Skip to content

Latest commit

 

History

History
79 lines (68 loc) · 2.52 KB

README.md

File metadata and controls

79 lines (68 loc) · 2.52 KB

logo

snacc: alignment-free genome comparison utilizing the normalized compression distance

snacc (sequence non-alignment compression & comparison) is a program implementing the normalized compression distance (NCD) specifically for biological data. These distances can be used for clustering, or to rapidly infer phylogenies for large sets of genomes.

Dependencies

Installation

To install snacc directly you may use:

virtualenv env --python=python3.6 # optional, but recommended to create a clean environment
source env/bin/activate # if using virtualenv, activate the env
pip install git+https://github.com/SweetiePi/snacc

We recommend you create a conda environment for snacc and install through conda. snacc requires Python 3.6, so create a conda environment with the right Python version:

conda create --name snacc python=3.6

And then activate the environment and install snacc:

source activate snacc
conda install -c asweeten snacc

When inside the snacc conda environment, you can verify correct isntallation by running snacc -h.

Examples

  1. Most basic usage
snacc [folder with sequences] -o [output name]
  1. Intermediate: customize number of threads and compression algorithm
snacc -d [folder with sequences] -o [output name] -n 24 -c gzip
  1. Full control
snacc \
--directory [folder with sequences] \
--output [output name] \
--num-threads 24 \
--compression lz4 \
--fast-mode True \
--reverse-compliment False

Output Example

snacc analysis

  • Analysis time: 2018-10-14 15:18:17.257619
  • Analysis duration: 0:00:26.383997
  • Compression method: lz4
  • Reverse complement: False
  • Burrows-Wheeler transform: False
  • Output filepath: test.csv

Version Information

  • Python: 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13) [GCC 4.2.1 (Apple Inc. build 5666) (dot 3)]
  • snacc: 0.0.1
  • scikit-learn: 0.20.0
  • py-lz4framed: 0.12.0
  • umap-learn: 0.3.5

Analyzed Files

  • /test_dataset/mysteryGenome_1.fasta
  • /test_dataset/mysteryGenome_2.fasta