-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
321 lines (262 loc) · 9.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import math
import pathlib
import tempfile
import time
from absl import app, flags, logging
import colorama
import flax
from flax.core import frozen_dict
import flax.linen as nn
from flax.training import checkpoints, train_state
import jax
from jax import lax
import jax.numpy as jnp
from ml_collections import config_flags
import numpy as np
import optax
from data import get_hf_image_dataset, image_transform
from model import UIL
import wandb
Fore = colorama.Fore
Style = colorama.Style
FLAGS = flags.FLAGS
flags.DEFINE_string('workdir', None, 'Directory to store model data.')
config_flags.DEFINE_config_file(
'config',
None,
'File path to the training hyperparameter configuration.',
lock_config=True,
)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def patchify(imgs, patch_size):
"""
imgs: (N, H, W, 3)
x: (N, L, patch_size**2 *3)
"""
p = patch_size
assert imgs.shape[1] == imgs.shape[2] and imgs.shape[2] % p == 0
imgs = imgs.transpose((0, 3, 1, 2))
h = w = imgs.shape[2] // p
x = imgs.reshape(imgs.shape[0], 3, h, p, w, p)
x = jnp.einsum('nchpwq->nhwpqc', x)
x = x.reshape(imgs.shape[0], h * w, p**2 * 3)
return x
def create_learning_rate_fn(config):
warmup_fn = optax.linear_schedule(
init_value=0.0,
end_value=config.learning_rate,
transition_steps=config.lr_warmup_steps,
)
num_batches = config.train_num_samples // config.batch_size
train_steps = config.epochs * num_batches
if config.lr_cosine_decay:
decay_steps = train_steps - config.lr_warmup_steps
opt_fn = optax.cosine_decay_schedule(
init_value=config.learning_rate, decay_steps=decay_steps
)
else:
opt_fn = optax.constant_schedule(config.learning_rate)
learning_rate_fn = optax.join_schedules(
schedules=[warmup_fn, opt_fn], boundaries=[config.lr_warmup_steps]
)
return learning_rate_fn
def create_weight_decay_param_mask(p):
def filter_fn(param_name):
# avoid all biases, layer norms, and embeddings
if (
param_name.endswith('bias')
or 'ln' in param_name
or param_name.endswith('embedding')
):
return False
# everything else should be fine
return True
p = flax.traverse_util.ModelParamTraversal(lambda x, _: filter_fn(x)).update(
lambda _: True, p
)
p = flax.traverse_util.ModelParamTraversal(lambda x, _: not filter_fn(x)).update(
lambda _: False, p
)
return p
def mae_loss(imgs, pred, mask, p):
target = patchify(imgs, p)
loss = (pred - target) ** 2
loss = loss.mean(axis=-1)
loss = (loss * mask).sum() / mask.sum()
return loss
def denoising_loss(pred_noise, noise, p):
noise = patchify(noise, p)
loss = (pred_noise - noise) ** 2
return jnp.mean(loss)
def train_step(state, images, config, rng):
rng = jax.random.fold_in(rng, state.step)
dropout_rng, mask_rng = jax.random.split(rng)
def loss_fn(params):
pred_mae, pred_causal, mask, pred_noise, noise = UIL(**config, deterministic=False).apply(
{'params': params},
images, mask_rng,
rngs={'dropout': dropout_rng},
)
loss = 0
loss += mae_loss(images, pred_mae, mask, config['patch_size']) if pred_mae is not None else 0
loss += denoising_loss(pred_noise, noise, config['patch_size']) if pred_noise is not None else 0
loss += (
mae_loss(images, pred_causal, jnp.ones_like(pred_causal[:, :, 0]), config['patch_size'])
if pred_causal is not None else 0
)
return loss, pred_mae
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(loss, pred), grads = grad_fn(state.params)
grads = lax.pmean(grads, axis_name='batch')
state = state.apply_gradients(grads=grads)
return state, (loss, pred), rng
def train_one_epoch(config, epoch, state, model_config, train_loader, rng):
batch_time_m = AverageMeter()
data_time_m = AverageMeter()
end = time.time()
learning_rate_fn = create_learning_rate_fn(config)
world_size = jax.device_count()
samples_per_epoch = config.train_num_samples
num_batches_per_epoch = samples_per_epoch // config.batch_size
sample_digits = math.ceil(math.log(samples_per_epoch + 1, 10))
num_samples = 0
p_train_step = jax.pmap(
train_step,
axis_name='batch',
donate_argnums=(0,),
static_broadcasted_argnums=(2,),
)
# replicate params and rng
state = flax.jax_utils.replicate(state)
rng = jax.random.split(rng, num=world_size)
for i, batch in enumerate(train_loader):
step = num_batches_per_epoch * epoch + i
images = batch['image']
images = images.permute(0, 2, 3, 1).numpy()
images = jnp.array(images, dtype=jnp.bfloat16)
num_samples += images.shape[0]
batch_size_per_device, ragged = divmod(images.shape[0], world_size)
if ragged:
msg = "batch size must be divisible by device count, got {} and {}."
raise ValueError(msg.format(config.batch_size, world_size))
shape_prefix = (world_size, batch_size_per_device)
images = images.reshape(shape_prefix + images.shape[1:])
data_time_m.update(time.time() - end)
percent_complete = num_samples / samples_per_epoch * 100
state, (loss, _), rng = p_train_step(state, images, model_config, rng)
batch_time_m.update(time.time() - end)
end = time.time()
if i % config.logging_interval == 0:
samples_per_second = config.batch_size * world_size / batch_time_m.val
samples_per_second_per_gpu = config.batch_size / batch_time_m.val
lr = jax.tree_map(lambda x: x[0], learning_rate_fn(state.step))
loss = jnp.mean(loss)
logging.info(
f"Train Epoch: {epoch} [{num_samples:>{sample_digits}}/{samples_per_epoch} ({percent_complete:.0f}%)] "
f"Data (t): {data_time_m.avg:.3f} "
f"Batch (t): {batch_time_m.avg:.3f}, {samples_per_second:#g}/s, {samples_per_second_per_gpu:#g}/s/xpu "
f"LR: {lr.item():5f} Loss: {loss.item():.4f}"
)
# Save train loss / etc. Using non avg meter values as loggers have their own smoothing
log_data = {
"data_time": data_time_m.val,
"batch_time": batch_time_m.val,
"samples_per_second": samples_per_second,
"samples_per_second_per_gpu": samples_per_second_per_gpu,
"lr": lr.item(),
"mae_loss": loss.item(),
}
for name, val in log_data.items():
name = "train/" + name
if config.wandb:
assert wandb is not None, 'Please install wandb.'
wandb.log({name: val, 'step': step})
batch_time_m.reset()
data_time_m.reset()
state = flax.jax_utils.unreplicate(state)
return state
def train(config):
rng = jax.random.PRNGKey(config.seed)
workdir = FLAGS.workdir
if workdir is None:
workdir = tempfile.mkdtemp(prefix='uil-')
logging.info(f'workdir: {workdir}')
if config.wandb:
wandb.init(project='uil', config=config)
# setup model and optimizer
rng, init_rng = jax.random.split(rng)
model_config = frozen_dict.FrozenDict(
image_size=config.image_size,
patch_size=config.patch_size,
width=config.width,
layers=config.layers,
heads=config.heads,
noise_std=config.noise_std,
mask_ratio=config.mask_ratio,
decoder_layers=config.decoder_layers,
decoder_width=config.decoder_width,
decoder_heads=config.decoder_heads,
dropout_rate=config.dropout_rate,
attn_dropout_rate=config.attn_dropout_rate,
do_denoise=config.denoise,
do_mae=config.mae,
do_causal=config.causal,
)
model = UIL(**model_config, deterministic=True)
fake_img = jnp.ones([2, config.image_size, config.image_size, 3], dtype=jnp.bfloat16)
params = model.init(init_rng, fake_img, init_rng)['params']
learning_rate_fn = create_learning_rate_fn(config)
tx = optax.adamw(
learning_rate_fn,
b1=config.beta1,
b2=config.beta2,
weight_decay=config.weight_decay,
mask=create_weight_decay_param_mask,
)
state = train_state.TrainState.create(apply_fn=model.apply, params=params, tx=tx)
ckpt_dir = pathlib.Path(workdir) / 'checkpoints'
# parallel checkpoint loading seems to break
state = checkpoints.restore_checkpoint(ckpt_dir, state, parallel=False)
# print model
rng, tabulate_rng = jax.random.split(rng)
tabulate_fn = nn.tabulate(model, tabulate_rng)
logging.info(tabulate_fn(fake_img, tabulate_rng))
# data
preprocess_train = image_transform(config.image_size, is_train=True)
train_loader = get_hf_image_dataset(
data=config.train_data,
split='train',
preprocess_fn=preprocess_train,
batch_size=config.batch_size,
num_workers=config.num_workers,
image_key=config.image_key,
)
for epoch in range(config.epochs):
state = train_one_epoch(config, epoch, state, model_config, train_loader, rng)
checkpoints.save_checkpoint(
ckpt_dir, state, epoch, keep=float('inf')
)
logging.info(f"Saved checkpoint for epoch {epoch + 1} to {ckpt_dir}")
return state
def main(argv):
del argv # Unused.
config = FLAGS.config
np.random.seed(config.seed)
_ = train(config)
if __name__ == '__main__':
flags.mark_flags_as_required(['config'])
jax.config.config_with_absl()
app.run(main)