-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathinvariance.py
327 lines (283 loc) · 10.8 KB
/
invariance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""
Routine for computing the layer-wise data augmentation invariance of a model's
activations.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import pandas as pd
import yaml
from scipy.io import savemat
import h5py
import pickle
import dask.array as da
import dask
from dask.diagnostics import ProgressBar
# See: https://docs.dask.org/en/latest/diagnostics-local.html
# Dask distributed
# See: https://docs.dask.org/en/latest/scheduling.html
# See: https://docs.dask.org/en/latest/setup/single-distributed.html
# from dask.distributed import Client, LocalCluster
from data_input import hdf52dask, get_generator, batch_generator
from utils import get_daug_scheme_path
from utils import pairwise_loss, mean_loss, invariance_loss
from activations import get_activations
import keras.backend as K
from keras.models import load_model
import keras.losses
keras.losses.pairwise_loss = pairwise_loss
keras.losses.invariance_loss = invariance_loss
keras.losses.mean_loss = mean_loss
import os
import argparse
import shutil
from tqdm import tqdm, trange
from time import time
import re
# Initialize the Flags container
FLAGS = None
def main(argv=None):
# cluster = LocalCluster(dashboard_address=None)
# client = Client(cluster, memory_limit='{}GB'.format(FLAGS.memory_limit),
# processes=False)
K.set_floatx('float32')
chunk_size = FLAGS.chunk_size
# Read data set
hdf5_file = h5py.File(FLAGS.data_file, 'r')
images, labels, _ = hdf52dask(hdf5_file, FLAGS.group, chunk_size,
shuffle=FLAGS.shuffle, seed=FLAGS.seed,
pct=FLAGS.pct)
n_images = images.shape[0]
n_batches = int(np.ceil(n_images / float(FLAGS.batch_size)))
# Data augmentation parameters
daug_params_file = get_daug_scheme_path(FLAGS.daug_params, FLAGS.data_file)
daug_params = yaml.load(open(daug_params_file, 'r'),
Loader=yaml.FullLoader)
nodaug_params_file = get_daug_scheme_path('nodaug.yml', FLAGS.data_file)
nodaug_params = yaml.load(open(nodaug_params_file, 'r'),
Loader=yaml.FullLoader)
# Initialize the network model
model_filename = FLAGS.model
model = load_model(model_filename)
# Print the model summary
model.summary()
# Get relevant layers
if FLAGS.store_input:
layer_regex = '({}|.*input.*)'.format(FLAGS.layer_regex)
else:
layer_regex = FLAGS.layer_regex
layers = [layer.name for layer in model.layers
if re.compile(layer_regex).match(layer.name)]
# Create batch generators
n_daug_rep = FLAGS.n_daug_rep
n_diff_per_batch = int(FLAGS.batch_size / n_daug_rep)
image_gen_daug = get_generator(images, **daug_params)
batch_gen_daug = batch_generator(image_gen_daug, images, labels,
batch_size=n_diff_per_batch,
aug_per_im=n_daug_rep,
shuffle=False)
image_gen_nodaug = get_generator(images, **nodaug_params)
batch_gen_nodaug = batch_generator(image_gen_nodaug, images, labels,
FLAGS.batch_size, aug_per_im=1,
shuffle=False)
# Outputs
if FLAGS.output_dir == '-1':
FLAGS.output_dir = os.path.dirname(FLAGS.model)
output_hdf5 = h5py.File(os.path.join(
FLAGS.output_dir, FLAGS.output_mse_matrix_hdf5), 'w')
output_pickle = os.path.join(FLAGS.output_dir, FLAGS.output_pickle)
df_init_idx = 0
df = pd.DataFrame()
# Iterate over the layers
for layer_idx, layer_name in enumerate(layers):
# Reload the model
if layer_idx > 0:
K.clear_session()
model = load_model(model_filename)
layer = model.get_layer(layer_name)
# Rename input layer
if re.compile('.*input.*').match(layer_name):
layer_name = 'input'
hdf5_layer = output_hdf5.create_group(layer_name)
activation_function = K.function([model.input,
K.learning_phase()],
[layer.output])
print('\nComputing pairwise similarity at layer {}'.format(layer_name))
# Compute activations of original data (without augmentation)
a_nodaug_da = get_activations(activation_function, batch_gen_nodaug)
a_nodaug_da = da.squeeze(a_nodaug_da)
a_nodaug_da = da.rechunk(a_nodaug_da,
(chunk_size, ) + (a_nodaug_da.shape[1:]))
dim_activations = a_nodaug_da.shape[1]
# Comute matrix of similarities
r = da.reshape(da.sum(da.square(a_nodaug_da), axis=1), (-1, 1))
mse_matrix = (r - 2 * da.dot(a_nodaug_da,
da.transpose(a_nodaug_da)) \
+ da.transpose(r)) / dim_activations
# Compute activations with augmentation
a_daug_da = get_activations(activation_function, batch_gen_daug)
a_daug_da = da.rechunk(a_daug_da,
(chunk_size, dim_activations, 1))
# Compute similarity of augmentations with respect to the
# activations of the original data
a_nodaug_da = da.repeat(da.reshape(a_nodaug_da,
a_nodaug_da.shape + (1, )),
repeats=n_daug_rep, axis=2)
a_nodaug_da = da.rechunk(a_nodaug_da,
(chunk_size, dim_activations, 1))
mse_daug = da.mean(da.square(a_nodaug_da - a_daug_da), axis=1)
# Compute invariance score
mse_sum = da.repeat(da.reshape(da.sum(mse_matrix, axis=1),
(n_images, 1)),
repeats=n_daug_rep, axis=1)
mse_sum = da.rechunk(mse_sum, (chunk_size, 1))
invariance = 1 - n_images * da.divide(mse_daug, mse_sum)
print('Dimensionality activations: {}x{}x{}'.format(
n_images, dim_activations, n_daug_rep))
# Store HDF5 file
if FLAGS.output_mse_matrix_hdf5:
mse_matrix_ds = hdf5_layer.create_dataset(
'mse_matrix', shape=mse_matrix.shape,
chunks=mse_matrix.chunksize, dtype=K.floatx())
mse_daug_ds = hdf5_layer.create_dataset(
'mse_daug', shape=mse_daug.shape,
chunks=mse_daug.chunksize, dtype=K.floatx())
invariance_ds = hdf5_layer.create_dataset(
'invariance', shape=invariance.shape,
chunks=invariance.chunksize, dtype=K.floatx())
time_init = time()
with ProgressBar(dt=1):
da.store([mse_matrix, mse_daug, invariance],
[mse_matrix_ds, mse_daug_ds, invariance_ds])
time_end = time()
print('Elapsed time: {}'.format(time_end - time_init))
invariance = np.ravel(np.asarray(
output_hdf5[layer_name]['invariance']))
else:
time_init = time()
invariance = da.ravel(invariance).compute()
time_end = time()
print('Elapsed time: {}'.format(time_end - time_init))
# Update pandas data frame for plotting
df_end_idx = df_init_idx + n_images * n_daug_rep
d = pd.DataFrame({'Layer': layer_name,
'sample': np.repeat(np.arange(n_images), n_daug_rep),
'n_daug': np.tile(np.arange(n_daug_rep), n_images),
'invariance': invariance},
index=np.arange(df_init_idx, df_end_idx).tolist())
df = df.append(d)
df_init_idx += df_end_idx
pickle.dump(df, open(output_pickle, 'wb'))
output_hdf5.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--data_file',
type=str,
default='/mnt/data/alex/datasets/hdf5/fmri_images.hdf5'
'cifar10.hdf5',
help='Path to the HDF5 file containing the data set.'
)
parser.add_argument(
'--group',
type=str,
default='fmri',
help='Group name in the HDF5 file indicating the train data set.'
)
parser.add_argument(
'--chunk_size',
type=int,
default=None,
help='Size of the dask array chunks'
)
parser.add_argument(
'--batch_size',
type=int,
default=128,
help='Batch size for iterating over the data set'
)
parser.add_argument(
'--pct',
type=float,
default=1.,
help='Percentage of the data set to use'
)
parser.add_argument(
'--shuffle',
action='store_true',
dest='shuffle',
help='Whether to shuffle the samples, if pct is less than 1'
)
parser.add_argument(
'--seed',
type=int,
dest='seed',
help='Random seed for the data shuffling'
)
parser.add_argument(
'--daug_params',
type=str,
default='nodaug.yml',
help='Base name of the configuration file with the data augmentation '
'parameters. It is expected to be located in '
'./daug_schemes/<dataset>/'
)
parser.add_argument(
'--n_daug_rep',
type=int,
default=1,
help='The number of HDF5 files with activations from data augmentation'
)
parser.add_argument(
'--output_dir',
type=str,
default='-1',
help='Directory where to write the output files. If -1, the directory'
'of the model is used'
)
parser.add_argument(
'--output_mse_matrix_hdf5',
type=str,
default=None,
help='Output HDF5 file'
)
parser.add_argument(
'--output_pickle',
type=str,
default=None,
help='Output pickled file containing the invariance scores'
)
parser.add_argument(
'--model',
type=str,
default=None,
help='Model file (architecture + weights + optimizer state) to load'
)
parser.add_argument(
'--layer_regex',
type=str,
default='g[0-9]b[0-9]add',
help='Regular expression of the name of the layer at which the '
'activations will be computed'
)
parser.add_argument(
'--memory_limit',
type=int,
default=128,
help='Memory limit for the dask client [GB]'
)
parser.add_argument(
'--store_input',
action='store_true',
dest='store_input',
help='If True, store the input data'
)
parser.add_argument(
'--store_labels',
action='store_true',
dest='store_labels',
help='If True, store the labels and the predictions'
)
FLAGS, unparsed = parser.parse_known_args()
main()