-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmicrophone.go
158 lines (130 loc) · 3.63 KB
/
microphone.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
package microphone
import (
"fmt"
"math"
"sync"
"github.com/faiface/beep"
"github.com/gen2brain/malgo"
)
// OpenStream opens a stream for the deviceConfig
func OpenStream(ctx *malgo.AllocatedContext, deviceConfig malgo.DeviceConfig) (s *Streamer, format beep.Format, err error) {
if deviceConfig.Capture.Channels > 2 || deviceConfig.Capture.Channels == 0 {
return nil, beep.Format{}, fmt.Errorf("Invalid number of channels")
}
s = &Streamer{
cond: sync.NewCond(&sync.Mutex{}),
}
// Callback with microphone audio data
sizeInBytes := uint32(malgo.SampleSizeInBytes(deviceConfig.Capture.Format))
onRecvFrames := func(outputSample, inputSample []byte, framecount uint32) {
sampleBytesToFloats(s, inputSample, int(framecount), int(sizeInBytes), int(deviceConfig.Capture.Channels))
s.cond.Signal()
//NB: Should we s.Stop() if the buffer becomes x bytes or greater?
}
device, err := malgo.InitDevice(ctx.Context, deviceConfig, malgo.DeviceCallbacks{
Data: onRecvFrames,
})
if err != nil {
return s, format, err
}
s.device = device
format = beep.Format{
SampleRate: beep.SampleRate(device.SampleRate()),
NumChannels: int(device.CaptureChannels()),
Precision: 3,
}
return s, format, nil
}
// Streamer is an implementation of the beep.StreamCloser interface
// to provide access to the microphone through the malgo library.
type Streamer struct {
cond *sync.Cond
device *malgo.Device
buffer [][2]float64
err error
closed bool
}
// Stream fills samples with the audio recorded with the microphone.
// Unless there is an error, this method will wait until samples
// is filled completely which may involve waiting for the OS to
// supply the data.
func (s *Streamer) Stream(samples [][2]float64) (int, bool) {
// Wait until buffer fills up to Stream
s.cond.L.Lock()
for len(s.buffer) < len(samples) {
s.cond.Wait()
}
s.cond.L.Unlock()
// return that the stream has been closed
if s.closed {
return 0, false
}
// Stream is already empty
if len(s.buffer) == 0 {
return 0, true
}
numSamplesStreamed := 0
for i := 0; i < len(samples); i++ {
if len(s.buffer) == 0 {
break
}
samples[i] = s.buffer[i]
numSamplesStreamed++
}
s.buffer = s.buffer[numSamplesStreamed:]
return numSamplesStreamed, true
}
// Err returns an error that occurred during streaming.
// If no error occurred, nil is returned.
func (s *Streamer) Err() error {
return s.err
}
// Close the stream
func (s *Streamer) Close() error {
s.Stop()
if !s.closed {
s.device.Uninit()
s.closed = true
}
return nil
}
// Start reading data from the microphone
func (s *Streamer) Start() {
if !s.device.IsStarted() {
s.device.Start()
}
}
// Stop reading data from the microphone.
// reading can be resumed using the Start method
func (s *Streamer) Stop() {
if s.device.IsStarted() {
s.device.Stop()
}
}
func sampleBytesToFloats(s *Streamer, input []byte, sampleCount, sampleSizeInBytes, numChannels int){
if numChannels == 0 || numChannels > 2 {
return
}
for sample := 0; sample < sampleCount; sample++ {
var channels [2]float64
for channel := 0; channel < numChannels; channel++ {
bytes := input[:sampleSizeInBytes]
channels[channel] = decodeFloat(bytes)
input = input[sampleSizeInBytes:]
}
s.buffer = append(s.buffer, channels)
}
}
func decodeFloat(p []byte) (x float64) {
precision := 3
var xUint64 uint64
for i := precision - 1; i >= 0; i-- {
xUint64 <<= 8
xUint64 += uint64(p[i])
}
if xUint64 >= 1<<uint(precision*8-1) {
compl := 1<<uint(precision*8) - xUint64
return -float64(int64(compl)) / (math.Exp2(float64(precision)*8-1) - 1)
}
return float64(int64(xUint64)) / (math.Exp2(float64(precision)*8-1) - 1)
}