Skip to content

Latest commit

 

History

History
55 lines (48 loc) · 1.06 KB

README.md

File metadata and controls

55 lines (48 loc) · 1.06 KB

cuda-lab

Playing with CUDA and GPUs in Google Colab.

Usage

  1. Open a Colab notebook: https://colab.research.google.com/
  2. Create a new Python 3 notebook
  3. Change runtime type selecting GPU as hardware accelerator
  4. Git clone this repository:
!git clone https://github.com/alessandrobessi/cuda-lab.git
  1. Change permissions:
!chmod 755 cuda-lab/INSTALL.sh
  1. Install cuda, nvcc, gcc, and g++:
!./cuda-lab/INSTALL.sh
  1. Add /usr/local/cuda/bin to PATH:
import os
os.environ['PATH'] += ':/usr/local/cuda/bin'
  1. Compile an existing Cuda source:
!nvcc cuda-lab/add.cu -o add -Wno-deprecated-gpu-targets
  1. Run the compiled Cuda source using the Nvidia profiler tool:
!nvprof ./add
  1. or just time it:
!time ./add

You can also create a Cuda source file using the magic command %%writefile <filename.cu>:

%%writefile snippet.cu
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
...

and then compile and run it!

!nvcc snippet.cu -o snippet -Wno-deprecated-gpu-targets
!nvprof ./snippet