-
Notifications
You must be signed in to change notification settings - Fork 2
/
configuration.py
115 lines (108 loc) · 3.18 KB
/
configuration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os
N = 10
SUBJECTS_PREFIX = "sub-"
# Subject's ID such as sub-01 or s-10
SUBJECTS = [
SUBJECTS_PREFIX + "0" + str(i) if i < 10 else SUBJECTS_PREFIX + str(i)
for i in range(1, N, 1)
]
# Data structure of the study
BANCO = "/hpc/banco"
PRIMAVOICE = os.path.join(BANCO, "Primavoice_Data_and_Analysis")
# BrainVISA database location
BV_DB = os.path.join(PRIMAVOICE, "DTI")
# BrainVISA field values
CENTER = "cerimed"
SUBJ_DIRS = {subject: os.path.join(BV_DB, CENTER, subject) for subject in SUBJECTS}
MODALITY = "dmri"
ACQUISITION = "default_acquisition"
ACQUISITION_DIRS = {
subject: os.path.join(SUBJ_DIRS[subject], MODALITY, ACQUISITION)
for subject in SUBJECTS
}
CORRECTION = "default_analysis"
CORRECTION_DIRS = {
subject: os.path.join(ACQUISITION_DIRS[subject], CORRECTION) for subject in SUBJECTS
}
# Data generated through Diffuse (to check the three following paths)
CORRECTED_DWI = {
subject: os.path.join(
CORRECTION_DIRS[subject], "corrected_dwi" + "_" + subject + ".nii.gz"
)
for subject in SUBJECTS
}
BVECS = {
subject: os.path.join(
CORRECTION_DIRS[subject], "corrected_bvecs" + "_" + subject + ".txt"
)
for subject in SUBJECTS
}
BVALS = {
subject: os.path.join(
ACQUISITION_DIRS[subject], "raw_bvals" + "_" + subject + ".txt"
)
for subject in SUBJECTS
}
# Added directory that contains the mrtrix generated data (no subdirs)
PROCESSING = "Mrtrix"
PROCESSING_DIRS = {
subject: os.path.join(CORRECTION_DIRS[subject], PROCESSING) for subject in SUBJECTS
}
MRTRIX_CORRECTED_DWIS = {
subject: os.path.join(PROCESSING_DIRS[subject], subject + "_" + "dwi" + ".mif")
for subject in SUBJECTS
}
TENSORS = {
subject: os.path.join(PROCESSING_DIRS[subject], subject + "_" + "tensor" + ".mif")
for subject in SUBJECTS
}
FAS = {
subject: os.path.join(PROCESSING_DIRS[subject], subject + "_" + "fa" + ".mif")
for subject in SUBJECTS
}
MASKS = {
subject: os.path.join(PROCESSING_DIRS[subject], subject + "_" + "dwi_mask" + ".mif")
for subject in SUBJECTS
}
WM_RESPONSES = {
subject: os.path.join(PROCESSING_DIRS[subject], subject + "_" + "wm" + ".txt")
for subject in SUBJECTS
}
WM_FODS = {
subject: os.path.join(PROCESSING_DIRS[subject], subject + "_" + "wm_fod" + ".mif")
for subject in SUBJECTS
}
TRACKS = {
subject: os.path.join(
PROCESSING_DIRS[subject], subject + "_" + "raw_tractogram.tck"
)
for subject in SUBJECTS
}
FILTERED_TRACKS = {
subject: os.path.join(
PROCESSING_DIRS[subject], subject + "_" + "sift_filtered_tractogram.tck"
)
for subject in SUBJECTS
}
# T1 is registered rigidly in the MNI152 space
FUNCTIONAL_ANALYSIS = {
subject: os.path.join(PRIMAVOICE, "analysis" + "_" + subject)
for subject in SUBJECTS
}
T1 = {
os.path.join(
FUNCTIONAL_ANALYSIS[subject],
"anat",
subject + "_" + "ses-01_T1W_denoised_debiased_in_MNI152.nii.gz",
)
for subject in SUBJECTS
}
CONTRAST = {
os.path.join(
FUNCTIONAL_ANALYSIS[subject],
"spm_realign",
"results_8WM_9CSF_0mvt",
"In-MNI152" + "_" + subject + "_" + "res-8WM_9CSF_0mvt_human_vs_all_t.nii.gz",
for subject in SUBJECTS
}
pass