forked from trondkr/model2roms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IOstation.py
377 lines (304 loc) · 15.2 KB
/
IOstation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import datetime
import numpy as np
import grd
import IOverticalGrid
from netCDF4 import Dataset
import time
import string
__author__ = 'Trond Kristiansen'
__email__ = '[email protected]'
__created__ = datetime.datetime(2008, 8, 15)
__modified__ = datetime.datetime(2008, 8, 19)
__modified__ = datetime.datetime(2009, 1, 22)
__version__ = "1.0"
__status__ = "Development"
def getAverage(yyyymmdd,gridIndexes,validIndex,validDis):
"""The input file for this routine is created by making an average of all the SODA files from 1961-1990.
This is done using the script soda2average/averageSODA.py"""
"""First get month of interest:"""
d = string.split(yyyymmdd,'/'); month=int(d[1])
averageFile='../soda2average/clim/averageSODA1961-1990.nc'
if os.path.exists(averageFile):
print('=======================================================================')
print(('Average file %s exists so clim values written to file'%(averageFile)))
print('=======================================================================')
ave = Dataset(averageFile,'r')
index =(len(ave.variables["depth"][:]))
average=True
aveTemp=np.zeros((index),np.float64)
aveSalt=np.zeros((index),np.float64)
aveUvel=np.zeros((index),np.float64)
aveVvel=np.zeros((index),np.float64)
for i in validIndex:
wgt=float(validDis[i])/sum(validDis)
latindex=int(gridIndexes[i][0])
lonindex=int(gridIndexes[i][1])
"""The values at a station is calculated by interpolating from the
numberOfPoints around the station uysing weights (wgt)
"""
print(("test",i, month, latindex,lonindex, ave.variables["temp"].shape))
aveTemp[:] = aveTemp[:] + (ave.variables["temp"][:,latindex,lonindex,month-1])*wgt
aveSalt[:] = aveSalt[:] + (ave.variables["salt"][:,latindex,lonindex,month-1])*wgt
aveUvel[:] = aveUvel[:] + (ave.variables["uvel"][:,latindex,lonindex,month-1])*wgt
aveVvel[:] = aveVvel[:] + (ave.variables["vvel"][:,latindex,lonindex,month-1])*wgt
ave.close()
print((aveTemp, aveSalt, aveUvel, aveVvel))
else:
average=False
aveTemp=None; aveSalt=None; aveUvel=None; aveVvel=None; aveTime=None
return aveTemp,aveSalt,aveUvel,aveVvel,average
def getStationTime(grdMODEL,year,ID):
"""
Find the day and month that the SODA file respresents based on the year and ID number.
Each SODA file represents a 5 day average, therefore we let the date we find be the first day
of those 5 days. Thats the reason we subtract 4 below for day of month.
"""
"""
Create a date object to keep track of Julian dates etc.
Also create a reference date starting at 1948/01/01.
"""
ref_date = date.Date()
ref_date.day=1
ref_date.month=1
ref_date.year=1948
jdref=ref_date.ToJDNumber()
days=0.0; month=1;loop=True
while loop is True:
d=date.NumberDaysMonth(month,year)
if days+d<int(ID)*5:
days=days+d
month+=1
else:
day=int(int(ID)*5-days)
loop=False
soda_date = date.Date()
soda_date.day=day
soda_date.month=month
soda_date.year=year
jdsoda=soda_date.ToJDNumber()
yyyymmdd = '%s/%s/%s'%(soda_date.year,soda_date.month,soda_date.day)
message='Current time of SODA file : %s/%s/%s'%(soda_date.year,soda_date.month,soda_date.day)
return jdsoda-jdref, yyyymmdd, message
def testValidStation(cdf,dis,numberOfPoints,gridIndexes):
validIndex=[]; validDis=[]
for i in range(numberOfPoints):
latindex=int(gridIndexes[i][0])
lonindex=int(gridIndexes[i][1])
"""Test to see if station contains anything but missing values. If it does, we assume
this holds for salinity, u, and v as well. We also assume all values less than 10000"""
if any(abs(cdf.variables["TEMP"][0,:,latindex,lonindex])< 10000):
validIndex.append(i)
validDis.append(dis[i])
if not validIndex:
print('No valid data found for position')
exit()
print(("Found %s valid surounding grid cells for station"%(len(validIndex))))
return validIndex, validDis
def testValidDepth(cdf,numberOfPoints,gridIndexes,depth):
"""To avoid having to extract all depth layers that do not
contain valid data, we find the deepest depth layer of the surrouding stations
and use that indices in the further extration"""
deepestMax=40 # The deepes soda depth is 40
deepest=0
for i in range(numberOfPoints):
latindex=int(gridIndexes[i][0])
lonindex=int(gridIndexes[i][1])
"""Test to see how many depth layers we should extract. We do not want layers
that only contain missing values"""
d = cdf.variables["TEMP"][0,:,latindex,lonindex]
for k in range(len(d)):
if abs(d[k]) < 1000:
"""One of the other stations may have values valid at
deeper stations than this one. Make sure we find absolute deepest"""
#if k>deepest:
deepest=k
print(("Found deepest valid depth-layer %s which is equivavelnt to %sm\n" %(deepest+1, depth[deepest+1])))
"""Now we return deepest + 1 as the index is one value more than the counter"""
return deepest
def initArrays(years,IDS,deepest,name,lon,lat):
index=(len(years)*len(IDS),deepest)
indexSSH=(len(years)*len(IDS))
print(('Extracting data for station (%s,%s) for the years %s->%s'%(lon,lat,years[0],years[-1])))
print(('Size of output data array is ->',index))
stTemp=np.zeros((index),np.float64)
stSalt=np.zeros((index),np.float64)
stSSH =np.zeros((indexSSH),np.float64)
stUvel=np.zeros((index),np.float64)
stVvel=np.zeros((index),np.float64)
stTauX=np.zeros((indexSSH),np.float64)
stTauY=np.zeros((indexSSH),np.float64)
return stTemp, stSalt, stSSH, stUvel, stVvel, stTauX, stTauY
def getStationData(years,IDS,sodapath,latlist,lonlist,stationNames):
fileNameIn=sodapath+'SODA_2.0.2_'+str(years[0])+'_'+str(IDS[0])+'.cdf'
"""First time in loop, get the essential old grid information"""
"""SODA data already at Z-levels. No need to interpolate to fixed depths, but we use the one we have"""
grdMODEL = grd.grdClass(fileNameIn,"SODA")
IOverticalGrid.get_z_levels(grdMODEL)
station=0
numberOfPoints=4
for lat, lon in zip(latlist, lonlist):
print(('\n----------------NEW STATION==> %s ------------------------------------------'%(stationNames[station])))
"""Now we want to find the indices for our longitude, latitude station pairs in the lat-long list"""
gridIndexes, dis = getStationIndices(grdMODEL,lon,lat,'SODA',numberOfPoints)
stTime=[]; stDate=[]; time=0; counter=0; t=0
total=float(len(years)*len(IDS))
import progressbar
progress = progressbar.ProgressBar(widgets=[Percentage(), Bar()], maxval=total).start()
for year in years:
for ID in IDS:
file="SODA_2.0.2_"+str(year)+"_"+str(ID)+".cdf"
filename=sodapath+file
jdsoda, yyyymmdd, message = getStationTime(grdMODEL,year,ID)
stTime.append(jdsoda)
stDate.append(yyyymmdd)
cdf = Dataset(filename,'r')
"""Each SODA file consist only of one time step. Get the subset data selected, and
store that time step in a new array:"""
if year==years[0] and ID==IDS[0]:
validIndex, validDis = testValidStation(cdf,dis,numberOfPoints, gridIndexes)
deepest = testValidDepth(cdf,numberOfPoints, gridIndexes,grdMODEL.depth)
stTemp, stSalt, stSSH, stUvel, stVvel, stTauX, stTauY = initArrays(years,IDS,deepest,stationNames[station],lon,lat)
for i in validIndex:
wgt=float(validDis[i])/sum(validDis)
latindex=int(gridIndexes[i][0])
lonindex=int(gridIndexes[i][1])
"""The values at a station is calculated by interpolating from the
numberOfPoints around the station uysing weights (wgt)
"""
stTemp[time,:] = stTemp[time,:] + (cdf.variables["TEMP"][t,0:deepest,latindex,lonindex])*wgt
stSalt[time,:] = stSalt[time,:] + (cdf.variables["SALT"][t,0:deepest,latindex,lonindex])*wgt
stSSH[time] = stSSH[time] + (cdf.variables["SSH"][t,latindex,lonindex])*wgt
stTauX[time] = stTauX[time] + (cdf.variables["TAUX"][t,latindex,lonindex])*wgt
stTauY[time] = stTauY[time] + (cdf.variables["TAUY"][t,latindex,lonindex])*wgt
stUvel[time,:] = stUvel[time,:] + (cdf.variables["U"][t,0:deepest,latindex,lonindex])*wgt
stVvel[time,:] = stVvel[time,:] + (cdf.variables["V"][t,0:deepest,latindex,lonindex])*wgt
cdf.close()
counter+=1
progress.update(time)
time+=1
print(('Total time steps saved to file %s for station %s'%(time,station)))
#plotData.contourStationData(stTemp,stTime,stDate,-grdMODEL.depth[0:deepest],stationNames[station])
outfilename='station_'+str(stationNames[station])+'.nc'
print(('Results saved to file %s'%(outfilename)))
writeStationNETCDF4(stTemp,stSalt,stUvel,stVvel,stSSH,stTauX,stTauY,stTime,
grdMODEL.depth[0:deepest],lat,lon,outfilename)
station+=1
def getStationIndices(grdObject,st_lon,st_lat,type,numberOfPoints):
"""
This is a function that takes longitude and latitude as
decimal input, and returns the index values closest to
the longitude and latitude. This is an iterative process for finding the best
index pair. Trond Kristiansen, 11.03.2008, 09.06.2009
"""
if st_lon<0: st_lon=st_lon+360.0; NEG=True
else: NEG=False
if type=='SODA' or type=='AVERAGE':
longitude=grdObject.lon
latitude =grdObject.lat
"""Input longitude should go from 0-360"""
longitude=np.where(longitude<0,longitude+360,longitude)
if type=='ROMS':
longitude=grdObject.lon_rho
latitude =grdObject.lat_rho
distance = np.zeros((longitude.shape),dtype=np.float64)
listd=[]
"""First, create a list of distances from the station of interest, while
also save the matrix of dostances that contains the info to get the index pair that the distance
of interest corresponds to"""
for eta in range(len(latitude[:,0])):
for xi in range(len(latitude[0,:])):
distance[eta,xi] = np.sqrt( (latitude[eta,xi]-st_lat)**2.0 + (longitude[eta, xi] - st_lon)**2.0 )
listd.append(distance[eta,xi])
listsIndexes=[]
listd.sort()
"""Now find the closest point to the station. When that point is found, remove the
closests pooint and find the next closests point, until you have found numberOfPoints
closests to station.
"""
for i in range(numberOfPoints):
value=listd[0]
itemindex=np.where(distance==value)
listsIndexes.append(itemindex)
listd.pop(0)
print('')
print('=====getStationIndices======')
if NEG is True:
print(('Looking for longitude [%3.3f] and latitude [%3.3f]'%(st_lon-360,st_lat)))
else:
print(('Looking for longitude [%3.3f] and latitude [%3.3f]'%(st_lon,st_lat)))
print('Result ===> ')
for i in range(numberOfPoints):
print(('Found index pair in gridfile',listsIndexes[i]))
if NEG is True:
print(('Index corresponds to longitude [%3.3f] and latitude [%3.3f]'%(longitude[listsIndexes[i][0],listsIndexes[i][1]]-360,latitude[listsIndexes[i][0],listsIndexes[i][1]])))
else:
print(('Index corresponds to longitude [%3.3f] and latitude [%3.3f]'%(longitude[listsIndexes[i][0],listsIndexes[i][1]],latitude[listsIndexes[i][0],listsIndexes[i][1]])))
print('======================')
print('')
"""
We want to use data interpolated from the 4 surrounding points to get appropriate values at station point.
We do this by using relative weights determined by relative distance to total distance from all 4 points.
Trond Kristiansen, 09.06.2009
"""
dis=[]
for i in range(numberOfPoints):
dis.append(np.sqrt( (latitude[listsIndexes[i][0],listsIndexes[i][1]]-st_lat)**2.0 + (longitude[listsIndexes[i][0],listsIndexes[i][1]] - st_lon)**2.0 ))
return listsIndexes, dis
def writeStationNETCDF4(t,s,uvel,vvel,ssh,taux,tauy,ntime,depth,lat,lon,outfilename):
if os.path.exists(outfilename):
os.remove(outfilename)
print(('Writing first results to file %s'%(outfilename)))
f1 = Dataset(outfilename, mode='w', format='NETCDF4')
f1.description="This is a station (lat=%3.2f,lon=%3.2f) file from SODA data"%(lat,lon)
f1.history = 'Created ' + time.ctime(time.time())
f1.source = 'Trond Kristiansen ([email protected])'
f1.type='NetCDF4 time-depth file created using SODA2ROMS'
f1.createDimension('time', len(ntime))
f1.createDimension('z', len(depth))
v=f1.createVariable('lon','d')
v.long_name = "Longitude position of station" ;
v.units = "Longitude"
v[:]=lon
v=f1.createVariable('lat','d', zlib=True)
v.long_name = "Latitude position of station" ;
v.units = "Latitude"
v[:]=lat
v=f1.createVariable('depth','d',('z',), zlib=True)
v.long_name = "Z-depth matrix" ;
v.units = "meter"
v[:]=depth
v_time = f1.createVariable('time', 'd', ('time',), zlib=True)
v_time.long_name = 'Days since 1948-01-01 00:00:00'
v_time.units = 'days'
v_time.field = 'time, scalar, series'
v_time.calendar='standard'
v_time[:] = ntime
v_temp=f1.createVariable('temp', 'f', ('time','z'), zlib=True)
v_temp.long_name = "Ocean temperature"
v_temp.units = "degrees Celsius"
v_temp[:,:] = t
v_salt=f1.createVariable('salt', 'f', ('time','z'), zlib=True)
v_salt.long_name = "Ocean salinity"
v_salt.units = "psu"
v_salt[:,:]=s
v_ssh=f1.createVariable('zeta','d',('time',), zlib=True)
v_ssh.long_name = "Sea surface height (SSH)"
v_ssh.units = "m"
v_ssh[:] = ssh
v_taux=f1.createVariable('taux','d',('time',), zlib=True)
v_taux.long_name = "Wind stress in x direction"
v_taux.units = "N/m^2"
v_taux[:] = taux
v_tauy=f1.createVariable('tauy','d',('time',), zlib=True)
v_tauy.long_name = "Wind stress in y direction"
v_tauy.units = "N/m^2"
v_tauy[:] = tauy
v_u=f1.createVariable('u', 'f', ('time','z'), zlib=True)
v_u.long_name = "U-velocity, scalar, series"
v_u.units = "m/s"
v_u[:,:] = uvel
v_v=f1.createVariable('v', 'f', ('time','z'), zlib=True)
v_v.long_name = "V-velocity, scalar, series"
v_v.units = "m/s"
v_v[:,:] = vvel
f1.close()