-
-
Notifications
You must be signed in to change notification settings - Fork 829
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
51fbdea
commit 3d1c2b2
Showing
3 changed files
with
200 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
194 changes: 194 additions & 0 deletions
194
src/aliceVision/sfm/bundle/costfunctions/dynamic_cost_function_to_functor.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
// Ceres Solver - A fast non-linear least squares minimizer | ||
// Copyright 2023 Google Inc. All rights reserved. | ||
// http://ceres-solver.org/ | ||
// | ||
// Redistribution and use in source and binary forms, with or without | ||
// modification, are permitted provided that the following conditions are met: | ||
// | ||
// * Redistributions of source code must retain the above copyright notice, | ||
// this list of conditions and the following disclaimer. | ||
// * Redistributions in binary form must reproduce the above copyright notice, | ||
// this list of conditions and the following disclaimer in the documentation | ||
// and/or other materials provided with the distribution. | ||
// * Neither the name of Google Inc. nor the names of its contributors may be | ||
// used to endorse or promote products derived from this software without | ||
// specific prior written permission. | ||
// | ||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | ||
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | ||
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | ||
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | ||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | ||
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | ||
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | ||
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||
// POSSIBILITY OF SUCH DAMAGE. | ||
// | ||
// Author: [email protected] (Sameer Agarwal) | ||
// [email protected] (David Gossow) | ||
|
||
#ifndef CERES_PUBLIC_DYNAMIC_COST_FUNCTION_TO_FUNCTOR_TMP_H_ | ||
#define CERES_PUBLIC_DYNAMIC_COST_FUNCTION_TO_FUNCTOR_TMP_H_ | ||
|
||
#include <memory> | ||
#include <numeric> | ||
#include <vector> | ||
|
||
#include <ceres/dynamic_cost_function.h> | ||
#include <ceres/internal/disable_warnings.h> | ||
#include <ceres/internal/export.h> | ||
#include <ceres/internal/fixed_array.h> | ||
#include <glog/logging.h> | ||
|
||
namespace ceres { | ||
|
||
// DynamicCostFunctionToFunctor allows users to use CostFunction | ||
// objects in templated functors which are to be used for automatic | ||
// differentiation. It works similar to CostFunctionToFunctor, with the | ||
// difference that it allows you to wrap a cost function with dynamic numbers | ||
// of parameters and residuals. | ||
// | ||
// For example, let us assume that | ||
// | ||
// class IntrinsicProjection : public CostFunction { | ||
// public: | ||
// IntrinsicProjection(const double* observation); | ||
// bool Evaluate(double const* const* parameters, | ||
// double* residuals, | ||
// double** jacobians) const override; | ||
// }; | ||
// | ||
// is a cost function that implements the projection of a point in its | ||
// local coordinate system onto its image plane and subtracts it from | ||
// the observed point projection. It can compute its residual and | ||
// either via analytic or numerical differentiation can compute its | ||
// jacobians. The intrinsics are passed in as parameters[0] and the point as | ||
// parameters[1]. | ||
// | ||
// Now we would like to compose the action of this CostFunction with | ||
// the action of camera extrinsics, i.e., rotation and | ||
// translation. Say we have a templated function | ||
// | ||
// template<typename T> | ||
// void RotateAndTranslatePoint(double const* const* parameters, | ||
// double* residuals); | ||
// | ||
// Then we can now do the following, | ||
// | ||
// struct CameraProjection { | ||
// CameraProjection(const double* observation) | ||
// : intrinsic_projection_.(new IntrinsicProjection(observation)) { | ||
// } | ||
// template <typename T> | ||
// bool operator()(T const* const* parameters, | ||
// T* residual) const { | ||
// const T* rotation = parameters[0]; | ||
// const T* translation = parameters[1]; | ||
// const T* intrinsics = parameters[2]; | ||
// const T* point = parameters[3]; | ||
// T transformed_point[3]; | ||
// RotateAndTranslatePoint(rotation, translation, point, transformed_point); | ||
// | ||
// // Note that we call intrinsic_projection_, just like it was | ||
// // any other templated functor. | ||
// const T* projection_parameters[2]; | ||
// projection_parameters[0] = intrinsics; | ||
// projection_parameters[1] = transformed_point; | ||
// return intrinsic_projection_(projection_parameters, residual); | ||
// } | ||
// | ||
// private: | ||
// DynamicCostFunctionToFunctor intrinsic_projection_; | ||
// }; | ||
class DynamicCostFunctionToFunctorTmp { | ||
public: | ||
// Takes ownership of cost_function. | ||
explicit DynamicCostFunctionToFunctorTmp(CostFunction* cost_function) | ||
: cost_function_(cost_function) { | ||
CHECK(cost_function != nullptr); | ||
} | ||
|
||
bool operator()(double const* const* parameters, double* residuals) const { | ||
return cost_function_->Evaluate(parameters, residuals, nullptr); | ||
} | ||
|
||
template <typename JetT> | ||
bool operator()(JetT const* const* inputs, JetT* output) const { | ||
const std::vector<int32_t>& parameter_block_sizes = | ||
cost_function_->parameter_block_sizes(); | ||
const int num_parameter_blocks = | ||
static_cast<int>(parameter_block_sizes.size()); | ||
const int num_residuals = cost_function_->num_residuals(); | ||
const int num_parameters = std::accumulate( | ||
parameter_block_sizes.begin(), parameter_block_sizes.end(), 0); | ||
|
||
internal::FixedArray<double> parameters(num_parameters); | ||
internal::FixedArray<double*> parameter_blocks(num_parameter_blocks); | ||
internal::FixedArray<double> jacobians(num_residuals * num_parameters); | ||
internal::FixedArray<double*> jacobian_blocks(num_parameter_blocks); | ||
internal::FixedArray<double> residuals(num_residuals); | ||
|
||
// Build a set of arrays to get the residuals and jacobians from | ||
// the CostFunction wrapped by this functor. | ||
double* parameter_ptr = parameters.data(); | ||
double* jacobian_ptr = jacobians.data(); | ||
for (int i = 0; i < num_parameter_blocks; ++i) { | ||
parameter_blocks[i] = parameter_ptr; | ||
jacobian_blocks[i] = jacobian_ptr; | ||
for (int j = 0; j < parameter_block_sizes[i]; ++j) { | ||
*parameter_ptr++ = inputs[i][j].a; | ||
} | ||
jacobian_ptr += num_residuals * parameter_block_sizes[i]; | ||
} | ||
|
||
if (!cost_function_->Evaluate(parameter_blocks.data(), | ||
residuals.data(), | ||
jacobian_blocks.data())) { | ||
return false; | ||
} | ||
|
||
// Now that we have the incoming Jets, which are carrying the | ||
// partial derivatives of each of the inputs w.r.t to some other | ||
// underlying parameters. The derivative of the outputs of the | ||
// cost function w.r.t to the same underlying parameters can now | ||
// be computed by applying the chain rule. | ||
// | ||
// d output[i] d output[i] d input[j] | ||
// -------------- = sum_j ----------- * ------------ | ||
// d parameter[k] d input[j] d parameter[k] | ||
// | ||
// d input[j] | ||
// -------------- = inputs[j], so | ||
// d parameter[k] | ||
// | ||
// outputJet[i] = sum_k jacobian[i][k] * inputJet[k] | ||
// | ||
// The following loop, iterates over the residuals, computing one | ||
// output jet at a time. | ||
for (int i = 0; i < num_residuals; ++i) { | ||
output[i].a = residuals[i]; | ||
output[i].v.setZero(); | ||
|
||
for (int j = 0; j < num_parameter_blocks; ++j) { | ||
const int32_t block_size = parameter_block_sizes[j]; | ||
for (int k = 0; k < parameter_block_sizes[j]; ++k) { | ||
output[i].v += | ||
jacobian_blocks[j][i * block_size + k] * inputs[j][k].v; | ||
} | ||
} | ||
} | ||
|
||
return true; | ||
} | ||
|
||
private: | ||
std::unique_ptr<CostFunction> cost_function_; | ||
}; | ||
|
||
} // namespace ceres | ||
|
||
//#include "ceres/internal/reenable_warnings.h" | ||
|
||
#endif // CERES_PUBLIC_DYNAMIC_COST_FUNCTION_TO_FUNCTOR_TMP_H_ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters