-
Notifications
You must be signed in to change notification settings - Fork 2
/
index.html
245 lines (232 loc) · 9.64 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
<!DOCTYPE html>
<html>
<head>
<title>Alexander Mead | Software Engineer</title>
<link rel="shortcut icon" href="images/favicon.ico" type="image/x-icon" />
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link rel="stylesheet" type="text/css" href="css/reset.css" />
<link rel="stylesheet" type="text/css" href="css/main.css" />
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
<script type="text/javascript" src="scripts/script.js"></script>
<script type="text/javascript" src="scripts/menu.js"></script>
<!--[if IE]>
<script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script>
<![endif]-->
</head>
<body>
<div class="page-wrapper">
<div class="nav-container clearfix" id="nav-home">
<div class="nav-logo">
<p class="logo"><a href="#home">AM</a></p>
</div>
<nav class="nav-menu">
<ul>
<li><a href="#about">About</a></li>
<li><a href="#publications">Publications</a></li>
<li>
<a href="https://github.com/alexander-mead/HMcode">HMcode</a>
</li>
<li><a href="orbits.html">Orbits</a></li>
<li><a href="gravity.html">Gravity</a></li>
<li><a href="universe.html">Universe</a></li>
<li><a href="covid.html">COVID-19</a></li>
<li><a href="maths.html">Maths</a></li>
<li><a href="mandelplot.html">Mandelplot</a></li>
<li><a href="#contact">Contact</a></li>
</ul>
</nav>
</div>
<div id="home">
<h1>
Alexander Mead<br /><span class="subtitle"
>Software Engineering | Astrophysics | Machine Learning
</span>
</h1>
</div>
<div id="about">
<div class="content-wrapper">
<div id="avatar">
<img src="images/avatar.jpg" alt="Alexander Mead" />
</div>
<div class="description clearfix">
<div class="column-left">
<h2>Software Engineering</h2>
<p>
I currently work as the lead software engineer at
<a href="https://www.digilab.co.uk" target="_blank">digiLab</a>
a deep-tech startup that specialises in the quantification of
uncertainty. I oversee a team of software engineers who mainly
develop the
<a
href="https://github.com/digiLab-ai/twinLab-Interface"
target="_blank"
>twinLab</a
>
software, a low/no-code machine-learning platform that is able
to train AI models that quantify the uncertainty in their
predictions. My team works on the full stack, from the various
customer-facing frontends to the serverless cloud infrastructure
that trains and runs the models. My team also oversees the
scientific programming required for the library; adding new
features and updating algorithms to improve performance. I also
contribute to and run data-science projects for clients in
safety-critical industries where quantified uncertainty is
paramount.
</p>
<p>
Prior to working at digiLab I worked at the University of
British Columbia as part of the Programming Languages for
Artificial Intelligence (<a
href="https://plai.cs.ubc.ca/"
target="_blank"
>PLAI</a
>) group. I performed research at the intersection of
probabilistic programming and deep learning, helping to develop
new techniques for solving inference problems with general
simulation-specified forward models.
</p>
</div>
<div class="column-right">
<h2>Astrophysics</h2>
<p>
As an astrophysicist, I was interested in how non-linear
cosmological structure formation can be understood using
inspiration from <i>N</i>-body simulations. These simulations
are extremely useful, but are too expensive to be run for every
cosmological scenario under consideration. I have worked on
'rescaling' methods to alter the cosmology of an existing
simulation by remapping length and time units and modifying the
internal structure of dark-matter haloes. I also developed an
augmented version of the halo model to produce accurate
non-linear matter power spectra, which are useful for analysing
weak-lensing data. This "<a
href="https://github.com/alexander-mead/hmcode"
target="_blank"
>HMcode</a
>" is publicly available and provides non-linear spectra rapidly
and at high accuracy. HMcode is also incorporated within
<a href="https://github.com/cmbant/CAMB" target="_blank">CAMB</a
>.
</p>
<p>
I also used deep learning to infer orbital parameters in
<a
href="https://www.nasa.gov/mission_pages/kepler/main/index.html"
target="_blank"
>Kepler</a
>
planetary systems with strong transit-time variations. These
occur when massive planets have relatively close orbits, such
that the orbits interact with each other and cause strong,
non-linear deviations from the Keplerian solution.
</p>
</div>
</div>
</div>
</div>
<div id="publications">
<div class="content-wrapper">
<h2>Selected academic publications</h2>
<div class="publication">
<p class="publication-detail">
<a href="https://arxiv.org/abs/2011.08858" target="_blank"
>Including beyond-linear halo bias in halo models</a
>
</p>
<p><span class="bold">Mead</span>, Verde</p>
<p class="date">MNRAS, 2021</p>
</div>
<div class="publication">
<p class="publication-detail">
<a href="https://arxiv.org/abs/2009.01858" target="_blank"
>HMcode-2020: Improved modelling of non-linear cosmological
power spectra with baryonic feedback</a
>
</p>
<p><span class="bold">Mead</span>, Brieden, Troester, Heymans</p>
<p class="date">MNRAS, 2021</p>
</div>
<div class="publication">
<p class="publication-detail">
<a href="https://arxiv.org/abs/1606.05345" target="_blank">
Spherical collapse, formation hysteresis and the deeply
non-linear cosmological power spectrum</a
>
</p>
<p><span class="bold">Mead</span></p>
<p class="date">MNRAS, 2017</p>
</div>
<div class="publication">
<p class="publication-detail">
<a href="http://arxiv.org/abs/1602.02154" target="_blank">
Accurate halo-model matter power spectra with dark energy,
massive neutrinos and modified gravitational forces</a
>
</p>
<p>
<span class="bold">Mead</span>, Heymans, Lombriser, Peacock,
Steele, Winther
</p>
<p class="date">MNRAS, 2016</p>
</div>
<div class="publication">
<p class="publication-detail">
<a href="http://arxiv.org/abs/1308.5183" target="_blank">
Remapping dark matter halo catalogues between cosmological
simulations</a
>
</p>
<p><span class="bold">Mead</span>, Peacock</p>
<p class="date">MNRAS, 2014</p>
</div>
<div class="publication">
<p>
A full list of my academic publications can be found
<a
href="https://ui.adsabs.harvard.edu/user/libraries/iXLp9AAMRTmvQesLqpiIQQ"
target="_blank"
>here</a
>.
</p>
</div>
</div>
</div>
<div id="contact">
<div class="content-wrapper">
<h2>Contact</h2>
<p>
You can email me at
<a href="mailto:[email protected]" target="_blank"
>
</p>
<!-- <p>
<a href="https://github.com/alexander-mead" target="_blank"
>GitHub</a
>
:
<a
href="https://stackoverflow.com/users/5287728/mead"
target="_blank"
>stackoverflow</a
>
</p> -->
<p>
My professional CV can be found
<a href="data/CV_DataScience.pdf" target="_blank">here</a> and my
academic CV can be found
<a href="data/CV_Academic.pdf" target="_blank">here</a>.
</p>
<p id="backtotop"><a href="#home">Back To Top ↑</a></p>
</div>
</div>
<footer>
<p>
© 2023 Alexander Mead. Website by
<a href="http://www.jenbayne.com" target="_blank">Jen Bayne</a>.
</p>
</footer>
</div>
</body>
</html>