diff --git a/vignettes/BasicsOfFiveYearReview.Rmd b/vignettes/BasicsOfFiveYearReview.Rmd index 00ea0bf..c0fda84 100644 --- a/vignettes/BasicsOfFiveYearReview.Rmd +++ b/vignettes/BasicsOfFiveYearReview.Rmd @@ -29,11 +29,20 @@ library(akgfmaps) # Load the data and add more info ```{r eval=F} +data("region_data_all") +data("GOA_bathy") +data("GOA_btemp") +data("GOA_lat") +data("GOA_lon") +data("GOA_slope") +data("GOA_sponge") +data("raster_stack") + region.data <- region_data_all bathy <- GOA_bathy btemp <- GOA_btemp -btemp <- raster::crop(x = btemp, y = bathy) +#btemp <- raster::crop(x = btemp, y = bathy) slope <- GOA_slope sponge <- GOA_sponge @@ -49,7 +58,7 @@ region.data$logarea <- log(region.data$area) lat <- GOA_lat lon <- GOA_lon -raster.stack <- terra::rast(raster_stack, crs=3338) +raster.stack <- terra::rast(raster_stack) names(raster.stack) <- c("lon", "lat", "bdepth", "btemp", "slope", "sponge") # Using terra, the raster values are not automatically passed as factors when plugged into @@ -126,7 +135,7 @@ maxnet.abund <- MakeMaxEntAbundance( scale.fac = maxnet.scale, type = "cloglog" ) -# Now crossvalidate and get fit metrics +# Now cross-validate and get fit metrics maxnet.cv <- CrossValidateModel( model = maxnet.model, data = species.data, species = species, group = "Folds", model.type = "maxnet", key = "hauljoin", scale.preds = T, regmult = 1 @@ -195,7 +204,7 @@ hpoisson.scale <- mean(species.data[, species]) / mean(predict(hpoisson.model, t hpoisson.abund <- MakeGAMAbundance( model = hpoisson.model, r.stack = raster.stack, scale.factor = hpoisson.scale, filename = "" -) +) # This makes a SpatRaster object hpoisson.cv <- CrossValidateModel( model = hpoisson.model, model.type = "hgam", data = species.data,