forked from maziarraissi/DeepVIV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVIV_structural_parameters.py
221 lines (170 loc) · 7.75 KB
/
VIV_structural_parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import time
class DeepVIV:
# Initialize the class
def __init__(self, t, eta, lift,
layers):
self.X_min = t.min(0)
self.X_max = t.max(0)
# data
self.t = t
self.eta = eta
self.lift = lift
# layers
self.layers = layers
# initialize NN
self.weights, self.biases = self.initialize_NN(layers)
self.rho = 2.0 # tf.Variable(tf.ones([1], dtype=tf.float32), dtype=tf.float32)
self.b = tf.Variable(0.05*tf.ones([1], dtype=tf.float32), dtype=tf.float32)
self.k = tf.Variable(2.0*tf.ones([1], dtype=tf.float32), dtype=tf.float32)
# tf placeholders and graph
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=True))
# placeholders for data
self.learning_rate = tf.placeholder(tf.float32, shape=[])
self.t_tf = tf.placeholder(tf.float32, shape=[None, 1])
self.eta_tf = tf.placeholder(tf.float32, shape=[None, 1])
self.lift_tf = tf.placeholder(tf.float32, shape=[None, 1])
# physics informed neural networks
(self.eta_pred,
self.lift_pred) = self.net_structure(self.t_tf)
# loss
self.loss = tf.reduce_sum(tf.square(self.eta_tf - self.eta_pred)) + \
tf.reduce_sum(tf.square(self.lift_tf - self.lift_pred))
# optimizers
self.optimizer = tf.train.AdamOptimizer(learning_rate = self.learning_rate)
self.train_op = self.optimizer.minimize(self.loss)
init = tf.global_variables_initializer()
self.sess.run(init)
def initialize_NN(self, layers):
weights = []
biases = []
num_layers = len(layers)
for l in range(0,num_layers-1):
W = self.xavier_init(size=[layers[l], layers[l+1]])
b = tf.Variable(tf.zeros([1,layers[l+1]], dtype=tf.float32), dtype=tf.float32)
weights.append(W)
biases.append(b)
return weights, biases
def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2/(in_dim + out_dim))
return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=xavier_stddev, dtype=tf.float32), dtype=tf.float32)
def neural_net(self, X, weights, biases):
num_layers = len(weights) + 1
H = 2.0*(X-self.X_min)/(self.X_max-self.X_min) - 1.0
for l in range(0,num_layers-2):
W = weights[l]
b = biases[l]
H = tf.sin(tf.add(tf.matmul(H, W), b))
W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y
def net_structure(self, t):
eta = self.neural_net(t, self.weights, self.biases)
eta_t = tf.gradients(eta, t)[0]
eta_tt = tf.gradients(eta_t, t)[0]
lift = self.rho*eta_tt + self.b*eta_t + self.k*eta
return eta, lift
def train(self, num_epochs, batch_size, learning_rate):
for epoch in range(num_epochs):
N = self.t.shape[0]
perm = np.random.permutation(N)
start_time = time.time()
for it in range(0, N, batch_size):
idx = perm[np.arange(it,it+batch_size)]
(t_batch,
eta_batch,
lift_batch) = (self.t[idx,:],
self.eta[idx,:],
self.lift[idx,:])
tf_dict = {self.t_tf: t_batch, self.eta_tf: eta_batch, self.lift_tf: lift_batch, self.learning_rate: learning_rate}
self.sess.run(self.train_op, tf_dict)
# Print
if it % (10*batch_size) == 0:
elapsed = time.time() - start_time
loss_value, b_value, k_value, learning_rate_value = self.sess.run([self.loss, self.b, self.k, self.learning_rate], tf_dict)
print('Epoch: %d, It: %d, Loss: %.3e, b: %.5f, k: %.3f, Time: %.2f, Learning Rate: %.3e'
%(epoch, it/batch_size, loss_value, b_value, k_value, elapsed, learning_rate_value))
start_time = time.time()
def predict(self, t_star):
tf_dict = {self.t_tf: t_star}
eta_star = self.sess.run(self.eta_pred, tf_dict)
lift_star = self.sess.run(self.lift_pred, tf_dict)
return eta_star, lift_star
if __name__ == "__main__":
layers = [1] + 10*[32] + [1]
# Load Exact Data
data = scipy.io.loadmat('./Data/VIV_displacement_lift_drag.mat')
t_star = data['t_structure'] # T x 1
eta_star = data['eta_structure'] # T x 1
lift_star = data['lift_structure'] # T x 1
drag_star = data['drag_structure'] # T x 1
# Load Approximate Data (velocities)
# data = scipy.io.loadmat('./Data/VIV_Concentration.mat')
# data_results = scipy.io.loadmat('./Results/VIV_data_on_velocities_results_10_06_2018.mat')
# t_star = data['t_star'] # T x 1
# eta_star = data['eta_star'] # T x 1
# lift_star = data_results['F_L'].T # T x 1
# drag_star = data_results['F_D'].T # T x 1
# Load Approximate Data (concentration)
# data = scipy.io.loadmat('./Data/VIV_Concentration.mat')
# data_results = scipy.io.loadmat('./Results/VIV_data_on_concentration_results_10_06_2018.mat')
# t_star = data['t_star'] # T x 1
# eta_star = data['eta_star'] # T x 1
# lift_star = data_results['F_L'].T # T x 1
# drag_star = data_results['F_D'].T # T x 1
N_train = t_star.shape[0]
# plt.figure()
# plt.subplot(221)
# plt.plot(t_star,eta_star)
# plt.subplot(223)
# plt.plot(t_star,lift_star)
# plt.subplot(224)
# plt.plot(t_star,drag_star)
T = t_star.shape[0]
t = t_star
eta = eta_star
lift = lift_star
drag = drag_star
######################################################################
######################## Noiseles Data ###############################
######################################################################
# Training Data
idx = np.random.choice(t.shape[0], N_train, replace=False)
t_train = t[idx,:]
eta_train = eta[idx,:]
lift_train = lift[idx,:]
drag_train = drag[idx,:]
# Training
model = DeepVIV(t_train, eta_train, lift_train, layers)
model.train(num_epochs = 20000, batch_size = N_train, learning_rate=1e-3)
model.train(num_epochs = 30000, batch_size = N_train, learning_rate=1e-4)
model.train(num_epochs = 30000, batch_size = N_train, learning_rate=1e-5)
model.train(num_epochs = 20000, batch_size = N_train, learning_rate=1e-6)
eta, lift = model.predict(t_star)
fig, ax1 = plt.subplots()
ax1.plot(t_star, eta, 'b')
ax1.plot(t_star, eta_star, 'r--')
ax1.set_xlabel('$t$')
ax1.set_ylabel('$\eta$', color='b')
ax1.tick_params('y', colors='b')
ax2 = ax1.twinx()
ax2.plot(t_star, lift, 'k')
ax2.plot(t_star, lift_star, 'r--')
ax2.set_ylabel('$F_L$', color='r')
ax2.tick_params('y', colors='r')
fig.tight_layout()
k_exact = 2.202
b_exact = 0.084
k_pred = model.sess.run(model.k)
b_pred = model.sess.run(model.b)
k_error = np.abs(k_exact - k_pred)/np.abs(k_exact)
b_error = np.abs(b_exact - b_pred)/np.abs(b_exact)
scipy.io.savemat('./Results/VIV_structural_parameters_results_%s.mat' %(time.strftime('%d_%m_%Y')),
{'eta':eta, 'lift':lift})