forked from EasyD/IntroToDataScience
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTitanicDataAnalysis_Video2.R
231 lines (169 loc) · 6.58 KB
/
TitanicDataAnalysis_Video2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#
# Copyright 2012 Dave Langer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This R source code file corresponds to video 2 of the YouTube series
# "Introduction to Data Science with R" located at the following URL:
# https://www.youtube.com/watch?v=u6sahb7Hmog
#
# Load raw data
train <- read.csv("train.csv", header = TRUE)
test <- read.csv("test.csv", header = TRUE)
# Add a "Survived" variable to the test set to allow for combining data sets
test.survived <- data.frame(survived = rep("None", nrow(test)), test[,])
# Combine data sets
data.combined <- rbind(train, test.survived)
# A bit about R data types (e.g., factors)
str(data.combined)
data.combined$survived <- as.factor(data.combined$survived)
data.combined$pclass <- as.factor(data.combined$pclass)
# Take a look at gross survival rates
table(data.combined$survived)
# Distribution across classes
table(data.combined$pclass)
# Load up ggplot2 package to use for visualizations
library(ggplot2)
# Hypothesis - Rich folks survived at a higer rate
train$pclass <- as.factor(train$pclass)
ggplot(train, aes(x = pclass, fill = factor(survived))) +
geom_bar() +
xlab("Pclass") +
ylab("Total Count") +
labs(fill = "Survived")
# Examine the first few names in the training data set
head(as.character(train$name))
# How many unique names are there across both train & test?
length(unique(as.character(data.combined$name)))
# Two duplicate names, take a closer look
# First, get the duplicate names and store them as a vector
dup.names <- as.character(data.combined[which(duplicated(as.character(data.combined$name))), "name"])
# Next, take a look at the records in the combined data set
data.combined[which(data.combined$name %in% dup.names),]
# What is up with the 'Miss.' and 'Mr.' thing?
library(stringr)
# Any correlation with other variables (e.g., sibsp)?
misses <- data.combined[which(str_detect(data.combined$name, "Miss.")),]
misses[1:5,]
# Hypothesis - Name titles correlate with age
mrses <- data.combined[which(str_detect(data.combined$name, "Mrs.")), ]
mrses[1:5,]
# Check out males to see if pattern continues
males <- data.combined[which(data.combined$sex == "male"), ]
males[1:5,]
# Expand upon the realtionship between `Survived` and `Pclass` by adding the new `Title` variable to the
# data set and then explore a potential 3-dimensional relationship.
# Create a utility function to help with title extraction
extractTitle <- function(name) {
name <- as.character(name)
if (length(grep("Miss.", name)) > 0) {
return ("Miss.")
} else if (length(grep("Master.", name)) > 0) {
return ("Master.")
} else if (length(grep("Mrs.", name)) > 0) {
return ("Mrs.")
} else if (length(grep("Mr.", name)) > 0) {
return ("Mr.")
} else {
return ("Other")
}
}
titles <- NULL
for (i in 1:nrow(data.combined)) {
titles <- c(titles, extractTitle(data.combined[i,"name"]))
}
data.combined$title <- as.factor(titles)
# Since we only have survived lables for the train set, only use the
# first 891 rows
ggplot(data.combined[1:891,], aes(x = title, fill = survived)) +
geom_bar() +
facet_wrap(~pclass) +
ggtitle("Pclass") +
xlab("Title") +
ylab("Total Count") +
labs(fill = "Survived")
# What's the distribution of females to males across train & test?
table(data.combined$sex)
# Visualize the 3-way relationship of sex, pclass, and survival, compare to analysis of title
ggplot(data.combined[1:891,], aes(x = sex, fill = survived)) +
geom_bar() +
facet_wrap(~pclass) +
ggtitle("Pclass") +
xlab("Sex") +
ylab("Total Count") +
labs(fill = "Survived")
# OK, age and sex seem pretty important as derived from analysis of title, let's take a closer
# look at the distibutions of age over entire data set
summary(data.combined$age)
summary(data.combined[1:891,"age"])
# Just to be thorough, take a look at survival rates broken out by sex, pclass, and age
ggplot(data.combined[1:891,], aes(x = age, fill = survived)) +
facet_wrap(~sex + pclass) +
geom_histogram(binwidth = 10) +
xlab("Age") +
ylab("Total Count")
# Validate that "Master." is a good proxy for male children
boys <- data.combined[which(data.combined$title == "Master."),]
summary(boys$age)
# We know that "Miss." is more complicated, let's examine further
misses <- data.combined[which(data.combined$title == "Miss."),]
summary(misses$age)
ggplot(misses[misses$survived != "None",], aes(x = age, fill = survived)) +
facet_wrap(~pclass) +
geom_histogram(binwidth = 5) +
ggtitle("Age for 'Miss.' by Pclass") +
xlab("Age") +
ylab("Total Count")
# OK, appears female children may have different survival rate,
# could be a candidate for feature engineering later
misses.alone <- misses[which(misses$sibsp == 0 & misses$parch == 0),]
summary(misses.alone$age)
length(which(misses.alone$age <= 14.5))
# Move on to the sibsp variable, summarize the variable
summary(data.combined$sibsp)
# Can we treat as a factor?
length(unique(data.combined$sibsp))
data.combined$sibsp <- as.factor(data.combined$sibsp)
# We believe title is predictive. Visualize survival reates by sibsp, pclass, and title
ggplot(data.combined[1:891,], aes(x = sibsp, fill = survived)) +
geom_bar() +
facet_wrap(~pclass + title) +
ggtitle("Pclass, Title") +
xlab("SibSp") +
ylab("Total Count") +
ylim(0,300) +
labs(fill = "Survived")
# Treat the parch vaiable as a factor and visualize
data.combined$parch <- as.factor(data.combined$parch)
ggplot(data.combined[1:891,], aes(x = parch, fill = survived)) +
geom_bar() +
facet_wrap(~pclass + title) +
ggtitle("Pclass, Title") +
xlab("ParCh") +
ylab("Total Count") +
ylim(0,300) +
labs(fill = "Survived")
# Let's try some feature engineering. What about creating a family size feature?
temp.sibsp <- c(train$sibsp, test$sibsp)
temp.parch <- c(train$parch, test$parch)
data.combined$family.size <- as.factor(temp.sibsp + temp.parch + 1)
# Visualize it to see if it is predictive
ggplot(data.combined[1:891,], aes(x = family.size, fill = survived)) +
geom_bar() +
facet_wrap(~pclass + title) +
ggtitle("Pclass, Title") +
xlab("family.size") +
ylab("Total Count") +
ylim(0,300) +
labs(fill = "Survived")