-
Notifications
You must be signed in to change notification settings - Fork 204
/
data_helpers.py
118 lines (103 loc) · 4.13 KB
/
data_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import numpy as np
import re
import itertools
from collections import Counter
"""
Original taken from https://github.com/dennybritz/cnn-text-classification-tf
"""
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def load_data_and_labels():
"""
Loads MR polarity data from files, splits the data into words and generates labels.
Returns split sentences and labels.
"""
# Load data from files
positive_examples = list(open("./data/rt-polarity.pos").readlines())
positive_examples = [s.strip() for s in positive_examples]
negative_examples = list(open("./data/rt-polarity.neg").readlines())
negative_examples = [s.strip() for s in negative_examples]
# Split by words
x_text = positive_examples + negative_examples
x_text = [clean_str(sent) for sent in x_text]
x_text = [s.split(" ") for s in x_text]
# Generate labels
positive_labels = [[0, 1] for _ in positive_examples]
negative_labels = [[1, 0] for _ in negative_examples]
y = np.concatenate([positive_labels, negative_labels], 0)
return [x_text, y]
def pad_sentences(sentences, padding_word="<PAD/>"):
"""
Pads all sentences to the same length. The length is defined by the longest sentence.
Returns padded sentences.
"""
sequence_length = max(len(x) for x in sentences)
padded_sentences = []
for i in range(len(sentences)):
sentence = sentences[i]
num_padding = sequence_length - len(sentence)
new_sentence = sentence + [padding_word] * num_padding
padded_sentences.append(new_sentence)
return padded_sentences
def build_vocab(sentences):
"""
Builds a vocabulary mapping from word to index based on the sentences.
Returns vocabulary mapping and inverse vocabulary mapping.
"""
# Build vocabulary
word_counts = Counter(itertools.chain(*sentences))
# Mapping from index to word
vocabulary_inv = [x[0] for x in word_counts.most_common()]
# Mapping from word to index
vocabulary = {x: i for i, x in enumerate(vocabulary_inv)}
return [vocabulary, vocabulary_inv]
def build_input_data(sentences, labels, vocabulary):
"""
Maps sentencs and labels to vectors based on a vocabulary.
"""
x = np.array([[vocabulary[word] for word in sentence] for sentence in sentences])
y = np.array(labels)
return [x, y]
def load_data():
"""
Loads and preprocessed data for the MR dataset.
Returns input vectors, labels, vocabulary, and inverse vocabulary.
"""
# Load and preprocess data
sentences, labels = load_data_and_labels()
sentences_padded = pad_sentences(sentences)
vocabulary, vocabulary_inv = build_vocab(sentences_padded)
x, y = build_input_data(sentences_padded, labels, vocabulary)
return [x, y, vocabulary, vocabulary_inv]
def batch_iter(data, batch_size, num_epochs):
"""
Generates a batch iterator for a dataset.
"""
data = np.array(data)
data_size = len(data)
num_batches_per_epoch = int(len(data) / batch_size) + 1
for epoch in range(num_epochs):
# Shuffle the data at each epoch
shuffle_indices = np.random.permutation(np.arange(data_size))
shuffled_data = data[shuffle_indices]
for batch_num in range(num_batches_per_epoch):
start_index = batch_num * batch_size
end_index = min((batch_num + 1) * batch_size, data_size)
yield shuffled_data[start_index:end_index]