-
Notifications
You must be signed in to change notification settings - Fork 8
/
fine_tune_inceptionv3.py
174 lines (142 loc) · 5.59 KB
/
fine_tune_inceptionv3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
'''This script goes along the blog post
"Building powerful image classification models using very little data"
from blog.keras.io.
It uses data that can be downloaded at:
https://www.kaggle.com/c/dogs-vs-cats/data
In our setup, we:
- created a data/ folder
- created train/ and validation/ subfolders inside data/
- created cats/ and dogs/ subfolders inside train/ and validation/
- put the cat pictures index 0-999 in data/train/cats
- put the cat pictures index 1000-1400 in data/validation/cats
- put the dogs pictures index 12500-13499 in data/train/dogs
- put the dog pictures index 13500-13900 in data/validation/dogs
So that we have 1000 training examples for each class, and 400 validation examples for each class.
In summary, this is our directory structure:
```
data/
train/
dogs/
dog001.jpg
dog002.jpg
...
cats/
cat001.jpg
cat002.jpg
...
validation/
dogs/
dog001.jpg
dog002.jpg
...
cats/
cat001.jpg
cat002.jpg
...
```
'''
from keras.applications.inception_v3 import InceptionV3
from keras.preprocessing import image
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.preprocessing.image import ImageDataGenerator
from keras import backend as K
from keras.callbacks import ModelCheckpoint
from keras.callbacks import TensorBoard
import os.path
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# dimensions of our images.
#Inception input size
img_width, img_height = 299, 299
top_layers_checkpoint_path = 'cp.top.best.hdf5'
fine_tuned_checkpoint_path = 'cp.fine_tuned.best.hdf5'
new_extended_inception_weights = 'final_weights.hdf5'
train_data_dir = '/tmp/data/train'
validation_data_dir = '/tmp/data/validation'
nb_train_samples = 2000
nb_validation_samples = 800
top_epochs = 50
fit_epochs = 50
batch_size = 24
# add a global spatial average pooling layer
x = base_model.output
x = GlobalAveragePooling2D()(x)
# let's add a fully-connected layer
x = Dense(1024, activation='relu')(x)
# and a logistic layer -- we have 2 classes
predictions = Dense(2, activation='softmax')(x)
# this is the model we will train
model = Model(input=base_model.input, output=predictions)
if os.path.exists(top_layers_checkpoint_path):
model.load_weights(top_layers_checkpoint_path)
print ("Checkpoint '" + top_layers_checkpoint_path + "' loaded.")
# first: train only the top layers (which were randomly initialized)
# i.e. freeze all convolutional InceptionV3 layers
for layer in base_model.layers:
layer.trainable = False
# compile the model (should be done *after* setting layers to non-trainable)
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'], )
# prepare data augmentation configuration
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='categorical')
#Save the model after every epoch.
mc_top = ModelCheckpoint(top_layers_checkpoint_path, monitor='val_acc', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1)
#Save the TensorBoard logs.
tb = TensorBoard(log_dir='./logs', histogram_freq=1, write_graph=True, write_images=True)
# train the model on the new data for a few epochs
#model.fit_generator(...)
model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples // batch_size,
nb_epoch=top_epochs,
validation_data=validation_generator,
nb_val_samples=nb_validation_samples // batch_size,
callbacks=[mc_top, tb])
# at this point, the top layers are well trained and we can start fine-tuning
# convolutional layers from inception V3. We will freeze the bottom N layers
# and train the remaining top layers.
# let's visualize layer names and layer indices to see how many layers
# we should freeze:
for i, layer in enumerate(base_model.layers):
print(i, layer.name)
#Save the model after every epoch.
mc_fit = ModelCheckpoint(fine_tuned_checkpoint_path, monitor='val_acc', verbose=0, save_best_only=True, save_weights_only=False, mode='auto', period=1)
if os.path.exists(fine_tuned_checkpoint_path):
model.load_weights(fine_tuned_checkpoint_path)
print ("Checkpoint '" + fine_tuned_checkpoint_path + "' loaded.")
# we chose to train the top 2 inception blocks, i.e. we will freeze
# the first 172 layers and unfreeze the rest:
for layer in model.layers[:172]:
layer.trainable = False
for layer in model.layers[172:]:
layer.trainable = True
# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
from keras.optimizers import SGD
model.compile(optimizer=SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metrics=['accuracy'])
# we train our model again (this time fine-tuning the top 2 inception blocks
# alongside the top Dense layers
#model.fit_generator(...)
model.fit_generator(
train_generator,
samples_per_epoch=nb_train_samples // batch_size,
nb_epoch=fit_epochs,
validation_data=validation_generator,
nb_val_samples=nb_validation_samples // batch_size,
callbacks=[mc_fit, tb])
model.save_weights(new_extended_inception_weights)