-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest_standard_GSSL_lapshot_unbalance.py
395 lines (324 loc) · 14.8 KB
/
test_standard_GSSL_lapshot_unbalance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import math
import torch
from tqdm.notebook import tqdm
from scipy.stats import entropy
use_gpu = torch.cuda.is_available()
import time
# ========================================
# loading datas
#
# def centerDatas(datas):
# datas[:, :n_lsamples] = datas[:, :n_lsamples, :] - datas[:, :n_lsamples].mean(1, keepdim=True)
# datas[:, :n_lsamples] = datas[:, :n_lsamples, :] / torch.norm(datas[:, :n_lsamples, :], 2, 2)[:, :, None]
# datas[:, n_lsamples:] = datas[:, n_lsamples:, :] - datas[:, n_lsamples:].mean(1, keepdim=True)
# datas[:, n_lsamples:] = datas[:, n_lsamples:, :] / torch.norm(datas[:, n_lsamples:, :], 2, 2)[:, :, None]
#
# return datas
def centerDatas(datas):
datas= datas - datas.mean(1, keepdim=True)
datas = datas / torch.norm(datas, dim=2, keepdim= True)
# datas[:, n_lsamples:] = datas[:, n_lsamples:, :] - datas[:, n_lsamples:].mean(1, keepdim=True)
# datas[:, n_lsamples:] = datas[:, n_lsamples:, :] / torch.norm(datas[:, n_lsamples:, :], 2, 2)[:, :, None]
return datas
def scaleEachUnitaryDatas(datas):
norms = datas.norm(dim=2, keepdim=True)
return datas/norms
def QRreduction(datas):
ndatas = torch.qr(datas.permute(0,2,1)).R
ndatas = ndatas.permute(0,2,1)
return ndatas
def QRreduction(datas):
ndatas = torch.linalg.qr(datas.permute(0, 2, 1),'reduced').R
ndatas = ndatas.permute(0, 2, 1)
return ndatas
def SVDreduction(ndatas,K):
# ndatas = torch.linear.qr(datas.permute(0, 2, 1),'reduced').R
# ndatas = ndatas.permute(0, 2, 1)
_,s,v = torch.svd(ndatas)
ndatas = ndatas.matmul(v[:,:,:K])
return ndatas
def predict(gamma, Z, labels):
# #Certainty_scores = 1 + (Z*torch.log(Z)).sum(dim=2) / math.log(5)
# Z[:,:n_lsamples].fill_(0)
# Z[:,:n_lsamples].scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
Y = torch.zeros(n_runs,n_lsamples, n_ways,device='cuda')
Y.scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
#tZ_Z = torch.bmm(torch.transpose(Z,1,2), Z)
delta = torch.sum(Z, 1)
#L = tZ_Z - torch.bmm(tZ_Z, tZ_Z/delta.unsqueeze(1))
iden = torch.eye(5,device='cuda')
iden = iden.reshape((1, 5, 5))
iden = iden.repeat(10000, 1, 1)
W = torch.bmm(torch.transpose(Z,1,2), Z/delta.unsqueeze(1))
#W = W/W.sum(1).unsqueeze(1)
#isqrt_diag = 1. / torch.sqrt(1e-4 + torch.sum(W, dim=-1,keepdim=True))
# checknan(laplacian=isqrt_diag)
#W = W * isqrt_diag[:, None, :] * isqrt_diag[:, :, None]
#W = W * isqrt_diag * torch.transpose(isqrt_diag,dim0=2,dim1=1)
L = iden - W#(W + W.bmm(W))/2
Z_l = Z[:,:n_lsamples]
#A = np.dot(np.linalg.inv(torch.matmul(torch.transpose(Z_l,1,2), Z_l) + gamma * L), torch.bmm(torch.transpose(Z_l,1,2), Y))
u = torch.linalg.cholesky(torch.bmm(torch.transpose(Z_l,1,2), Z_l) + gamma * L)# + 0.1*iden)
A = torch.cholesky_solve(torch.bmm(torch.transpose(Z_l,1,2), Y), u)
Pred = Z.bmm(A)
normalizer = torch.sum(Pred,dim=1,keepdim=True)
# #normalizer = Pred[:,:n_lsamples].max(dim=1)[0].unsqueeze(1)
Pred = (n_shot+n_queries)*Pred/normalizer
# normalizer = torch.sum(Pred, dim=2, keepdim=True)
# Pred = Pred/normalizer
# Pred[:, :n_lsamples].fill_(0)
# Pred[:, :n_lsamples].scatter_(2, labels[:, :n_lsamples].unsqueeze(2), 1)
# N = PredZ.shape[0]
# K = PredZ.shape[1]
# pred = np.zeros((N, K))
#
# for k in range(K):
# current_pred = np.dot(Z, A[:, k])
return Pred#.clamp(0,1)
def predictW(gamma, Z, labels):
# #Certainty_scores = 1 + (Z*torch.log(Z)).sum(dim=2) / math.log(5)
# Z[:,:n_lsamples].fill_(0)
# Z[:,:n_lsamples].scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
Y = torch.zeros(n_runs,n_lsamples, n_ways,device='cuda')
Y.scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
#tZ_Z = torch.bmm(torch.transpose(Z,1,2), Z)
delta = torch.sum(Z, 1)
#L = tZ_Z - torch.bmm(tZ_Z, tZ_Z/delta.unsqueeze(1))
iden = torch.eye(5,device='cuda')
iden = iden.reshape((1, 5, 5))
iden = iden.repeat(10000, 1, 1)
W = torch.bmm(torch.transpose(Z,1,2), Z/delta.unsqueeze(1))
# W = W/W.sum(1).unsqueeze(1)
#isqrt_diag = 1. / torch.sqrt(1e-4 + torch.sum(W, dim=-1,keepdim=True))
# checknan(laplacian=isqrt_diag)
#W = W * isqrt_diag[:, None, :] * isqrt_diag[:, :, None]
#W = W * isqrt_diag * torch.transpose(isqrt_diag,dim0=2,dim1=1)
L = iden - W#(W + W.bmm(W))/2
Z_l = Z[:,:n_lsamples]
#A = np.dot(np.linalg.inv(torch.matmul(torch.transpose(Z_l,1,2), Z_l) + gamma * L), torch.bmm(torch.transpose(Z_l,1,2), Y))
u = torch.linalg.cholesky(torch.bmm(torch.transpose(Z_l,1,2), Z_l) + gamma * L)# + 0.1*
#u = torch.linalg.cholesky(gamma * L)
A = torch.cholesky_solve(torch.bmm(torch.transpose(Z_l,1,2), Y), u)
P = Z.bmm(A)
_, n, m = P.shape
r = torch.ones(n_runs, n_lsamples + n_usamples,device='cuda')
c = torch.ones(n_runs, n_ways,device='cuda') * (n_shot + n_queries)
u = torch.zeros(n_runs, n).cuda()
maxiters = 1000
iters = 1
# normalize this matrix
while torch.max(torch.abs(u - P.sum(2))) > 0.01:
u = P.sum(2)
P *= (r / u).view((n_runs, -1, 1))
P *= (c / P.sum(1)).view((n_runs, 1, -1))
P[:,:n_lsamples].fill_(0)
P[:,:n_lsamples].scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
if iters == maxiters:
break
iters = iters + 1
return P
class Model:
def __init__(self, n_ways):
self.n_ways = n_ways
# --------- GaussianModel
class GaussianModel(Model):
def __init__(self, n_ways, lam):
super(GaussianModel, self).__init__(n_ways)
self.mus = None # shape [n_runs][n_ways][n_nfeat]
self.lam = lam
def clone(self):
other = GaussianModel(self.n_ways)
other.mus = self.mus.clone()
return self
def cuda(self):
self.mus = self.mus.cuda()
def initFromLabelledDatas(self, ndatas, n_runs, n_shot, n_queries, n_ways, n_nfeat):
self.mus_ori = ndatas.reshape(n_runs, n_shot+n_queries,n_ways, n_nfeat)[:,:n_shot,].mean(1)
self.mus = self.mus_ori.clone()
self.mus = self.mus / self.mus.norm(dim=2, keepdim=True)
# self.mus_ori = torch.randn(n_runs, n_ways,n_nfeat,device='cuda')
# self.mus_ori = self.mus_ori/self.mus_ori.norm(dim=2,keepdim=True)
# self.mus = self.mus_ori.clone()
def initFromCenter(self, mus):
#self.mus_ori = ndatas.reshape(n_runs, n_shot+n_queries,n_ways, n_nfeat)[:,:1,].mean(1)
self.mus = mus
self.mus = self.mus / self.mus.norm(dim=2, keepdim=True)
# self.mus_ori = torch.randn(n_runs, n_ways,n_nfeat,device='cuda')
# self.mus_ori = self.mus_ori/self.mus_ori.norm(dim=2,keepdim=True)
# self.mus = self.mus_ori.clone()
def updateFromEstimate(self, estimate, alpha, l2 = False):
diff = self.mus_ori - self.mus
Dmus = estimate - self.mus
if l2 == True:
self.mus = self.mus + alpha * (Dmus) + 0.01 * diff
else:
self.mus = self.mus + alpha * (Dmus)
#self.mus/=self.mus.norm(dim=2, keepdim=True)
def compute_optimal_transport(self, M, r, c, epsilon=1e-6):
r = r.cuda()
c = c.cuda()
n_runs, n, m = M.shape
P = torch.exp(- self.lam * M)
P /= P.view((n_runs, -1)).sum(1).unsqueeze(1).unsqueeze(1)
u = torch.zeros(n_runs, n).cuda()
maxiters = 1000
iters = 1
# normalize this matrix
while torch.max(torch.abs(u - P.sum(2))) > epsilon:
u = P.sum(2)
P *= (r / u).view((n_runs, -1, 1))
P *= (c / P.sum(1)).view((n_runs, 1, -1))
if iters == maxiters:
break
iters = iters + 1
return P, torch.sum(P * M)
def getProbas(self, ndatas, n_runs, n_ways, n_usamples, n_lsamples):
# compute squared dist to centroids [n_runs][n_samples][n_ways]
dist = (ndatas.unsqueeze(2)-self.mus.unsqueeze(1)).norm(dim=3).pow(2)
p_xj = torch.zeros_like(dist)
# r = torch.ones(n_runs, n_usamples)
# c = torch.ones(n_runs, n_ways) * n_queries
r = torch.ones(n_runs, n_usamples)
c = torch.ones(n_runs, n_ways) * (n_queries)
p_xj_test, _ = self.compute_optimal_transport(dist[:, n_lsamples:], r, c, epsilon=1e-3)
# _, y_pseudo = torch.max(p_xj_test, 2)
# Certainty_scores = 1 + (p_xj_test*torch.log(p_xj_test)).sum(axis=2) / math.log(5)
# Certainty_scores = Certainty_scores.unsqueeze(2)
#p_xj = torch.where(p_xj > 0.9, torch.tensor(1.,device='cuda'), p_xj)
# p_xj_test[alpha[0],alpha[1],:].fill_(0)
# p_xj_test[alpha[0],alpha[1],:].scatter_(2, y_pseudo[alpha[0],alpha[1]], 1)
#sup_alpha = np.where(Certainty_scores >= alpha)[0]
p_xj[:, n_lsamples:] = p_xj_test
p_xj[:,:n_lsamples].fill_(0)
p_xj[:,:n_lsamples].scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
return p_xj
def estimateFromMask(self, mask, ndatas):
emus = mask.permute(0,2,1).matmul(ndatas).div(mask.sum(dim=1).unsqueeze(2))
return emus
# =========================================
# MAP
# =========================================
class MAP:
def __init__(self, alpha=None):
self.verbose = False
self.progressBar = False
self.alpha = alpha
def getAccuracy(self, probas):
olabels = probas.argmax(dim=2)
matches = labels.eq(olabels).float()
acc_test = matches[:,n_lsamples:].mean(1)
m = acc_test.mean().item()
pm = acc_test.std().item() *1.96 / math.sqrt(n_runs)
return m, pm
def performEpoch(self, model, ndatas, n_runs, n_ways, n_usamples, n_lsamples, epochInfo=None):
p_xj = model.getProbas(ndatas, n_runs, n_ways, n_usamples, n_lsamples)
self.probas = p_xj
if self.verbose:
print("accuracy from filtered probas", self.getAccuracy(self.probas))
m_estimates = model.estimateFromMask(self.probas,ndatas)
# update centroids
model.updateFromEstimate(m_estimates, self.alpha)
#self.alpha -= 0.001
if self.verbose:
op_xj = model.getProbas(ndatas, n_runs, n_ways, n_usamples, n_lsamples)
acc = self.getAccuracy(op_xj)
print("output model accuracy", acc)
def loop(self, model, ndatas, n_runs, n_ways, n_usamples, n_lsamples, n_epochs=20):
self.probas = model.getProbas(ndatas, n_runs, n_ways, n_usamples, n_lsamples)
if self.verbose:
print("initialisation model accuracy", self.getAccuracy(self.probas))
if self.progressBar:
if type(self.progressBar) == bool:
pb = tqdm(total = n_epochs)
else:
pb = self.progressBar
for epoch in range(1, n_epochs+1):
if self.verbose:
print("----- epoch[{:3d}] lr_p: {:0.3f}".format(epoch, self.alpha))
p_xj = model.getProbas(ndatas, n_runs, n_ways, n_usamples, n_lsamples)
self.probas = p_xj
if self.verbose:
print("accuracy from filtered probas", self.getAccuracy(self.probas))
pesudo_L = predictW(1, self.probas, labels)
if self.verbose:
print("accuracy from AnchorGraph probas", self.getAccuracy(pesudo_L))
#(pesudo_L + self.probas)
beta = 0.6
# p_xj[:,:n_lsamples].fill_(0)
# p_xj[:,:n_lsamples].scatter_(2,labels[:,:n_lsamples].unsqueeze(2), 1)
# beta*pesudo_L + (1-beta)*self.probas
#pesudo_L[:,n_lsamples:] = (beta * pesudo_L[:,n_lsamples:] + (1 - beta) * self.probas[:,n_lsamples:])
m_estimates = model.estimateFromMask((beta*pesudo_L + (1-beta)*self.probas).clamp(0,1), ndatas)
#m_estimates = model.estimateFromMask(pesudo_L.clamp(0, 1), ndatas)
#m_estimates = model.estimateFromMask((beta * pesudo_L + (1 - beta) * p_xj).clamp(0, 1), ndatas)
# update centroids
model.updateFromEstimate(m_estimates, self.alpha)
# self.alpha -= 0.001
if self.verbose:
op_xj = model.getProbas(ndatas, n_runs, n_ways, n_usamples, n_lsamples)
acc = self.getAccuracy(op_xj)
print("output model accuracy", acc)
if (self.progressBar): pb.update()
# get final accuracy and return it
op_xj = model.getProbas(ndatas, n_runs, n_ways, n_usamples, n_lsamples)
acc = self.getAccuracy(op_xj)
return acc
if __name__ == '__main__':
# ---- data loading
n_shot = 1
n_ways = 5
n_queries = 15
n_runs=10000
n_lsamples = n_ways * n_shot
n_usamples = n_ways * n_queries
n_samples = n_lsamples + n_usamples
import FSLTask
cfg = {'shot':n_shot, 'ways':n_ways, 'queries':n_queries}
#FSLTask.loadDataSet("cross")
#FSLTask.loadDataSet("Res18_mirror_miniimagenet")
#FSLTask.loadDataSet("Res18_tierdimagenet")
# FSLTask.loadDataSet("Res12AS_miniimagenet")
#FSLTask.loadDataSet("Res12AS_tierdimagenet")
#FSLTask.loadDataSet("densenet_tierdimagenet")
FSLTask.loadDataSet("cub")
#FSLTask.loadDataSet("Res12AS_cub")
#FSLTask.loadDataSet("miniimagenet_other")
FSLTask.setRandomStates(cfg)
ndatas = FSLTask.GenerateRunSet(cfg=cfg)
_maxRuns = n_runs
ndatas = ndatas.permute(0,2,1,3).reshape(n_runs, n_samples, -1)
labels = torch.arange(n_ways).view(1,1,n_ways).expand(n_runs,n_shot+n_queries,5).clone().view(n_runs, n_samples)
# Power transform
beta = 0.5
ndatas[:,] = torch.pow(ndatas[:,]+1e-6, beta)
#ndatas = centerDatas(ndatas)
ndatas = scaleEachUnitaryDatas(ndatas)
#ndatas = QRreduction(ndatas)
#ndatas = Coles(ndatas, 40, 10)
#ndatas = centerDatas(ndatas)
ndatas = SVDreduction(ndatas,40)
n_nfeat = ndatas.size(2)
#rp = 1./math.sqrt(ndatas.shape[2])*torch.randn((ndatas.shape[2],160))
#ndatas = ndatas.matmul(rp)
#ndatas = scaleEachUnitaryDatas(ndatas)
# trans-mean-sub
## very important for QR
ndatas = centerDatas(ndatas)
#ndatas = scaleEachUnitaryDatas(ndatas)
print("size of the datas...", ndatas.size())
# switch to cuda
ndatas = ndatas.cuda()
labels = labels.cuda()
#MAP
lam = 10
model = GaussianModel(n_ways, lam)
model.initFromLabelledDatas(ndatas, n_runs, n_shot,n_queries,n_ways,n_nfeat)
alpha = 0.2
optim = MAP(alpha)
optim.verbose=True
optim.progressBar=True
#for i in range(100):
T1 = time.perf_counter()
acc_test = optim.loop(model, ndatas, n_runs, n_ways, n_usamples, n_lsamples, n_epochs=100)
print('running time:%s ' % (time.perf_counter() - T1))
print("final accuracy found {:0.2f} +- {:0.2f}".format(*(100*x for x in acc_test)))