-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path032-pandigital-products.lhs
executable file
·54 lines (40 loc) · 1.3 KB
/
032-pandigital-products.lhs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
#!/usr/bin/env runhaskell
[Pandigital products](http://projecteuler.net/problem=32)
---------------------------------------------------------
We shall say that an n-digit number is pandigital if it makes use of all the
digits 1 to n exactly once; for example, the 5-digit number, 15234, is 1 through
5 pandigital.
The product 7254 is unusual, as the identity, 39 x 186 = 7254, containing
multiplicand, multiplier, and product is 1 through 9 pandigital.
Find the sum of all products whose multiplicand/multiplier/product identity can
be written as a 1 through 9 pandigital.
HINT: Some products can be obtained in more than one way so be sure to only
include it once in your sum.
Code
----
> import Data.List
> pandigital :: Int -> Int -> Int -> Bool
> pandigital a b c =
> let digits = show a ++ show b ++ show c
> in "123456789" == sort digits
> pandigitalTriples :: [(Int, Int, Int)]
> pandigitalTriples =
> [ (a, b, c)
> | a <- [1 .. 9]
> , b <- [1234 .. 9876]
> , let c = a * b
> , pandigital a b c
> ] ++
> [ (a, b, c)
> | a <- [12 .. 98]
> , b <- [123 .. 987]
> , let c = a * b
> , pandigital a b c
> ]
> main :: IO ()
> main = let ps = nub $ map (\ (_,_,c) -> c) pandigitalTriples
> result = sum ps
> in print result
Answer
------
45228