This repository has been archived by the owner on Nov 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathheat_tubes_Keras.py
137 lines (101 loc) · 3.83 KB
/
heat_tubes_Keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from keras.models import *
from keras.callbacks import *
import keras.backend as K
from keras.optimizers import SGD
from keras import Model
import cv2
import os
import h5py
import sys
import numpy as np
import argparse
from scipy.ndimage import zoom
from frames import frames_extractor
def get_output_layer(model, layer_name):
# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])
layer = layer_dict[layer_name]
return layer
# For Keras 2.2 bug
K.set_learning_phase(1)
# Define the path of the model's JSON file
model_path = sys.argv[2]
# h5 weights file to load trained model
weight_path = sys.argv[3]
# Path to the video that is to be visualised
vid_path = sys.argv[4]
# Class label for heatmap to be projected based on.
label = int(sys.argv[5])
cam_dir = vid_path.split('.')[0]
# load json and create model
json_file = open(model_path, 'r')
loaded_model_json = json_file.read()
json_file.close()
model = model_from_json(loaded_model_json)
# Crete directory to save frames
if not os.path.exists(cam_dir):
os.makedirs(cam_dir)
# Make array of stacked frames - By default frames are cropped to 224x224
vid = np.array(frames_extractor(vid_path, 24, 6))
# Get shape of the video
f, w, h, d = vid.shape
vid = np.expand_dims(vid, axis=0)
f = h5py.File(weight_path, 'r')
# List all layers
group = f['model_1']
# The following lines of code were written based on a Keras bug
# The more straightforward alternative is to simple call the
# load_weights() function
# Layer-wise iterations
for elem in group.keys():
# Only transfer weights that exist in both JSON model and H5 model weights file
if (elem in layer.name for layer in model.layers):
# BIAS and WEIGHTS (used for Convolutions)
b = group[elem].values()[0][()]
w = group[elem].values()[1][()]
weights = []
# Cases for Convolution layers
if (len(group[elem].values()) == 2):
weights = [w,b]
else:
# Iterate for every dataset element
for i in range(0,len(group[elem].values())):
weights.append(group[elem].values()[i][()])
# Set layer weights
model.get_layer(elem).set_weights(weights)
# Create Keras model
model = Model(inputs = model.input, outputs = model.output)
# Compile model
model.compile(loss='categorical_crossentropy', optimizer= SGD(lr=0.01, momentum=.9,nesterov=True),metrics=['accuracy'])
# Predict class
y_prob = model.predict(vid)
#Get the y input weights to the softmax (based on the number of filters in the last Conv layer).
class_weights = model.get_layer('predictions').get_weights()[0]
final_conv_layer = get_output_layer(model, 'res5c_branch2c')
# Get outputs for Conv layer
get_output = K.function([model.layers[0].input], [final_conv_layer.output, model.layers[-1].output])
[conv_outputs, predictions] = get_output([vid])
conv_outputs = conv_outputs[0, :, :, :, :]
#Initialise CAM array.
cam = np.zeros(dtype = np.float32, shape = conv_outputs.shape[0:3])
# Get weights only for the specific class
for i, w in enumerate(class_weights[:, label]):
# Compute cam for every kernel
cam += w * conv_outputs[:,:, :, i]
cam /= np.max(cam)
# Resize CAM to frame level
cam = zoom(cam, (8, 32, 32))
# Revert video to RGB
RGB_vid = vid * 255
# Print the order of frames (Imagemagic usability)
file = open("order.txt","w")
for i in range(0,cam.shape[0]):
# Create colourmap
heatmap = cv2.applyColorMap(np.uint8(255*cam[i]), cv2.COLORMAP_JET)
# Make regions zero if cases that activation intensity is less than 20%
heatmap[np.where(cam[i] < 0.2)] = 0
# Create frame with heatmap
frame = heatmap*0.5 + RGB_vid[0][i]
cv2.imwrite(os.path.join(cam_dir,str(i)+'.png'),frame)
file.write(str(os.path.join(cam_dir, str(i)+'.png'))+'\n')
file.close()