code":""},{"path":"/reference/plot_samplecor.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"heatmap hierarchically clustered pairwise sample correlations.","code":""},{"path":"/reference/plot_samplecor.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot a heatmap of pairwise sample correlations with hierarchical clustering — plot_samplecor","text":"","code":"data(se_chlamy) se <- add_midparent_expression(se_chlamy) se$Ploidy[is.na(se$Ploidy)] <- \"midparent\" se$Generation[is.na(se$Generation)] <- \"midparent\" plot_samplecor(se, ntop = 500) #> converting counts to integer mode"},{"path":"/reference/se_chlamy.html","id":null,"dir":"Reference","previous_headings":"","what":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"Two lines (referred parent 1 parent 2) different ploidy levels crossed generate allopolyploid (F1).","code":""},{"path":"/reference/se_chlamy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"","code":"data(se_chlamy)"},{"path":"/reference/se_chlamy.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"SummarizedExperiment object assay (count) colData.","code":""},{"path":"/reference/se_chlamy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Expression data (in counts) for 3 Chlamydomonas lines (P1, P2, and F1) — se_chlamy","text":"","code":"data(se_chlamy)"},{"path":"/news/index.html","id":"hybridexpress-0990","dir":"Changelog","previous_headings":"","what":"HybridExpress 0.99.0","title":"HybridExpress 0.99.0","text":"NEW FEATURES Added NEWS.md file track changes package.","code":""}]