-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrainer.py
347 lines (290 loc) · 16.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import os
import numpy as np
import torch
from tools import get_mask_from_state
from tqdm import trange
from collections import deque
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
np.set_printoptions(threshold=np.inf)
import time
# Distributed training for online packing policy
def learningPara(T, priority_weight_increase, model_save_path, dqn, mem, timeStr, args, counter, lock, sub_time_str):
log_writer_path = './logs/runs/{}'.format('IR-' + timeStr + '-loss')
if not os.path.exists(log_writer_path):
os.makedirs(log_writer_path)
writer = SummaryWriter(log_writer_path)
targetCounter = T
checkCounter = T
logCounter = T
timeStep = T
if args.device.type.lower() != 'cpu':
torch.cuda.set_device(args.device)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.enabled = args.enable_cudnn
torch.set_num_threads(1)
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
print('Distributed Training Start')
torch.set_num_threads(1)
while True:
if not lock.value:
for i in range(len(mem)):
mem[i].priority_weight = min(mem[i].priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
dqn.reset_noise()
loss = dqn.learn(mem) # Train with n-step distributional double-Q learning
# Update target network
if timeStep - targetCounter >= args.target_update:
targetCounter = timeStep
dqn.update_target_net()
if timeStep % args.checkpoint_interval == 0:
sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
# Checkpoint the network #
if (args.checkpoint_interval != 0) and (timeStep - checkCounter >= args.save_interval):
checkCounter = timeStep
dqn.save(model_save_path, 'checkpoint{}.pt'.format(sub_time_str))
if timeStep - logCounter >= args.print_log_interval:
logCounter = timeStep
writer.add_scalar("Training/Value loss", loss.mean().item(), logCounter)
timeStep += 1
else:
time.sleep(0.5)
# Distributed training for buffered packing policy
def learningParaHierachical(T, priority_weight_increase, model_save_path, orderDQN, locDQN,
orderMem, locMem, timeStr, args, counter, lock, sub_time_str):
log_writer_path = './logs/runs/{}'.format('IR-' + timeStr + '-loss')
if not os.path.exists(log_writer_path):
os.makedirs(log_writer_path)
writer = SummaryWriter(log_writer_path)
targetCounter = T
checkCounter = T
logCounter = T
timeStep = T
print('Distributed Training Start')
torch.cuda.set_device(args.device)
torch.cuda.manual_seed(args.seed)
torch.backends.cudnn.enabled = args.enable_cudnn
torch.set_num_threads(1)
torch.backends.cudnn.deterministic = True
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
bufferNum = len(orderMem) if orderMem is not None else len(locMem)
while True:
if not lock.value:
for i in range(bufferNum):
orderMem[i].priority_weight = min(orderMem[i].priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
locMem[i].priority_weight = min(locMem[i].priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
orderDQN.reset_noise()
orderLoss = orderDQN.learn(orderMem) # Train with n-step distributional double-Q learning
locDQN.reset_noise()
locLoss = locDQN.learn(locMem) # Train with n-step distributional double-Q learning
# Update target network
if timeStep - targetCounter >= args.target_update:
targetCounter = timeStep
orderDQN.update_target_net()
locDQN.update_target_net()
if timeStep % args.checkpoint_interval == 0:
sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
# Checkpoint the network #
if (args.checkpoint_interval != 0) and (timeStep - checkCounter >= args.save_interval):
checkCounter = timeStep
# if checkCounter % args.checkpoint_interval == 0:
# sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
orderDQN.save(model_save_path, 'orderCheckpoint{}.pt'.format(sub_time_str))
locDQN.save(model_save_path, 'locCheckpoint{}.pt'.format(sub_time_str))
if timeStep - logCounter >= args.print_log_interval:
logCounter = timeStep
writer.add_scalar("Training/Value loss", locLoss.mean().item(), logCounter)
writer.add_scalar("Training/Order value loss", orderLoss.mean().item(), logCounter)
timeStep += 1
else:
time.sleep(0.5)
class trainer(object):
def __init__(self, writer, timeStr, dqn, mem):
self.writer = writer
self.timeStr = timeStr
self.dqn = dqn
self.mem = mem
def train_q_value(self, envs, args):
priority_weight_increase = (1 - args.priority_weight) / (args.T_max - args.learn_start)
sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
model_save_path = os.path.join(args.model_save_path, self.timeStr)
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
if args.save_memory_path is not None:
memory_save_path = os.path.join(model_save_path, args.save_memory_path)
if not os.path.exists(memory_save_path):
os.makedirs(memory_save_path)
episode_rewards = deque(maxlen=10)
episode_ratio = deque(maxlen=10)
episode_counter = deque(maxlen=10)
state = envs.reset()
reward_clip = torch.ones((args.num_processes, 1)) * args.reward_clip
R, loss = 0, 0
if args.distributed:
counter= mp.Value('i', 0)
lock = mp.Value('b', False)
# Training loop
self.dqn.train()
for T in trange(1, args.T_max + 1):
if T % args.replay_frequency == 0 and not args.distributed:
self.dqn.reset_noise() # Draw a new set of noisy weights
mask = get_mask_from_state(state, args, args.bufferSize)
action = self.dqn.act(state, mask) # Choose an action greedily (with noisy weights)
next_state, reward, done, infos = envs.step(action.cpu().numpy()) # Step
validSample = []
for _ in range(len(infos)):
validSample.append(infos[_]['Valid'])
if done[_] and infos[_]['Valid']:
if 'reward' in infos[_].keys():
episode_rewards.append(infos[_]['reward'])
else:
episode_rewards.append(infos[_]['episode']['r'])
if 'ratio' in infos[_].keys():
episode_ratio.append(infos[_]['ratio'])
if 'counter' in infos[_].keys():
episode_counter.append(infos[_]['counter'])
if args.reward_clip > 0:
reward = torch.maximum(torch.minimum(reward, reward_clip), -reward_clip) # Clip rewards
for i in range(len(state)):
if validSample[i]:
self.mem[i].append(state[i], action[i], reward[i], done[i]) # Append transition to memory
if args.distributed:
counter.value = T
if T == args.learn_start:
learningProcess = mp.Process(target=learningPara, args=(T, priority_weight_increase, model_save_path, self.dqn, self.mem, self.timeStr, args, counter, lock, sub_time_str))
learningProcess.start()
else:
# Train and test
if T >= args.learn_start:
for i in range(len(self.mem)):
self.mem[i].priority_weight = min(self.mem[i].priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
if T % args.replay_frequency == 0:
loss = self.dqn.learn(self.mem) # Train with n-step distributional double-Q learning
# Update target network
if T % args.target_update == 0:
self.dqn.update_target_net()
# Checkpoint the network #
if (args.checkpoint_interval != 0) and (T % args.save_interval == 0):
if T % args.checkpoint_interval == 0:
sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
self.dqn.save(model_save_path, 'checkpoint{}.pt'.format(sub_time_str))
if T % args.print_log_interval == 0:
self.writer.add_scalar("Training/Value loss", loss.mean().item(), T)
state = next_state
if len(episode_rewards)!= 0:
self.writer.add_scalar('Metric/Reward mean', np.mean(episode_rewards), T)
self.writer.add_scalar('Metric/Reward max', np.max(episode_rewards), T)
self.writer.add_scalar('Metric/Reward min', np.min(episode_rewards), T)
if len(episode_ratio) != 0:
self.writer.add_scalar('Metric/Ratio', np.mean(episode_ratio), T)
if len(episode_counter) != 0:
self.writer.add_scalar('Metric/Length', np.mean(episode_counter), T)
class trainer_hierarchical(object):
def __init__(self, writer, timeStr, DQNs, MEMs):
self.writer = writer
self.timeStr = timeStr
self.orderDQN, self.locDQN = DQNs
self.orderMem, self.locMem = MEMs
def train_q_value(self, envs, args):
priority_weight_increase = (1 - args.priority_weight) / (args.T_max - args.learn_start)
actionNum = args.action_space
sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
model_save_path = os.path.join(args.model_save_path, self.timeStr)
if not os.path.exists(model_save_path):
os.makedirs(model_save_path)
if args.save_memory_path is not None:
memory_save_path = os.path.join(model_save_path, args.save_memory_path)
if not os.path.exists(memory_save_path):
os.makedirs(memory_save_path)
episode_rewards = deque(maxlen=10)
episode_ratio = deque(maxlen=10)
episode_counter = deque(maxlen=10)
orderState = envs.reset()
reward_clip = torch.ones((args.num_processes, 1)) * args.reward_clip
R, orderLoss, locLoss = 0, 0, 0
if args.distributed:
counter= mp.Value('i', 0)
lock = mp.Value('b', False)
self.orderDQN.eval()
self.locDQN.eval()
# Training loop
self.orderDQN.train()
self.locDQN.train()
for T in trange(1, args.T_max + 1):
if T % args.replay_frequency == 0:
self.orderDQN.reset_noise() # Draw a new set of noisy weights
self.locDQN.reset_noise() # Draw a new set of noisy weights
orderAction = self.orderDQN.act(orderState, None)
locState = envs.get_action_candidates(orderAction.cpu().numpy())
locState = torch.from_numpy(np.array(locState)).float().to(args.device)
if not args.selectedAction:
if args.heightMap and not args.physics:
locMask = locState[:, 0:args.action_space].reshape(-1, actionNum)
else:
if args.elementWise:
locMask = locState[:, (args.packed_holder + 1) * args.objVecLen : (args.packed_holder + 1) * args.objVecLen + actionNum].reshape(-1, actionNum)
else:
locMask = locState[:, args.objVecLen : args.objVecLen + actionNum].reshape(-1, actionNum)
else:
locMask = locState[:, 0 : args.selectedAction * 5].reshape(args.num_processes, args.selectedAction, 5)[:,:,-1]
locAction = self.locDQN.act(locState, locMask) # Choose an action greedily (with noisy weights)
next_order_state, reward, done, infos = envs.step(locAction.cpu().numpy()) # Step
validSample = []
for _ in range(len(infos)):
validSample.append(infos[_]['Valid'])
if done[_] and infos[_]['Valid']:
if 'reward' in infos[_].keys():
episode_rewards.append(infos[_]['reward'])
else:
episode_rewards.append(infos[_]['episode']['r'])
if 'ratio' in infos[_].keys():
episode_ratio.append(infos[_]['ratio'])
if 'counter' in infos[_].keys():
episode_counter.append(infos[_]['counter'])
if args.reward_clip > 0:
reward = torch.maximum(torch.minimum(reward, reward_clip), -reward_clip) # Clip rewards
for i in range(len(orderState)):
if validSample[i]:
self.orderMem[i].append(orderState[i], orderAction[i], reward[i], done[i]) # Append transition to memory
self.locMem[i].append(locState[i], locAction[i], reward[i], done[i]) # Append transition to memory
# todo: sample outside and update priorities uniformly, or maintain their memory seperately
if args.distributed:
counter.value = T
if T == args.learn_start:
learningProcess = mp.Process(target=learningParaHierachical, args=(T, priority_weight_increase, model_save_path, self.orderDQN, self.locDQN,
self.orderMem, self.locMem, self.timeStr, args, counter, lock, sub_time_str))
learningProcess.start()
else:
if T >= args.learn_start:
for i in range(args.num_processes):
self.orderMem[i].priority_weight = min(self.orderMem[i].priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
self.locMem[i].priority_weight = min(self.locMem[i].priority_weight + priority_weight_increase, 1) # Anneal importance sampling weight β to 1
if T % args.replay_frequency == 0:
orderLoss = self.orderDQN.learn(self.orderMem) # Train with n-step distributional double-Q learning
locLoss = self.locDQN.learn(self.locMem) # Train with n-step distributional double-Q learning
# Update target network
if T % args.target_update == 0:
self.orderDQN.update_target_net()
self.locDQN.update_target_net()
# Checkpoint the network #
if (args.checkpoint_interval != 0) and (T % args.save_interval == 0):
if T % args.checkpoint_interval == 0:
sub_time_str = time.strftime('%Y.%m.%d-%H-%M-%S', time.localtime(time.time()))
self.orderDQN.save(model_save_path, 'orderCheckpoint_{}.pt'.format(sub_time_str))
self.locDQN.save(model_save_path, 'locCheckpoint_{}.pt'.format(sub_time_str))
if T % args.print_log_interval == 0:
self.writer.add_scalar("Training/Value loss", locLoss.mean().item(), T)
self.writer.add_scalar("Training/Order value loss", orderLoss.mean().item(), T)
orderState = next_order_state
if len(episode_rewards)!= 0:
self.writer.add_scalar('Metric/Reward mean', np.mean(episode_rewards), T)
self.writer.add_scalar('Metric/Reward max', np.max(episode_rewards), T)
self.writer.add_scalar('Metric/Reward min', np.min(episode_rewards), T)
if len(episode_ratio) != 0:
self.writer.add_scalar('Metric/Ratio', np.mean(episode_ratio), T)
if len(episode_counter) != 0:
self.writer.add_scalar('Metric/Length', np.mean(episode_counter), T)