-
Notifications
You must be signed in to change notification settings - Fork 1
/
predict_KenLM.py
164 lines (136 loc) · 4.91 KB
/
predict_KenLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import glob
import argparse
import torch
import torchaudio
import numpy as np
import pandas as pd
from datasets import Dataset
from pydub import AudioSegment
from pyctcdecode import build_ctcdecoder
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from utils.generic_utils import load_config
class STT:
def __init__(
self,
model_name,
device='cuda' if torch.cuda.is_available() else 'cpu',
lm=None
):
self.model_name = model_name
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.vocab_dict = self.processor.tokenizer.get_vocab()
self.sorted_dict = {k.lower(): v for k, v in sorted(self.vocab_dict.items(),key=lambda item: item[1])}
self.device = device
self.lm = lm
if self.lm:
self.lm_decoder = build_ctcdecoder(
list(self.sorted_dict.keys()),
self.lm
)
def batch_predict(self, batch):
features = self.processor(batch["speech"],
sampling_rate=batch["sampling_rate"][0],
padding=True,
return_tensors="pt")
input_values = features.input_values.to(self.device)
attention_mask = features.attention_mask.to(self.device)
with torch.no_grad():
logits = self.model(input_values, attention_mask=attention_mask).logits
if self.lm:
logits = logits.cpu().numpy()
batch["predicted"] = []
for sample_logits in logits:
batch["predicted"].append(self.lm_decoder.decode(sample_logits))
else:
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = self.processor.batch_decode(pred_ids)
return batch
def map_to_array(batch, apply_norm, target_dbfs):
if apply_norm:
# Audio is loaded in a byte array
sound = AudioSegment.from_file(batch["path"])
change_in_dBFS = target_dbfs - sound.dBFS
# Apply normalization
normalized_sound = sound.apply_gain(change_in_dBFS)
# Convert array of bytes back to array of samples in the range [-1, 1]
# This enables to work wih the audio without saving on disk
norm_audio_samples = np.array(normalized_sound.get_array_of_samples()).astype(np.float32, order='C') / 32768.0
if sound.channels < 2:
norm_audio_samples = np.expand_dims(norm_audio_samples, axis=0)
# Expand one dimension and convert to torch tensor to have the save output shape and type as torchaudio.load
speech = torch.from_numpy(norm_audio_samples)
else:
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = speech.squeeze(0).numpy()
batch["sampling_rate"] = 16_000
return batch
def load_data(dataset, num_workers, apply_norm, target_dbfs):
return dataset.map(map_to_array,
num_proc=num_workers,
fn_kwargs={"apply_norm": apply_norm, "target_dbfs": target_dbfs})
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path_or_name',
type=str, required=True,
help="path or name of checkpoints"
)
parser.add_argument(
'-c',
'--config_path',
type=str,
required=True,
default=None,
help="json file with configurations"
)
parser.add_argument(
'--audio_path',
type=str, default=None,
help="Path to where the audios are stored")
parser.add_argument(
'--output_csv',
type=str,
default=None,
help="CSV to save the predictions"
)
parser.add_argument(
'--batch_size',
type=int,
default=1,
help="Batch size"
)
parser.add_argument(
'--kenlm_path',
type=str,
default=None,
help="Path to pretrained KenLM"
)
args = parser.parse_args()
config = load_config(args.config_path)
stt = STT(
model_name=args.checkpoint_path_or_name,
lm=args.kenlm_path
)
wav_paths = glob.glob(os.path.join(args.audio_path, '**', '*.wav'), recursive=True)
df = pd.DataFrame(wav_paths, columns =['path'])
ds = Dataset.from_pandas(df)
loaded_ds = load_data(
ds,
num_workers=config['num_loader_workers'],
apply_norm=config['apply_dbfs_norm'],
target_dbfs=config['target_dbfs']
)
result = loaded_ds.map(
stt.batch_predict,
batched=True,
batch_size=args.batch_size
)
paths = result['path']
texts = result['predicted']
df_pred = pd.DataFrame(list(zip(paths, texts)), columns =['file_path', 'transcription'])
df_pred.to_csv(args.output_csv, index=False)
print("\n\n> Evaluation outputs saved in: ", args.output_csv)
if __name__=='__main__':
main()