-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunge_kutta2.py
59 lines (43 loc) · 1.2 KB
/
runge_kutta2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# AL BIRR KARIM SUSANTO
# https://github.com/albirrkarim/
# http://prajanto.blog.dinus.ac.id/courses/modeling-and-simulation/
# ------------------------ Runge Kutta 2 ------------------------
from tabulate import tabulate
import numpy as np
import time
start_time = time.time()
# Input & Initialize
firstPopulation = 100
growthRate = 0.1
deltaT = 0.5
def GrowthFunc(b):
return growthRate*b
population = firstPopulation
results=[]
deltaP=0.0
# Process
for t in np.arange(0, 10, deltaT):
population += (deltaP*deltaT)
# a = F(tn,pn)
# b = yn+1
# c = F(tn,yn+1)
a = GrowthFunc(population)
b = population+(a*deltaT)
c = GrowthFunc(b)
deltaP = (a+c)/2
results.append((t,population,a,b,c,deltaP))
# Measure Time & Heap Memory
print("__________Measurement__________\n")
# Time
print("______Time______\n\n")
end_time = time.time()
delta_time = end_time-start_time
print("Execution Time : ",delta_time," ms\n")
# Memory
print("_____Memory_____\n")
from guppy import hpy
h = hpy()
print (h.heap())
# Output
print(tabulate(results,headers=["tn","Pn","F(tn,pn)","yn+1","F(tn,yn+1)","deltaP"],tablefmt="fancy_grid"))