diff --git a/autoemulate/compare.py b/autoemulate/compare.py index cb8089f6..cc26c428 100644 --- a/autoemulate/compare.py +++ b/autoemulate/compare.py @@ -32,7 +32,7 @@ def setup( self, X, y, - use_param_search=False, + param_search=False, param_search_type="random", param_search_iters=20, scale=True, @@ -53,13 +53,13 @@ def setup( Simulation input. y : array-like, shape (n_samples, n_outputs) Simulation output. - use_param_search : bool + param_search : bool Whether to perform hyperparameter search over predifined parameter grids. param_search_type : str Type of hyperparameter search to perform. Can be "grid", "random", or "bayes". param_search_iters : int Number of parameter settings that are sampled. Only used if - use_param_search=True and param_search_type="random". + param_search=True and param_search_type="random". scale : bool, default=True Whether to scale the data before fitting the models using a scaler. scaler : sklearn.preprocessing.StandardScaler @@ -99,7 +99,7 @@ def setup( ) self.metrics = self._get_metrics(METRIC_REGISTRY) self.cv = self._get_cv(CV_REGISTRY, fold_strategy, folds) - self.use_param_search = use_param_search + self.param_search = param_search self.search_type = param_search_type self.param_search_iters = param_search_iters self.scale = scale @@ -185,7 +185,7 @@ def compare(self): for i in range(len(self.models)): # hyperparameter search - if self.use_param_search: + if self.param_search: self.models[i] = optimize_params( X=self.X, y=self.y,