forked from JinyuanSun/PymolFold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pf_plugin.py
402 lines (329 loc) · 12.8 KB
/
pf_plugin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from pymol import cmd
import requests
import re
import os
import json
# BASE_URL = "http://region-8.seetacloud.com:42711/"
BASE_URL = "https://api.cloudmol.org/"
ESMFOLD_API = "https://api.esmatlas.com/foldSequence/v1/pdb/"
AM_HEGELAB_API = 'https://alphamissense.hegelab.org/structure/'
ABS_PATH = os.path.abspath("./")
def set_workdir(path):
global ABS_PATH
ABS_PATH = path
if ABS_PATH[0] == "~":
ABS_PATH = os.path.join(os.path.expanduser("~"), ABS_PATH[2:])
print(f"Results will be saved to {ABS_PATH}")
def set_base_url(url):
global BASE_URL
BASE_URL = url
def ls_fix(selection, HOH="N"):
sel = selection
objs = cmd.get_object_list(sel)
list_sele = []
sel = selection+" and not resn HOH"
for a in range(len(objs)):
m1 = cmd.get_model(sel+" and "+objs[a])
for x in range(len(m1.atom)):
if m1.atom[x-1].resi != m1.atom[x].resi:
list_sele.append(m1.atom[x].resi)
print(",".join(list_sele))
return ",".join(list_sele)
def cal_plddt(pdb_string: str):
"""read b-factors of ca
Args:
pdb_string (str): _description_
"""
lines = pdb_string.split("\n")
plddts = []
for line in lines:
if " CA " in line:
plddt = float(line[60:66])
plddts.append(plddt)
if max(plddts) <= 1.0:
plddts = [plddt * 100 for plddt in plddts]
print("Guessing the scale is [0,1], we scale it to [0, 100]")
else:
print("Guessing the scale is [0,100]")
return sum(plddts) / len(plddts)
def query_pymolfold(sequence: str, name: str = None, num_recycle: int = 0):
if num_recycle != 0:
print("The `num_recycle` was deprecated.")
headers = {
"Content-Type": "application/x-www-form-urlencoded",
}
response = requests.post(f"{BASE_URL}protein/esmfold/", headers=headers, data=sequence)
if response.status_code == 500: # HTTP status for Internal Server Error
print("PymolFold API resulted in an INTERNAL SERVER ERROR. Switching to ESMFold...")
query_esmfold(sequence, name)
return 0
if not name:
name = sequence[:3] + sequence[-3:]
pdb_string = response.content.decode("utf-8")
pdb_filename = os.path.join(ABS_PATH, name) + ".pdb"
if pdb_string.startswith("PARENT"):
pdb_string = pdb_string.replace("PARENT N/A\n", "")
with open(pdb_filename, "w") as out:
out.write(pdb_string.replace('\\n', '\n'))
print(f"Results saved to {pdb_filename}")
plddt = cal_plddt(pdb_string)
print("="*40)
print(" pLDDT: "+"{:.2f}".format(plddt))
print("="*40)
cmd.load(pdb_filename)
else:
print(pdb_string)
return 0
def query_am_hegelab(name):
try:
url = AM_HEGELAB_API + name
response = requests.get(url)
response.raise_for_status() # This will raise a HTTPError for bad responses (4xx and 5xx)
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
else:
# Follow the redirect and get the actual data URL
data_url = response.url
try:
data_response = requests.get(data_url)
data_response.raise_for_status() # This will raise a HTTPError for bad responses (4xx and 5xx)
except requests.exceptions.RequestException as e:
print(f"An error occurred: {e}")
else:
data_content = data_response.content
# Save the data to a file
output_filename = os.path.join(ABS_PATH, name) + ".pdb"
with open(output_filename, 'wb') as file:
file.write(data_content)
cmd.load(output_filename)
return 0
def query_esmfold(sequence: str, name: str = None):
"""Predict protein structure with ESMFold
Args:
sequence (str): amino acid sequence
name (str, optional): _description_. Defaults to None.
"""
sequence = re.sub("[^A-Z:]", "", sequence.replace("/", ":").upper())
sequence = re.sub(":+", ":", sequence)
sequence = re.sub("^[:]+", "", sequence)
sequence = re.sub("[:]+$", "", sequence)
headers = {
"Content-Type": "application/x-www-form-urlencoded",
}
response = requests.post(ESMFOLD_API, headers=headers, data=sequence, verify=False)
if response.status_code == 500: # HTTP status for Internal Server Error
print("ESMFold API resulted in an INTERNAL SERVER ERROR. Switching to PyMolFold...")
query_pymolfold(sequence, name)
return 0
if not name:
name = sequence[:3] + sequence[-3:]
pdb_filename = os.path.join(ABS_PATH, name) + ".pdb"
pdb_string = response.content.decode("utf-8")
if pdb_string.startswith("HEADER"):
with open(pdb_filename, "w") as out:
out.write(pdb_string)
print(f"Results saved to {pdb_filename}")
plddt = cal_plddt(pdb_string)
print("="*40)
print(" pLDDT: "+"{:.2f}".format(plddt))
print("="*40)
cmd.load(pdb_filename)
else:
print(pdb_string)
return 0
def query_mpnn(path_to_pdb: str, fix_pos=None, chain=None, rm_aa=None, inverse=False, homooligomeric=False):
"""query ProteinMPNN server for de novo protein design
Args:
path_to_pdb (str): _description_
Returns:
_type_: _description_
"""
headers = {
'accept': 'application/json',
}
files = {
'file': open(path_to_pdb, 'rb'),
}
if fix_pos:
fix_pos = fix_pos.replace('"', "")
params = {
"fix_pos": fix_pos,
"chain": chain,
"rm_aa": rm_aa,
"inverse": inverse,
"homooligomeric": homooligomeric,
}
response = requests.post(
f"{BASE_URL}mpnn/", headers=headers, files=files, params=params)
res = response.content.decode("utf-8")
d = json.loads(res)
fasta_string = ""
for i, (seq, score, seqid) in enumerate(zip(d['seq'], d['score'], d['seqid'])):
fasta_string += f">des_{i},score={score},seqid={seqid}\n{seq}\n"
print(fasta_string)
return fasta_string
def query_singlemut(path_to_pdb: str, wild, resseq, mut):
"""query ProteinMPNN server for de novo protein design
Args:
path_to_pdb (str): _description_
Returns:
_type_: _description_
"""
headers = {
'accept': 'application/json',
}
params = {
'wild': wild,
'resseq': resseq,
'mut': mut,
}
files = {
'file': open(path_to_pdb, 'rb'),
}
response = requests.post(f'{BASE_URL}signlemut/',
params=params, headers=headers, files=files)
res = response.content.decode("utf-8")
d = json.loads(res)
print(
f"================================\n\tmutation: {d['mutation']}, score: {d['score']}\n================================")
return d
def query_dms(path_to_pdb: str):
"""query ProteinMPNN server for de novo protein design
Args:
path_to_pdb (str): _description_
Returns:
_type_: _description_
"""
headers = {
'accept': 'application/json',
}
files = {
'file': open(path_to_pdb, 'rb'),
}
response = requests.post(f'{BASE_URL}dms/', headers=headers, files=files)
res = response.content.decode("utf-8")
d = json.loads(res)
with open('dms_results.csv', 'w+') as ofile:
ofile.write('mutation,002,010,020,030,ensemble\n')
for name, s1, s2, s3, s4, s5 in zip(d['mutation'], d['002'], d['010'], d['020'], d['030'], d['ensemble']):
ofile.write(f'{name},{s1},{s2},{s3},{s4},{s5}\n')
p = os.path.join(ABS_PATH, 'dms_results.csv')
print(f"Results save to '{p}'")
def color_plddt(selection="all"):
"""
AUTHOR
Jinyuan Sun
DESCRIPTION
Colors Predicted Structures by pLDDT
USAGE
color_plddt sele
PARAMETERS
sele (string)
The name of the selection/object to color by pLDDT. Default: all
"""
# Alphafold color scheme for plddt
cmd.set_color("high_lddt_c", [0, 0.325490196078431, 0.843137254901961])
cmd.set_color("normal_lddt_c", [
0.341176470588235, 0.792156862745098, 0.976470588235294])
cmd.set_color("medium_lddt_c", [1, 0.858823529411765, 0.070588235294118])
cmd.set_color("low_lddt_c", [1, 0.494117647058824, 0.270588235294118])
# test the scale of predicted_lddt (0~1 or 0~100 ) as b-factors
cmd.select("test_b_scale", f"b>1 and ({selection})")
b_scale = cmd.count_atoms("test_b_scale")
if b_scale > 0:
cmd.select("high_lddt", f"({selection}) and (b >90 or b =90)")
cmd.select("normal_lddt",
f"({selection}) and ((b <90 and b >70) or (b =70))")
cmd.select("medium_lddt",
f"({selection}) and ((b <70 and b >50) or (b=50))")
cmd.select(
"low_lddt", f"({selection}) and ((b <50 and b >0 ) or (b=0))")
else:
cmd.select("high_lddt", f"({selection}) and (b >.90 or b =.90)")
cmd.select("normal_lddt",
f"({selection}) and ((b <.90 and b >.70) or (b =.70))")
cmd.select("medium_lddt",
f"({selection}) and ((b <.70 and b >.50) or (b=.50))")
cmd.select(
"low_lddt", f"({selection}) and ((b <.50 and b >0 ) or (b=0))")
cmd.delete("test_b_scale")
# set color based on plddt values
cmd.color("high_lddt_c", "high_lddt")
cmd.color("normal_lddt_c", "normal_lddt")
cmd.color("medium_lddt_c", "medium_lddt")
cmd.color("low_lddt_c", "low_lddt")
# set background color
cmd.bg_color("white")
def prot_design(selection, name='./target_bb.pdb', fix_pos=None, chain=None, rm_aa=None, inverse=False, homooligomeric=False):
"""
save 6vg7_bb.pdb, (n. CA or n. C or n. N or n. O) AND 6VG7.A_0001
Args:
selection (_type_): _description_
"""
cmd.save(name, f"(n. CA or n. C or n. N or n. O) AND {selection}")
print(fix_pos, chain, rm_aa, inverse, homooligomeric)
query_mpnn(name, fix_pos=fix_pos, chain=chain, rm_aa=rm_aa,
inverse=inverse, homooligomeric=homooligomeric)
def singlemut(selection, wild, resseq, mut, name='./target_bb.pdb'):
"""
save 6vg7_bb.pdb, (n. CA or n. C or n. N or n. O) AND 6VG7.A_0001
Args:
selection (_type_): _description_
"""
cmd.save(name, f"(n. CA or n. C or n. N or n. O) AND {selection}")
query_singlemut(name, wild, resseq, mut)
def dms(selection, name='./target_bb.pdb'):
"""
save 6vg7_bb.pdb, (n. CA or n. C or n. N or n. O) AND 6VG7.A_0001
Args:
selection (_type_): _description_
"""
cmd.save(name, f"(n. CA or n. C or n. N or n. O) AND {selection}")
query_dms(name)
def predict_pocket(selection="all", name="input.pdb"):
"""
Predicts the pocket residues in a protein structure using the PocketAPI.
Args:
selection (str, optional): The selection of atoms to consider for pocket prediction. Defaults to "all".
name (str, optional): The name of the PDB file to save. Defaults to "input.pdb".
"""
name = os.path.join(ABS_PATH, name)
cmd.save(name, selection)
headers = {
'accept': 'application/json',
}
files = {
'uploaded_file': open(name, 'rb'),
}
response = requests.post('https://api.cloudmol.org/protein/pocket_mpnn/', headers=headers, files=files)
pocket_dict = json.loads(response.text)
print(pocket_dict)
cmd.set_color("high_c", [0,0.325490196078431,0.843137254901961 ])
cmd.set_color("normal_c", [0.341176470588235,0.792156862745098,0.976470588235294])
cmd.set_color("medium_c", [1,0.858823529411765,0.070588235294118])
cmd.set_color("low_c", [1,0.494117647058824,0.270588235294118])
cmd.color("grey", f"{selection} and polymer.protein")
if len(pocket_dict['Likely pocket residues']) > 0:
cmd.color("medium_c", f"({selection}) and resi {pocket_dict['Likely pocket residues']}")
cmd.show("sticks", f"({selection}) and resi {pocket_dict['Likely pocket residues']}")
if len(pocket_dict['Confident pocket residues']) > 0:
cmd.color("normal_c", f"({selection}) and resi {pocket_dict['Confident pocket residues']}")
if len(pocket_dict['Highly confident pocket residues']) > 0:
cmd.color("high_c", f"({selection}) and resi {pocket_dict['Highly confident pocket residues']}")
for k, v in pocket_dict.items():
if len(v) > 0:
print(k)
print(v)
cmd.extend("predict_pocket", predict_pocket)
cmd.auto_arg[0]["predict_pocket"] = [cmd.object_sc, "object", ""]
cmd.extend("color_plddt", color_plddt)
cmd.auto_arg[0]["color_plddt"] = [cmd.object_sc, "object", ""]
cmd.extend("esmfold", query_esmfold)
cmd.extend("pymolfold", query_pymolfold)
cmd.extend("cpd", prot_design)
cmd.extend("singlemut", singlemut)
cmd.extend("dms", dms)
cmd.extend("ls_fix", ls_fix)
cmd.extend("set_workdir", set_workdir)
cmd.extend("set_base_url", set_base_url)
cmd.extend("fetch_am", query_am_hegelab)