-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdad_4.py
96 lines (76 loc) · 3.43 KB
/
dad_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import os
import pandas as pd
import tkinter as tk
from tkinter import filedialog
from tkinterdnd2 import DND_FILES
# Function to clean the CSV file
def clean_csv(file_path):
with open(file_path, 'r', encoding='utf-8') as file:
# Use csv.Sniffer to automatically detect the delimiter
sniffer = csv.Sniffer()
sample_data = file.read(1024) # Read a sample of the file
delimiter = sniffer.sniff(sample_data).delimiter
# Read the CSV file using pandas with the identified delimiter and proper encoding
df = pd.read_csv(file_path, delimiter=delimiter, encoding='utf-8')
# Exclude the summary rows at the bottom (assuming they have NaN values in 'Date' column)
df = df.dropna(subset=['Date'])
# Fill missing values in 'Date' column with the previous non-null value
df['Date'] = df['Date'].fillna(method='ffill')
# Adjust column names and translate them to English
df = adjust_columns(df)
return df
# If no delimiter is found, display an error message
print("Error: Unable to determine the delimiter of the CSV file.")
return None
# Function to adjust column names and translate them to English
def adjust_columns(df):
num_columns = df.shape[1] # Get the number of columns in the DataFrame
expected_columns = ['Number', 'Date', 'Customer', 'Product', 'Return', 'Payment', 'Paid']
# Check if the number of columns matches the expected number
if num_columns != len(expected_columns):
# Adjust column names based on the number of columns
if num_columns > len(expected_columns):
df = df.iloc[:, :len(expected_columns)] # Truncate extra columns
df.columns = expected_columns
else:
# Add missing columns with empty values
for i in range(num_columns, len(expected_columns)):
df.insert(i, expected_columns[i], '')
# Rename columns to English names
df = df.rename(columns=dict(zip(df.columns, expected_columns)))
return df
# Function to handle file drop event
def handle_drop(event):
file_path = event.widget.tk.splitlist(event.widget.tk.call('::tk::DND::Drop', 'data'))[0]
if file_path:
cleaned_df = clean_csv(file_path)
if cleaned_df is not None:
save_file(cleaned_df) # Save the cleaned DataFrame
# Function to select a file using file dialog
def select_file():
file_path = filedialog.askopenfilename(filetypes=[('CSV Files', '*.csv')])
if file_path:
cleaned_df = clean_csv(file_path)
if cleaned_df is not None:
save_file(cleaned_df) # Save the cleaned DataFrame
# Function to save the cleaned DataFrame to a CSV file
def save_file(dataframe):
save_path = filedialog.asksaveasfilename(defaultextension=".csv", filetypes=[('CSV Files', '*.csv')])
if save_path:
dataframe.to_csv(save_path, index=False)
print("File saved successfully.")
window.destroy() # Close the window after finishing the work
# Create the main window
window = tk.Tk()
window.title("CSV File Selection")
window.geometry("400x200")
# Create a label
label = tk.Label(window, text="Select a CSV file or drag and drop here:")
label.pack(pady=20)
# Create a button to browse and select a file
button = tk.Button(window, text="Browse", command=select_file)
button.pack(pady=10)
# Enable file drop on the window
window.bind("<B1-Motion>", handle_drop)
# Run the main event loop
window.mainloop()