-
Notifications
You must be signed in to change notification settings - Fork 0
/
presentation.tex
564 lines (527 loc) · 18.9 KB
/
presentation.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
\documentclass[aspectratio=169]{beamer}
\usepackage[scaled]{helvet}
\usepackage[utf8]{inputenc}
\usepackage{amssymb,amsmath,amsfonts}
\usepackage{natbib}
\usepackage{smartdiagram}
\usetheme{ifors}
\bibliographystyle{plain}
\title{\textbf{Optimization models for crime analytics applied to social networks}}
\author{\textbf{Richard Weber}\inst{a} \and Fredy Troncoso\inst{b} \and Alex Barrales-Araneda\inst{b}}
\institute{%
\inst{a}{Department of Industrial Engineering, FCFM, University of Chile}
\inst{b}{Department of Industrial Engineering, University of Bío-Bío}
}
\date{July 10, 2022. Santiago, Chile}
\renewcommand\familydefault{\sfdefault}
\begin{document}
\begin{frame}
\setbeamertemplate{footline}{}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Outline}
\tableofcontents
\end{frame}
\section{Introduction}
\subsection{Introduction}
\begin{frame}
\frametitle{Introduction}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item Criminal investigation usually involves the mobilization of large amounts of human and technical resources in search of persons responsible for a crime.
\item Knowledge about the structure and organization of criminal networks is important both for investigation and for the development of effective crime prevention strategies\cite{Xu2005}.
\end{enumerate}
\column{0.5\textwidth}
\centering
\includegraphics[width=0.65\textwidth]{images/band.png}
\end{columns}
\end{frame}
\subsection{Criminal networks}
\begin{frame}
\frametitle{Criminal networks}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item A criminal group can be understood as a social network in which the nodes represent the suspects and the arcs are the links between individuals.
\item These links act as channels for the transfer or flow of material and/or immaterial resources. \cite{Mci99}
\end{enumerate}
\column{0.5\textwidth}
\centering
\includegraphics[width=0.9\textwidth]{images/CG.pdf}
\end{columns}
\end{frame}
\subsection{Extraction of information from social networks}
\begin{frame}
\frametitle{Extraction of information from social networks}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item There are two approaches to extracting information from social networks: the evaluation of important individuals and the identification of associations.
\item The main evaluators of individuals are derived from Social Network Analysis (SNA). \cite{Mci99}.
\item The techniques for identifying associations present in the literature are based on relationships between individuals (SPA).
\end{enumerate}
\column{0.5\textwidth}
\smartdiagram[priority descriptive diagram]{
{Evaluation of important individuals},
{Identification of associations based on relationships},
{Identification of associations based on $pcg$.}
}
\end{columns}
\end{frame}
\section{Identification of associations based on optimization models}
\subsection{Network preparation}
\begin{frame}
\frametitle{Propensity to belong to a criminal group}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item The indicator $pcg_i$ is introduced as the propensity of each individual $i \in N$ to belong to a criminal group.
\item The general form of estimating $pcg_i$ is given by:
\begin{equation*}
pcg_i = f(s_i), \forall i \in N
\end{equation*}
where $s_i$ is the set of relevant attributes of individual $i$, and $f$ is some function that transforms these attributes into a propensity score.
\end{enumerate}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/decision-tree.png}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Network preparation}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item Criminal skills are represented by the criminal propensity $pcg$ and trust is represented by the social distance between individuals $d_{ij}$.
\item The social distance between two individuals is represented by a value between $0$ and $1$, where $1$ represents the maximum distance between them.
\item We define an arc when there is a common crime between a pair of individuals.
\end{enumerate}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/network.png}
\end{figure}
\end{columns}
\end{frame}
\subsection{Linear rational association model (LiRAM)}
\begin{frame}
\frametitle{Linear rational association model (LiRAM)}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item<1-> The search for the best association can be interpreted as the process of forming a criminal group in which a planner chooses individuals to participate based on their criminal capabilities and reliability, maximizing some utility function.
\item<2-> The LiRAM model determines the subset of individuals $i \in N$ and the set of arcs $(i,j) \in A$ that form the best association between individuals $s$ (planner) and $d$ (receiver).
\end{enumerate}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\only<1> {\includegraphics[width=0.7\textwidth]{images/liram-1.pdf}}%\caption{Figure ?}}
\only<2->{\includegraphics[width=0.7\textwidth]{images/liram-2.pdf}}%\caption{Figure ?}}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Linear rational association model (LiRAM)}
\begin{columns}
\column{0.6\textwidth}
\begin{block}{Decision variables}
\footnotesize
\vspace{1em}
$y_{i} =
\begin{cases}
1 & \text{if $i \in N$ is in the criminal group}\\
0 & \text{otherwise}
\end{cases}$\\
$x_{ij} =
\begin{cases}
1 & \text{if $(i,j) \in A$ is in the solution}\\
0 & \text{otherwise}
\end{cases}$
\end{block}
\begin{block}{Objective function}
\begin{itemize}
\footnotesize
\item Utility function of a crime planner.
\begin{equation*}
\max U = \frac{I}{pcg_{max}} \sum_{i \in N} pcg_i y_i - \frac{I \gamma}{d_{max}} \sum_{(i,j) \in A} d_{ij} x_{ij} - w \sum_{i \in N} pcg_i y_i
\end{equation*}
\end{itemize}
\end{block}
\column{0.4\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=0.7\textwidth]{images/liram-2.pdf}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Linear rational association model (LiRAM)}
\begin{block}{Constraints}
\begin{scriptsize}
\begin{columns}[t]
\column{0.46\textwidth}
\begin{itemize}
\item Predecessor constraint:
\begin{align}
& \sum_{i \in N} x_{ij} = y_{j} & \forall j \in N \setminus \{s, d \} \\
\intertext{\item Flow conservation:}
& \sum_{i \in N} x_{ij} = \sum_{i \in N} x_{ji} & \forall j \in N \setminus \{s, d \} \\
\intertext{\item Maximum criminal propensity:}
& \sum_{i \in N} pcg_i y_i \leq \varphi pcg_{max}
\end{align}
\end{itemize}
\column{0.54\textwidth}
\begin{itemize}
\item Subtour elimination constraints:
\begin{align}
& \sum_{i,j \in L} x_{ij} = |L| - 1 & \forall L \subseteq N \setminus \{s, d \}: |L| \geq 2 \\
\intertext{\item Initial and final flow:}
& \sum_{j \in N} x_{sj} = \sum_{i \in N} x_{id} = 1 \\
\intertext{\item Variable’s domain:}
& x_{ij} \in \{0,1\} &\forall (i,j) \in A \\
& y_{i} \in \{0,1\} &\forall i \in N
\end{align}
\end{itemize}
\vfill
\end{columns}
\end{scriptsize}
\end{block}
\end{frame}
\subsection{Steiner tree rational association model (StRAM)}
\begin{frame}
\frametitle{Steiner tree rational association model (StRAM)}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item<1-> The planner is rational and chooses criminals with the skills that will ensure that the crime is carried out with the maximum utility.
\item<2-> The StRAM model determines the Steiner tree, rooted in the crime planner $s \in N$.
\item<3-> Requires a single suspect to determine criminal groups
\end{enumerate}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/stram-network.pdf}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Steiner tree rational association model (StRAM)}
\begin{columns}
\column{\textwidth}
\begin{block}{Decision variables}
\footnotesize
\vspace{1em}
$y_{i} =
\begin{cases}
1 & \text{if $i \in N$ is in the criminal group}\\
0 & \text{otherwise}
\end{cases}$\\
$x_{ij} =
\begin{cases}
1 & \text{if $(i,j) \in A$ is in the solution}\\
0 & \text{otherwise}
\end{cases}$\\
$f_{ij} = \text{flow through the arc $(i,j) \in A$}$
\end{block}
\begin{block}{Objective function}
\begin{itemize}
\footnotesize
\item Utility function of a crime planner
\begin{equation*}
\max U = \frac{I}{pcg_{max}} \sum_{i \in N} pcg_i y_i - \frac{I \gamma}{d_{max}} \sum_{(i,j) \in A} d_{ij} x_{ij} - w \sum_{i \in N} pcg_i y_i
\end{equation*}
\end{itemize}
\end{block}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Steiner tree rational association model (StRAM)}
\begin{block}{Constraints}
\begin{scriptsize}
\begin{columns}[t]
\column{0.5\textwidth}
\begin{itemize}
\item Predecessor constraint:
\begin{align}
& \sum_{i \in N} x_{ij} = y_{j} & \forall j \in N \setminus \{s\} \\
\intertext{\item Flow conservation:}
& \sum_{i \in N} f_{ij} - \sum_{i \in N} f_{ji} = y_{j} & \forall j \in N \setminus \{s\} \\
\intertext{\item Link of the variables:}
& f_{ij} \leq (|N| - 1) x_{ij} & \forall (i,j) \in A
\end{align}
\end{itemize}
\column{0.5\textwidth}
\begin{itemize}
\item Maximum criminal propensity:
\begin{align}
& \sum_{i \in N} pcg_i y_i \leq \varphi pcg_{max}\\
\intertext{\item Variable’s domain:}
& f_{ij} \geq 0 &\forall (i,j) \in A \\
& x_{ij} \in \{0,1\} &\forall (i,j) \in A \\
& y_{i} \in \{0,1\} &\forall i \in N
\end{align}
\end{itemize}
\vfill
\end{columns}
\end{scriptsize}
\end{block}
\end{frame}
\subsection{New criminal association model based on Steiner tree (NCAM)}
\begin{frame}
\frametitle{New criminal association model based on Steiner tree (NCAM)}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item<1-> The total social capital of the group is maximized, considering that interactions allow sharing part of the knowledge.
\item<2-> Allows to generate results in networks where there are no known suspects.
\end{enumerate}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/ncam.pdf}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{New criminal association model based on Steiner tree (NCAM)}
\begin{columns}
\column{0.6\textwidth}
\begin{block}{Decision variables}
\vspace{1em}
$y_{i} =
\begin{cases}
1 & \text{if $i \in N$ is in the criminal group} \\
0 & \text{otherwise}
\end{cases}$ \\
$x_{ij} =
\begin{cases}
1 & \text{if $(i,j) \in A$ is in the solution} \\
0 & \text{otherwise}
\end{cases}$ \\
$f_{ij} = \text{Flow through the arc $(i,j) \in A$}$
\end{block}
\column{0.4\textwidth}
\begin{block}{Objective function}
\begin{itemize}
\item Total band capital.
\begin{equation*}
\max U = \sum_{i \in N} z_i
\end{equation*}
\end{itemize}
\end{block}
\end{columns}
\begin{columns}
\column{0.9\textwidth}
\begin{block}{}
$w_{ij} = \text{potential knowledge given by candidate $i \in N$ to $j \in N$}$ \\
$z_{i} = \text{knowledge provided by the candidate $i \in N$}$
\end{block}
\column{0.1\textwidth}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{New criminal association model based on Steiner tree (NCAM)}
\begin{block}{Constraints}
\begin{scriptsize}
\begin{columns}[t]
\column{0.5\textwidth}
\begin{itemize}
\item Predecessor constraint:
\begin{align}
& \sum_{i \in N \cup \{0\}} x_{ij} = y_{j} & \forall j \in N \\
\intertext{\item Flow conservation:}
& \sum_{i \in N \cup \{0\}} f_{ij} - \sum_{i \in N} f_{ji} = y_{j} & \forall j \in N \\
\intertext{\item Initial arc:}
& \sum_{j \in N} x_{0j} = 1 &
\end{align}
\end{itemize}
\column{0.5\textwidth}
\begin{itemize}
\item Maximum size of the criminal group:
\begin{align}
& \sum_{i \in N} y_i = k_{max}\\
\intertext{\item Initial flow:}
& \sum_{j \in N} f_{0j} = k_{max} & \\
\intertext{\item Link of the variables:}
& f_{ij} \leq (|N| - 1) x_{ij} & \forall i \in N \cup \{0\}, j \in N
\end{align}
\end{itemize}
\vfill
\end{columns}
\end{scriptsize}
\end{block}
\end{frame}
\begin{frame}
\frametitle{New criminal association model based on Steiner tree (NCAM)}
\begin{block}{Constraints}
\begin{scriptsize}
\begin{columns}[t]
\column{0.5\textwidth}
\begin{itemize}
\item Knowledge of the candidates:
\begin{align}
& z_{i} = pcg_{i} y_{i} + \sum_{(i,j) \in A} (e_{ij} w_{ij}) & \forall i \in N \\
\intertext{\item Linearization I:}
& w_{ij} \leq (x_{ij} + x_{ji}) M & \forall (i,j) \in A \\
\intertext{\item Linearization II:}
& w_{ij} \geq z_j - (1 - x_{ij} - x_{ji}) M & \forall (i,j) \in A
\end{align}
\end{itemize}
\column{0.5\textwidth}
\begin{itemize}
\item Linearization III:
\begin{align}
& w_{ij} \leq z_j & \forall (i,j) \in A \\
\intertext{\item Variable’s domain:}
& f_{ij} \geq 0 &\forall i \in N \cup \{0\} ,j \in N \\
& x_{ij} \in \{0,1\} &\forall i \in N \cup \{0\}, j \in N \\
& y_{i} \in \{0,1\} &\forall i \in N \\
& z_{i} \geq 0 &\forall i \in N \\
& w_{ij} \geq 0 &\forall (i,j) \in A
\end{align}
\end{itemize}
\vfill
\end{columns}
\end{scriptsize}
\end{block}
\end{frame}
\section{Results}
\begin{frame}
\frametitle{Results}
\begin{columns}
\column{0.5\textwidth}
\begin{itemize}
\item A network of 77 individuals provided by the Bío-Bío Regional Prosecutor's Office was used.
\item The database contains 1666 crimes and a criminal group of 12 individuals.
\item The models were implemented using the AMPL programming language, using the CPLEX solver.
\end{itemize}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/network-stram.pdf}
\caption{\footnotesize Criminal network of 77 suspects.}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Results}
\begin{block}{Results}
\footnotesize
\begin{enumerate}
\item We evaluated the performance of the $LiRAM$\cite{Troncoso201}, $StRAM$\cite{Troncoso201} and $SPA$\cite{xu204} models applied between pairs of suspect individuals.
\item According to the confidence intervals, there are no significant differences between the F-measure of $LiRAM$ and $StRAM$.
\end{enumerate}
\end{block}
\begin{figure}[ht]
\centering
\includegraphics[width=0.5\textwidth]{images/confidence-interval.pdf}
\caption{\footnotesize F-measure for $StRAM$, $LiRAM$ and $SPA$}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Results}
\begin{block}{Results}
\footnotesize
\begin{enumerate}
\item At a significance level of 0.05, the Shapiro-Wilk test indicates that the F-Measure is not normally distributed.
\item Levene's test indicates that there is no homogeneity of variance ($\alpha = 0.05$).
\item The Kruskal-Wallis nonparametric test was applied. It is concluded that there are no significant differences between the results of the two models ($\alpha = 0.05$).
\end{enumerate}
\end{block}
\vfill
\input{tables/results.tex}
\end{frame}
\begin{frame}
\frametitle{Results}
\begin{columns}
\column{0.5\textwidth}
\begin{itemize}
\item The database of the Public Prosecutor's Office was used to validate and evaluate the models.
\item Crimes committed between 2019 and 2021 were considered.
\item The models were implemented using the Python programming language, using the Gurobipy library.
\end{itemize}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/network-ncam.png}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Results}
\begin{enumerate}
\item 260 instances generated from 13 networks were evaluated.
\item The number of individuals belonging to a \textit{Phenomenon} in the solution was determined.
\item The $NCAM$ model has an average accuracy of 0.657.
\end{enumerate}
\vfill
\begin{columns}
\column{0.5\textwidth}
\input{tables/ncam.tex}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/histogram-ncam.pdf}
\end{figure}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Results}
\begin{columns}
\column{0.5\textwidth}
\begin{enumerate}
\item Currently, the models are implemented in the Public Prosecutor's Office.
\item The database of the Public Prosecutor's Office, with 20 years of crimes, is used.
\item Models are being used to derive possible criminal groupings.
\end{enumerate}
\column{0.5\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{images/inf.png}
\end{figure}
\end{columns}
\end{frame}
\section{Conclusions}
\begin{frame}
\frametitle{Conclusions}
\begin{block}{Conclusions}
\begin{enumerate}
\item Models provide excellent results with respect to existing approaches.
\item The proposed models open new approaches for applied research in criminal analysis.
\item The potential of the proposed models and their application to real cases is observed.
\end{enumerate}
\end{block}
\end{frame}
\begin{frame}[allowframebreaks]
\frametitle{Referencias}
\footnotesize
\bibliography{bibliography.bib}
\end{frame}
\begin{frame}
\frametitle{Acknowledgments}
\begin{columns}
\column{0.6\textwidth}
\begin{itemize}
\item FONDEF project ID20I10230ANID
\item The Initiation Research Project 2060204IF/I
\item Fondecyt Project 1181036
\item Project ING 2030 I+D 20-34.
\item Santiago based Complex Engineering Systems Institute (CONICYT PIA/BASALAFB180003).
\item The Criminal Analysis Unit of the Public Prosecutor's Office
\end{itemize}
\column{0.4\textwidth}
\centering
\includegraphics[width=0.5\textwidth]{logos/ubb}
\includegraphics[width=0.4\textwidth]{logos/uchile}
\vspace{0.5\baselineskip}
\includegraphics[width=0.45\textwidth]{logos/uandes}
\end{columns}
\end{frame}
\begin{frame}
% THE END
\end{frame}
\end{document}