From 549ecc6cbe65a935686b45085e53df237d8c171b Mon Sep 17 00:00:00 2001 From: James Geddes Date: Fri, 29 Nov 2024 09:00:06 +0000 Subject: [PATCH] Add inner products to all the maths we know --- reference/all-the-maths-we-know.tex | 41 ++++++++++++++++++++++++----- 1 file changed, 35 insertions(+), 6 deletions(-) diff --git a/reference/all-the-maths-we-know.tex b/reference/all-the-maths-we-know.tex index 0c2cc75..6ccc17e 100644 --- a/reference/all-the-maths-we-know.tex +++ b/reference/all-the-maths-we-know.tex @@ -27,7 +27,8 @@ %\renewcommand{\vec}[1]{mathbold{#1}} \newcommand{\imag}{\mathrm{i}} \newcommand{\id}{\mathbold{1}} -%% +\newcommand{\inner}[2]{{\langle #1,#2 \rangle}} +%% %% Some headings get broken over two lines, and I'd like the box to be as small as possible. \newlength{\termheaderwd} %% @@ -349,17 +350,16 @@ \section*{Dual space} %% ============================================================ -\section*{Operators} +\section*{Operators I} \begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}} \toprule - \settowidth{\termheaderwd}{polynomial} \defn{Operator} & A linear map from a vector space to itself. \\ - \parbox[t]{\termheaderwd}{\defn{Invariant\\ subspace}} & A subspace $U \subset V$ is \emph{invariant} under operator $T$ if $T u\in U$ for all $u\in U$. \\ + \settowidth{\termheaderwd}{polynomial}% + \parbox[t]{\termheaderwd}{\defn{Invariant\\ subspace}} & A subspace $U \subset V$ is \emph{invariant} under operator $T$ if $T u\in U$ for all $u\in U$. \\ \parbox[t]{\termheaderwd}{\defn{Minimal\\ polynomial}} & Of an operator, $T$ on a finite-dimensional vector space over field~$\mathbold{F}$. The (unique) monic polynomial $p\in\mathcal{P}(\mathbold{F})$ such that $p(T)=0$. (``Monic'' means that the coefficient of the highest-degree term is~1.) \\ - \end{tabularx} %% ============================================================ @@ -419,7 +419,6 @@ \section*{Matrices} %% ============================================================ - \section*{Eigenvalues} \begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}} \toprule @@ -431,5 +430,35 @@ \section*{Eigenvalues} \\ \end{tabularx} + +%% ============================================================ + +\section*{Operators II} +\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}} + \toprule + \defn{Commuting} & Operators $A$ and $B$ commute if $AB-BA=0$. +\end{tabularx} + +%% ============================================================ + +\section*{Inner products} +\begin{tabularx}{\columnwidth}{@{}l>{\raggedright\arraybackslash}X@{}} + \toprule + \settowidth{\termheaderwd}{product}% + \parbox[t]{\termheaderwd}{\defn{Inner\\ product}} + & On a real or complex vector space, $V$, a conjugate-symmetric, positive-definite map $V\times V\to\set{F}$, written $\langle v, w\rangle$ for $v, w\in\set{F}$, which is linear in its first argument (and conjugate linear in its second). That is: + \begin{gather*} + \inner{v}{w} \geq 0 \tag{positive}\\ + \inner{v}{v} = 0 \implies v = 0 \tag{definite}\\ + \langle v, w\rangle = \overline{\langle w, v\rangle} \tag{conj.\ symm.} \\ + \langle v, x+\lambda y\rangle = \langle v,x\rangle + \lambda \langle v, y\rangle \tag{linear} \\ + \end{gather*} \\ + \defn{Norm} & (Given an inner product) the norm of $v$ is + \begin{equation*} + \| v\| = \sqrt{\inner{v}{v}}. + \end{equation*} +\end{tabularx} + + \end{multicols*} \end{document}