-
Notifications
You must be signed in to change notification settings - Fork 91
/
test_real.py
127 lines (94 loc) · 4.35 KB
/
test_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import logging
logging.basicConfig(level=logging.INFO)
import argparse
import os
import tensorflow as tf
from dequantization_net import Dequantization_net
from linearization_net import Linearization_net
import hallucination_net
from util import apply_rf
import numpy as np
import cv2
import glob
FLAGS = tf.app.flags.FLAGS
epsilon = 0.001
# ---
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--ckpt_path_deq', type=str, required=True)
parser.add_argument('--ckpt_path_lin', type=str, required=True)
parser.add_argument('--ckpt_path_hal', type=str, required=True)
parser.add_argument('--test_imgs', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
ARGS = parser.parse_args()
# ---
_clip = lambda x: tf.clip_by_value(x, 0, 1)
def build_graph(
ldr, # [b, h, w, c]
is_training,
):
with tf.variable_scope("Dequantization_Net"):
dequantization_model = Dequantization_net(is_train=is_training)
C_pred = _clip(dequantization_model.inference(ldr))
lin_net = Linearization_net()
pred_invcrf = lin_net.get_output(C_pred, is_training)
B_pred = apply_rf(C_pred, pred_invcrf)
thr = 0.12
alpha = tf.reduce_max(B_pred, reduction_indices=[3])
alpha = tf.minimum(1.0, tf.maximum(0.0, alpha - 1.0 + thr) / thr)
alpha = tf.reshape(alpha, [-1, tf.shape(B_pred)[1], tf.shape(B_pred)[2], 1])
alpha = tf.tile(alpha, [1, 1, 1, 3])
with tf.variable_scope("Hallucination_Net"):
net_test, vgg16_conv_layers_test = hallucination_net.model(B_pred, ARGS.batch_size, False)
y_predict_test = net_test.outputs
y_predict_test = tf.nn.relu(y_predict_test)
A_pred = (B_pred) + alpha * y_predict_test
return A_pred
ldr = tf.placeholder(tf.float32, [None, None, None, 3])
is_training = tf.placeholder(tf.bool)
HDR_out = build_graph(ldr, is_training)
class Tester:
def __init__(self):
return
def test_it(self, path):
ldr_imgs = glob.glob(os.path.join(path, '*.png'))
ldr_imgs.extend(glob.glob(os.path.join(path, '*.jpg')))
ldr_imgs = sorted(ldr_imgs)
for ldr_img_path in ldr_imgs:
print(ldr_img_path)
ldr_img = cv2.imread(ldr_img_path)
ldr_val = np.flip(ldr_img, -1).astype(np.float32) / 255.0
ORIGINAL_H = ldr_val.shape[0]
ORIGINAL_W = ldr_val.shape[1]
"""resize to 64x"""
if ORIGINAL_H % 64 != 0 or ORIGINAL_W % 64 != 0:
RESIZED_H = int(np.ceil(float(ORIGINAL_H) / 64.0)) * 64
RESIZED_W = int(np.ceil(float(ORIGINAL_W) / 64.0)) * 64
ldr_val = cv2.resize(ldr_val, dsize=(RESIZED_W, RESIZED_H), interpolation=cv2.INTER_CUBIC)
padding = 32
ldr_val = np.pad(ldr_val, ((padding, padding), (padding, padding), (0, 0)), 'symmetric')
HDR_out_val = sess.run(HDR_out, {
ldr: [ldr_val],
is_training: False,
})
HDR_out_val = np.flip(HDR_out_val[0], -1)
HDR_out_val = HDR_out_val[padding:-padding, padding:-padding]
if ORIGINAL_H % 64 != 0 or ORIGINAL_W % 64 != 0:
HDR_out_val = cv2.resize(HDR_out_val, dsize=(ORIGINAL_W, ORIGINAL_H), interpolation=cv2.INTER_CUBIC)
cv2.imwrite(os.path.join(ARGS.output_path, os.path.split(ldr_img_path)[-1][:-3]+'hdr'), HDR_out_val)
#print(HDR_out_val.shape)
#LDR_in_list.append(LDR_in_val)
#HDR_out_list.append(HDR_out_val)
return
# ---
sess = tf.Session()
restorer0 = tf.train.Saver(var_list=[var for var in tf.get_collection(tf.GraphKeys.VARIABLES) if 'Dequantization_Net' in var.name])
restorer0.restore(sess, ARGS.ckpt_path_deq)
restorer2 = tf.train.Saver(var_list=[var for var in tf.get_collection(tf.GraphKeys.VARIABLES) if 'crf_feature_net' in var.name or 'ae_invcrf_' in var.name])
restorer2.restore(sess, ARGS.ckpt_path_lin)
restorer3 = tf.train.Saver(var_list=[var for var in tf.get_collection(tf.GraphKeys.VARIABLES) if 'Hallucination_Net' in var.name])
restorer3.restore(sess, ARGS.ckpt_path_hal)
tester = Tester()
if not os.path.exists(ARGS.output_path):
os.makedirs(ARGS.output_path)
tester.test_it(ARGS.test_imgs)