forked from elastic/rally
-
Notifications
You must be signed in to change notification settings - Fork 0
/
racecontrol.py
414 lines (353 loc) · 18.4 KB
/
racecontrol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import collections
import logging
import os
import sys
from typing import Optional
import tabulate
import thespian.actors
from esrally import (
PROGRAM_NAME,
actor,
client,
config,
doc_link,
driver,
exceptions,
mechanic,
metrics,
reporter,
track,
types,
version,
)
from esrally.utils import console, opts, versions
pipelines = collections.OrderedDict()
class Pipeline:
"""
Describes a whole execution pipeline. A pipeline can consist of one or more steps. Each pipeline should contain roughly of the following
steps:
* Prepare the benchmark candidate: It can build Elasticsearch from sources, download a ZIP from somewhere etc.
* Launch the benchmark candidate: This can be done directly, with tools like Ansible or it can assume the candidate is already launched
* Run the benchmark
* Report results
"""
def __init__(self, name, description, target, stable=True):
"""
Creates a new pipeline.
:param name: A short name of the pipeline. This name will be used to reference it from the command line.
:param description: A human-readable description what the pipeline does.
:param target: A function that implements this pipeline
:param stable True if the pipeline is considered production quality.
"""
self.name = name
self.description = description
self.target = target
self.stable = stable
pipelines[name] = self
def __call__(self, cfg: types.Config):
self.target(cfg)
class Setup:
def __init__(self, cfg: types.Config, sources=False, distribution=False, external=False, docker=False):
self.cfg = cfg
self.sources = sources
self.distribution = distribution
self.external = external
self.docker = docker
class Success:
pass
class BenchmarkActor(actor.RallyActor):
def __init__(self):
super().__init__()
self.cfg: Optional[types.Config] = None
self.start_sender = None
self.mechanic = None
self.main_driver = None
self.coordinator = None
def receiveMsg_PoisonMessage(self, msg, sender):
self.logger.debug("BenchmarkActor got notified of poison message [%s] (forwarding).", (str(msg)))
if self.coordinator:
self.coordinator.error = True
self.send(self.start_sender, msg)
def receiveUnrecognizedMessage(self, msg, sender):
self.logger.debug("BenchmarkActor received unknown message [%s] (ignoring).", (str(msg)))
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_Setup(self, msg, sender):
self.start_sender = sender
self.cfg = msg.cfg
assert self.cfg is not None
self.coordinator = BenchmarkCoordinator(msg.cfg)
self.coordinator.setup(sources=msg.sources)
self.logger.info("Asking mechanic to start the engine.")
self.mechanic = self.createActor(mechanic.MechanicActor, targetActorRequirements={"coordinator": True})
self.send(
self.mechanic,
mechanic.StartEngine(
self.cfg,
self.coordinator.metrics_store.open_context,
msg.sources,
msg.distribution,
msg.external,
msg.docker,
),
)
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_EngineStarted(self, msg, sender):
assert self.cfg is not None
self.logger.info("Mechanic has started engine successfully.")
self.coordinator.race.team_revision = msg.team_revision
self.main_driver = self.createActor(driver.DriverActor, targetActorRequirements={"coordinator": True})
self.logger.info("Telling driver to prepare for benchmarking.")
self.send(self.main_driver, driver.PrepareBenchmark(self.cfg, self.coordinator.current_track))
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_PreparationComplete(self, msg, sender):
self.coordinator.on_preparation_complete(msg.distribution_flavor, msg.distribution_version, msg.revision)
self.logger.info("Telling driver to start benchmark.")
self.send(self.main_driver, driver.StartBenchmark())
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_TaskFinished(self, msg, sender):
self.coordinator.on_task_finished(msg.metrics)
# We choose *NOT* to reset our own metrics store's timer as this one is only used to collect complete metrics records from
# other stores (used by driver and mechanic). Hence there is no need to reset the timer in our own metrics store.
self.send(self.mechanic, mechanic.ResetRelativeTime(msg.next_task_scheduled_in))
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_BenchmarkCancelled(self, msg, sender):
self.coordinator.cancelled = True
# even notify the start sender if it is the originator. The reason is that we call #ask() which waits for a reply.
# We also need to ask in order to avoid races between this notification and the following ActorExitRequest.
self.send(self.start_sender, msg)
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_BenchmarkFailure(self, msg, sender):
self.logger.info("Received a benchmark failure from [%s] and will forward it now.", sender)
self.coordinator.error = True
self.send(self.start_sender, msg)
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_BenchmarkComplete(self, msg, sender):
self.coordinator.on_benchmark_complete(msg.metrics)
self.send(self.main_driver, thespian.actors.ActorExitRequest())
self.main_driver = None
self.logger.info("Asking mechanic to stop the engine.")
self.send(self.mechanic, mechanic.StopEngine())
@actor.no_retry("race control") # pylint: disable=no-value-for-parameter
def receiveMsg_EngineStopped(self, msg, sender):
self.logger.info("Mechanic has stopped engine successfully.")
self.send(self.start_sender, Success())
class BenchmarkCoordinator:
def __init__(self, cfg: types.Config):
self.logger = logging.getLogger(__name__)
self.cfg = cfg
self.race = None
self.metrics_store = None
self.race_store = None
self.cancelled = False
self.error = False
self.track_revision = None
self.current_track = None
self.current_challenge = None
def setup(self, sources=False):
# to load the track we need to know the correct cluster distribution version. Usually, this value should be set
# but there are rare cases (external pipeline and user did not specify the distribution version) where we need
# to derive it ourselves. For source builds we always assume "main"
if not sources and not self.cfg.exists("mechanic", "distribution.version"):
hosts = self.cfg.opts("client", "hosts").default
client_options = self.cfg.opts("client", "options").default
(
distribution_flavor,
distribution_version,
distribution_build_hash,
serverless_operator,
) = client.factory.cluster_distribution_version(hosts, client_options)
self.logger.info(
"Automatically derived distribution flavor [%s], version [%s], and build hash [%s]",
distribution_flavor,
distribution_version,
distribution_build_hash,
)
self.cfg.add(config.Scope.benchmark, "mechanic", "distribution.version", distribution_version)
self.cfg.add(config.Scope.benchmark, "mechanic", "distribution.flavor", distribution_flavor)
if versions.is_serverless(distribution_flavor):
if not self.cfg.exists("driver", "serverless.mode"):
self.cfg.add(config.Scope.benchmark, "driver", "serverless.mode", True)
if not self.cfg.exists("driver", "serverless.operator"):
self.cfg.add(config.Scope.benchmark, "driver", "serverless.operator", serverless_operator)
console.info(f"Detected Elasticsearch Serverless mode with operator=[{serverless_operator}].")
else:
min_es_version = versions.Version.from_string(version.minimum_es_version())
specified_version = versions.Version.from_string(distribution_version)
if specified_version < min_es_version:
raise exceptions.SystemSetupError(
f"Cluster version must be at least [{min_es_version}] but was [{distribution_version}]"
)
self.current_track = track.load_track(self.cfg, install_dependencies=True)
self.track_revision = self.cfg.opts("track", "repository.revision", mandatory=False)
challenge_name = self.cfg.opts("track", "challenge.name")
self.current_challenge = self.current_track.find_challenge_or_default(challenge_name)
if self.current_challenge is None:
raise exceptions.SystemSetupError(
"Track [{}] does not provide challenge [{}]. List the available tracks with {} list tracks.".format(
self.current_track.name, challenge_name, PROGRAM_NAME
)
)
if self.current_challenge.user_info:
console.info(self.current_challenge.user_info)
for message in self.current_challenge.serverless_info:
console.info(message)
self.race = metrics.create_race(self.cfg, self.current_track, self.current_challenge, self.track_revision)
self.metrics_store = metrics.metrics_store(
self.cfg, track=self.race.track_name, challenge=self.race.challenge_name, read_only=False
)
self.race_store = metrics.race_store(self.cfg)
def on_preparation_complete(self, distribution_flavor, distribution_version, revision):
self.race.distribution_flavor = distribution_flavor
self.race.distribution_version = distribution_version
self.race.revision = revision
# store race initially (without any results) so other components can retrieve full metadata
self.race_store.store_race(self.race)
if self.race.challenge.auto_generated:
console.info(
"Racing on track [{}] and car {} with version [{}].\n".format(
self.race.track_name, self.race.car, self.race.distribution_version
)
)
else:
console.info(
"Racing on track [{}], challenge [{}] and car {} with version [{}].\n".format(
self.race.track_name, self.race.challenge_name, self.race.car, self.race.distribution_version
)
)
def on_task_finished(self, new_metrics):
self.logger.info("Bulk adding request metrics to metrics store.")
self.metrics_store.bulk_add(new_metrics)
def on_benchmark_complete(self, new_metrics):
self.logger.info("Benchmark is complete.")
self.logger.info("Bulk adding request metrics to metrics store.")
self.metrics_store.bulk_add(new_metrics)
self.metrics_store.flush()
if not self.cancelled and not self.error:
final_results = metrics.calculate_results(self.metrics_store, self.race)
self.race.add_results(final_results)
self.race_store.store_race(self.race)
metrics.results_store(self.cfg).store_results(self.race)
reporter.summarize(final_results, self.cfg)
else:
self.logger.info("Suppressing output of summary report. Cancelled = [%r], Error = [%r].", self.cancelled, self.error)
self.metrics_store.close()
def race(cfg: types.Config, sources=False, distribution=False, external=False, docker=False):
logger = logging.getLogger(__name__)
# at this point an actor system has to run and we should only join
actor_system = actor.bootstrap_actor_system(try_join=True)
benchmark_actor = actor_system.createActor(BenchmarkActor, targetActorRequirements={"coordinator": True})
try:
result = actor_system.ask(benchmark_actor, Setup(cfg, sources, distribution, external, docker))
if isinstance(result, Success):
logger.info("Benchmark has finished successfully.")
# may happen if one of the load generators has detected that the user has cancelled the benchmark.
elif isinstance(result, actor.BenchmarkCancelled):
logger.info("User has cancelled the benchmark (detected by actor).")
elif isinstance(result, actor.BenchmarkFailure):
logger.error("A benchmark failure has occurred")
raise exceptions.RallyError(result.message, result.cause)
else:
raise exceptions.RallyError("Got an unexpected result during benchmarking: [%s]." % str(result))
except KeyboardInterrupt:
logger.info("User has cancelled the benchmark (detected by race control).")
# notify the coordinator so it can properly handle this state. Do it blocking so we don't have a race between this message
# and the actor exit request.
actor_system.ask(benchmark_actor, actor.BenchmarkCancelled())
raise exceptions.UserInterrupted("User has cancelled the benchmark (detected by race control).") from None
finally:
logger.info("Telling benchmark actor to exit.")
actor_system.tell(benchmark_actor, thespian.actors.ActorExitRequest())
def set_default_hosts(cfg: types.Config, host="127.0.0.1", port=9200):
logger = logging.getLogger(__name__)
configured_hosts = cfg.opts("client", "hosts")
if len(configured_hosts.default) != 0:
logger.info("Using configured hosts %s", configured_hosts.default)
else:
logger.info("Setting default host to [%s:%d]", host, port)
default_host_object = opts.TargetHosts(f"{host}:{port}")
cfg.add(config.Scope.benchmark, "client", "hosts", default_host_object)
# Poor man's curry
def from_sources(cfg: types.Config):
port = cfg.opts("provisioning", "node.http.port")
set_default_hosts(cfg, port=port)
return race(cfg, sources=True)
def from_distribution(cfg: types.Config):
port = cfg.opts("provisioning", "node.http.port")
set_default_hosts(cfg, port=port)
return race(cfg, distribution=True)
def benchmark_only(cfg: types.Config):
set_default_hosts(cfg)
# We'll use a special car name for external benchmarks.
cfg.add(config.Scope.benchmark, "mechanic", "car.names", ["external"])
return race(cfg, external=True)
def docker(cfg: types.Config):
set_default_hosts(cfg)
return race(cfg, docker=True)
Pipeline("from-sources", "Builds and provisions Elasticsearch, runs a benchmark and reports results.", from_sources)
Pipeline(
"from-distribution", "Downloads an Elasticsearch distribution, provisions it, runs a benchmark and reports results.", from_distribution
)
Pipeline("benchmark-only", "Assumes an already running Elasticsearch instance, runs a benchmark and reports results", benchmark_only)
# Very experimental Docker pipeline. Should only be used with great care and is also not supported on all platforms.
Pipeline("docker", "Runs a benchmark against the official Elasticsearch Docker container and reports results", docker, stable=False)
def available_pipelines():
return [[pipeline.name, pipeline.description] for pipeline in pipelines.values() if pipeline.stable]
def list_pipelines():
console.println("Available pipelines:\n")
console.println(tabulate.tabulate(available_pipelines(), headers=["Name", "Description"]))
def run(cfg: types.Config):
logger = logging.getLogger(__name__)
name = cfg.opts("race", "pipeline")
race_id = cfg.opts("system", "race.id")
console.info(f"Race id is [{race_id}]", logger=logger)
if len(name) == 0:
# assume from-distribution pipeline if distribution.version has been specified and --pipeline cli arg not set
if cfg.exists("mechanic", "distribution.version"):
name = "from-distribution"
else:
name = "from-sources"
logger.info("User specified no pipeline. Automatically derived pipeline [%s].", name)
cfg.add(config.Scope.applicationOverride, "race", "pipeline", name)
else:
logger.info("User specified pipeline [%s].", name)
if os.environ.get("RALLY_RUNNING_IN_DOCKER", "").upper() == "TRUE":
# in this case only benchmarking remote Elasticsearch clusters makes sense
if name != "benchmark-only":
raise exceptions.SystemSetupError(
"Only the [benchmark-only] pipeline is supported by the Rally Docker image.\n"
"Add --pipeline=benchmark-only in your Rally arguments and try again.\n"
"For more details read the docs for the benchmark-only pipeline in {}\n".format(doc_link("pipelines.html#benchmark-only"))
)
try:
pipeline = pipelines[name]
except KeyError:
raise exceptions.SystemSetupError(
"Unknown pipeline [%s]. List the available pipelines with %s list pipelines." % (name, PROGRAM_NAME)
)
try:
pipeline(cfg)
except exceptions.RallyError as e:
# just pass on our own errors. It should be treated differently on top-level
raise e
except KeyboardInterrupt:
logger.info("User has cancelled the benchmark.")
raise exceptions.UserInterrupted("User has cancelled the benchmark (detected by race control).") from None
except BaseException:
tb = sys.exc_info()[2]
raise exceptions.RallyError("This race ended with a fatal crash.").with_traceback(tb)